
Citation: Alimisis, V.; Eleftheriou,

N.P.; Kamperi, A.; Gennis, G.; Dimas,

C.; Sotiriadis, P.P. General

Methodology for the Design of

Bell-Shaped Analog-Hardware

Classifiers. Electronics 2023, 12, 4211.

https://doi.org/10.3390/

electronics12204211

Academic Editors: Leonardo Pantoli,

Egidio Ragonese, Paris Kitsos,

Gaetano Palumbo, Costas

Psychalinos and Antonio G. M.

Strollo

Received: 2 September 2023

Revised: 24 September 2023

Accepted: 9 October 2023

Published: 11 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

General Methodology for the Design of Bell-Shaped
Analog-Hardware Classifiers
Vassilis Alimisis *, Nikolaos P. Eleftheriou, Argyro Kamperi, Georgios Gennis, Christos Dimas
and Paul P. Sotiriadis *

Department of Electrical and Computer Engineering, National Technical University of Athens,
15773 Athens, Greece; eleftheriou_nikos@hotmail.com (N.P.E.); argykaberi@gmail.com (A.K.);
giorgosyennis@gmail.com (G.G.); chdim@central.ntua.gr (C.D.)
* Correspondence: alimisisv@gmail.com (V.A.); pps@ieee.org (P.P.S.)

Abstract: This study introduces a general methodology for the design of analog integrated bell-shaped
classifiers. Each high-level architecture is composed of several Gaussian function circuits in conjunction
with a Winner-Take-All circuit. Notably, each implementation is designed with modularity and scalability
in mind, effectively accommodating variations in classification parameters. The operating principles
of each classifier are illustrated in detail and are used in low-power, low-voltage, and fully tunable
implementations targeting biomedical applications. The realization of this design methodology occurred
within a 90 nm CMOS process, leveraging the Cadence IC suite for both electrical and layout design
aspects. In the verification phase, post-layout simulation outcomes were meticulously compared against
software-based implementations of each classifier. Through the simulation results and comparison study,
the design methodology is confirmed in terms of accuracy and sensitivity.

Keywords: analog VLSI; general design methodology; biomedical applications; wake-up circuit;
analog classifiers

1. Introduction

The rapid growth of the Internet of Things (IoT) is leading to the proliferation of devices
and sensors that often operate solely on batteries [1,2]. Numerous consumer and industrial ap-
plications rely on IoT devices, some of which lack online recharging capabilities. Consequently,
hardware designers are increasingly dependent on power management solutions to effectively
handle the required power. The advancement of technology has facilitated the integration of
an increasing number of sensors into modern smart sensor systems. This progress has led to
promising developments in miniaturization and power efficiency, enabling these systems to
sense a wide range of physical variables [3]. Integrated circuit (IC) technologies have played a
crucial role in addressing the challenges faced by smart sensor systems. These ICs are complex
but designed to be power- and area-efficient.

Given the dependency on batteries and the need for efficient use of the area, there
is a growing need for new computing paradigms [1]. Edge computing, which includes
analog computing [4], holds great promise for power-hungry systems with high latency.
By exploiting the physical laws describing the transistor, such as analog translinear circuits,
it becomes possible to approximate various mathematically established models [4]. The uti-
lization of the sub-threshold region, along with these advantages, leads to the development
of architectures that are more power efficient [5]. Furthermore, analog ICs can perform
high-performance computations based on the physical laws of MOS or BJT transistors [4,6].

Biomedical engineering is a widely researched area within the IoT domain [7]. Smart
wearable sensors based on IoT technology offer a cost-effective, reliable, and energy-
efficient solution for clinical patient monitoring and disease detection [8]. For instance,
thyroid disease prediction or detection has recently emerged as an important task. The
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thyroid gland, resembling the shape of a butterfly, is situated in the front of the neck [9,10].
More specifically, it is a small organ located below the Adam’s apple surrounding the
trachea (windpipe). Functioning as part of the endocrine system, which comprises glands
responsible for producing, storing, and releasing hormones into the bloodstream, the
thyroid plays a crucial role in regulating metabolism and various metabolic processes [9,10].
Additionally, it contributes to muscle control, brain development, mood regulation, and
digestive function.

Thyroid disorders refer to conditions that affect the normal functioning of this gland.
Abnormal hormone production by the thyroid can lead to a range of issues [11]. The two most
prevalent types of thyroid disease are hyperthyroidism (excessive hormone production) and
hypothyroidism (insufficient hormone production). Other abnormal conditions associated
with the thyroid include thyroiditis, thyroid nodules, goiter, and thyroid cancer. The specific
form of thyroid disease detected determines the available treatment options, which may
involve medications, radioactive iodine, and, in some cases, surgery.

Another interesting application is epileptic seizure prediction [12,13]. An epileptic
seizure occurs due to a sudden surge of neural activity or an electrical disruption within
the brain [14,15]. Individuals diagnosed with epilepsy display symptoms that can vary
from hardly noticeable to severe, potentially even leading to fatality. The unpredictable
frequency and nature of these seizures significantly impact the overall quality of life for
patients; therefore, improving it involves the anticipation and early warning of impending
epileptic episodes. Accurately predicting an upcoming seizure could empower individuals
to take necessary precautions and prevent engaging in hazardous activities like driving.

The anticipation of epileptic seizures relies on the analysis of patients’ well-being
through the utilization of bio-signal acquisition techniques. Epileptic seizures consist of
four distinct phases: pre-ictal, ictal, post-ictal and inter-ictal [14,15] The first three phases
correspond to the periods shortly preceding, during, and immediately following a seizure,
respectively, while the fourth phase pertains to the interval between two seizures during
which the patient’s condition returns to a normal state. According to the findings outlined
in [16], the duration of both the pre-ictal and post-ictal phases fluctuates between 30 min
and 2 h. The precise and real-time recognition of the pre-ictal phase holds immense
significance, as it is equivalent to successfully predicting an imminent seizure.

Motivated by the need for low-power smart biosensors [17,18], we combine sub-
threshold-based analog computing techniques with machine learning (ML) ones [5]. To this
end, in this work, a general methodology for the design of low-voltage (0.6 V), low-power
(less than 44.7 µW) bell-shaped analog classifiers (CLFs) is introduced and tested on real-
world biomedical classification problems. It is realized based on a Bayesian mathematical
model [19] using two main sub-circuits. Specifically, the employed main building blocks
are ultra-low-power Gaussian function circuits [20] and an argmax operator circuit [21].
Post-layout simulation results are conducted on a TSMC 90 nm CMOS process using the
Cadence IC suite and compared with a software-based implementation. Furthermore,
the architecture’s effectiveness is validated through Monte Carlo analysis, affirming its
sensitivity and performance.

The remainder of this paper is organized as follows. Section 2 refers to the background
of this work. More specifically, the literature review and the mathematical model are
analyzed. The proposed design methodology along with the high-level architecture of the
analog CLFs are presented in Section 3. In Section 4, the main building blocks of the analog
bell-shaped CLFs are presented. The validation of the proposed design methodology is
carried out using real-world biomedical datasets in Section 5. This section also includes a
comparison between the hardware and software implementations along with sensitivity
tests. A comparison study and discussion are provided in Section 6. Finally, Section 7
presents concluding remarks summarizing the findings and implications of this study.
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2. Background
2.1. Literature Review

The global landscape is saturated with an abundance of diverse data forms—text,
images, videos, and more—showing no signs of slowing down in the near future [22,23].
ML offers the tantalizing prospect of extracting significance from this vast data expanse.
ML, an interdisciplinary domain, interweaves with mathematical fields such as statistics,
information theory, game theory, and optimization [19,24]. This amalgamation of tools
and technology constitutes a means to effectively process this data deluge. Furthermore,
automated techniques or algorithms are able to discern meaningful patterns or hypotheses
that might evade human observation. While these algorithms are traditionally executed
through software, a trend has surfaced where hardware-friendly implementations are
pursued to realize these algorithms and models [25,26].

Three distinct hardware design strategies exist, each with its own merits and draw-
backs. These strategies encompass analog, digital, and mixed-mode implementations.
Digital circuits, commonly employed in ML applications, boast advantages in achieving ele-
vated classification accuracy, adaptability, and programmability. Nevertheless, they exhibit
substantial power consumption and spatial requirements due to intensive data transactions
and rapid operations. Conversely, dedicated analog-hardware ML architectures facilitate
cost-effective parallelism via low-power computation, yet imprecise circuit parameters
arising from noise and limited precision undermine accuracy. A number of mixed-mode
architectures exploit both analog and digital methodologies to attain reduced power con-
sumption and compact footprints; however, these solutions contend with overhead costs
related to domain conversion.

Dedicated analog-hardware architectures geared toward ML algorithms and models
utilize circuits based on Gaussian functions. The salient attributes of system-level implementa-
tions, coupled with Gaussian function circuitry, are summarized in this subsection. Proposed
ML systems encompass radial basis function neural networks (RBF NNs) [27–37] with a general
design framework, in addition to other neural networks like multi-layer perceptron (MLP);
radial basis function network (RBFN) [32,38]; Gaussian RBF NN (GRBF NN) [39,40]; Gaussian
mixture model (GMM) [41]; Bayesian [42]; K-means-based [43]; and voting [44], fuzzy [45], and
threshold [46] and centroid [47] classifiers. Support vector machine (SVM) [48–50], support
vector regression (SVR) [51], domain description (SVDD) [52] algorithms, pattern-matching clas-
sifiers [53,54], vector quantizers [55,56], a deep ML (DML) engine [57], a similarity evaluation
circuit [58], a long short-term memory (LSTM) [59–62] and a self-organizing map (SOM) [63]
comprise other instances. Gaussian function circuits serve as the bedrock for implementing
two pivotal functions beneficial to myriad ML algorithms: (a) kernel density and (b) distance
computation. A majority of these applications cater to input dimensions lower than 65 dimen-
sions, with select cases omitting an upper limit specification [28,38,39,55], thus accommodating
high-definition image classification.

2.2. Mathematical Model

In this subsection, the mathematical model of the Gaussian Mixture Model (GMM) is
presented. This theory is comprehensive and offers a step-by-step approach to modeling
this general methodology. The remaining models are founded on modifications to this
foundational one, as well as potential simplifications. Hence, it is recommended that the
reader refer to the pertinent streamlined theory for the implementation of a particular
model. The GMM introduces a novel approach to characterizing the probability density
of an N-dimensional random variable. It does so by presenting the variable as a meticu-
lously weighted aggregation of K Gaussian densities. This ingenious formulation not only
surpasses the expressiveness of a singular Gaussian (normal distribution) [19,64], but also
broadens its range of applications. Each instance of a GMM, denoted as λc, is uniquely
identified by several key parameters. These encompass the component count K, the weight
factors [wc

i ]
K
i=1, the mean value vectors

[
Mc

i
]K

i=1 (where Mc
i ∈ RN), and the covariance

matrices
[
Σc

i
]K

i=1 (where Σc
i ∈ RN×N) corresponding to each distinct Gaussian constituent.
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For further clarity, consider an input vector X with dimensions in N denoted as X ∈ RN .
The derivation of the probability density function (PDF) of X via the utilization of λc is
explicitly elaborated in [64]:

p(X|λc) =
K

∑
i=1

wc
i · N (X|Mc

i , Σc
i ). (1)

In this context, it is imperative to observe that the conditions ∑K
i=1 wc

i = 1 and 0 ≤ wc
i ≤ 1

for i = 1, 2, . . . , K are upheld. Designating the i-th N-dimensional Gaussian component within
λc asN (X|Mc

i , Σc
i ), its specific numerical expression is determined as follows:

N (X|Mc
i , Σc

i ) =
e−

1
2 ·(X−Mc

i )
T ·(Σc

i )
−1·(X−Mc

i )√
(2π)N |Σc

i |
, (2)

where |.| denotes the Euclidean norm. The expression provided above can be streamlined
in the case of a diagonal matrix Σc

i as follows:

N (X|Mc
i , Σc

i ) =
N

∏
n=1
N (xn|µc

n, (σc
n)

2), (3)

In this context, (σc
n)

2 denotes the squared value of xn and µc
n represents a scalar taken

as the n-th component of vectors X and Mc
i . The (n, n)-th entry of the matrix Σc

i is referred
to as well. The univariate Gaussian distribution for scalar inputs xn is:

N (xn|µc
n, (σc

n)
2) =

1√
(2π) · (σc

n)
2

e
− 1

2 ·
(xn−µc

n)
2

(σc
n)2 . (4)

When GMMs are applied in an unsupervised manner, they are adept at identifying
distinctive clusters within the analyzed dataset. This intrinsic capability aligns well with
tasks involving clustering. However, in scenarios involving classification, as is the focus
of the proposed framework, a plurality of GMMs is harnessed. Within this context, each
class is associated with an individual GMM exclusively responsible for clustering data
pertaining to that specific class. The selection of the optimal number of components is
determined by the intricacies of the distribution inherent in the dataset. For any given
input vector X and a total of C classes, the posterior probabilities p(λc|X) are computed
individually for each GMM [λc]Cc=1 using the principles outlined in the Bayes theorem:

p(λc|X) =
p(λc)p(X|λc)

p(X)
. (5)

The term p(λc) represents the prior probability while p(X) denotes the probability of
evidence. When conducting a comparison of the posterior probabilities associated with two
different classes, the evidence probability becomes immaterial. This is due to its inherent
independence from the selected class and its function as a mere normalization constant.
Hence, the conclusive determination of the winning class is orchestrated by the overarching
CLF through the following expression:

y = argmax
c∈[1,C]

{p(λc)p(X|λc)}. (6)

3. Proposed Design Methodology

In this section, we delve into the overarching design of the bell-shaped CLFs that
has been put forth. To shed light on the rationale underpinning this design, we consider
a scenario involving the classification of Ncla distinct classes (CLF cells) and Nd inputs
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in each CLF. In this general methodology, the CLF’s high-level configuration involves a
hyperparameter denoted as Nclu, which signifies the number of CLF sub-cells.

This parameter is determined through an exploratory analysis of the specific design
methodology, showcasing the versatility of the proposed design. This adaptability extends
to accommodating various input dimensions, classes, or clusters/centroids.

The structure of the suggested block for the analog bell-shaped CLF is depicted in
Figure 1. According to the formulation of the classification problem described earlier
(scenario), the CLF consists of a single Winner-Take-All (WTA) block with Ncla inputs and
Ncla CLF cells. Each CLF cell comprises Nclu sub-cells, which describe either a cluster or a
centroid (depending on the type of the implemented CLF). These sub-cells are essentially
circuits representing multidimensional Gaussian functions with Nd inputs. Each cell
calculates the probability of an input vector X belonging to a specific cluster/centroid by
employing the Gaussian probability density function (PDF) of the sub-cell, as defined in
the mathematical model.

Ibias

Ibias1 VDD
VDD

V(1)r1...Nd Vr1...Nd
Vc1...Nd

Iout

VSS

VSS

Vin1...Nd

c1...Nd

Io1
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Vin1...Nd Io1
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      CLF 
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VDD

Iout
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Vr1...Nd
Vc1...Nd

Vin1...Nd

CLF Cell Ncla
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VDD

VSS

VSS
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...

...

...

...

...

...

...
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      CLF 
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V(Nclu)r1...Nd

c1...NdV(Nclu)

V(1)r1...Nd

c1...NdV(1)

V(Nclu)r1...Nd

c1...NdV(Nclu)

    CLF 
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Figure 1. Analog bell-shaped classifier with Ncla classes, Nclu clusters/centroids, and Nd features.
This is a conceptual design describing the general methodology.
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In accordance with Equation (1), the probability of X being associated with a particular
class is obtained by summing the probabilities of the sub-cells that constitute that class. To
maintain accuracy and minimize potential distortions, this summation is executed within a
CLF cell through the utilization of current mirrors.

Cascode current mirrors are used instead of high-precision ones, since they are com-
pact and provide high accuracy for the application’s requirements. The transistors’ sizes
for every cascode current mirror are W

L = 3.2 µm
1.6 µm . The WTA block implements the argmax

operator. Through Equation (6), it compares the probabilities of different classes and identi-
fies the class with the highest probability (winning class). Furthermore, the employment
of a conventional WTA circuit facilitates the identification of the winning class through
a digital one-hot vector [I1, . . . , INcla ], where the currents [Ii]

Ncla
i=1 are represented in binary

format [21]. Consequently, the output of the entire CLF is in a digital format.
The employed foundational components introduce certain limitations concerning the

upper bounds on the quantity of classes, clusters/centroids, and input dimensions. To
elaborate, the range of permissible classes is constrained by the WTA circuit’s capacity
to effectively compare a substantial number of inputs. Correspondingly, augmenting the
number of individual currents amalgamated at a node also augments undesired distortion.
Consequently, the utmost number of clusters is confined by the fidelity of this summation
process. The volume of input dimensions is contingent on the multidimensional Gaussian
function circuit. While there exist various circuits that yield PDFs, extant literature confines
their application to dimensions of a modest scale, typically less than 16 [20,65].

4. Circuit Implementation

The main building circuits for the implementation of bell-shaped CLFs are thoroughly
analyzed in this section. Based on Section 3, each CLF cell requires two main blocks: a
CLF cell and an argmax operator circuit which is called a Winner-Take-All (WTA) circuit.
Moreover, each CLF cell requires two main cells: the sub-cells and cascode current mirrors.
The sub-call cells are in fact multidimensional Gaussian function circuits with Nd inputs.
By arranging a series of Nd = N basic bump circuits in sequence, as shown in Figure 2,
the final output of this arrangement provides the behavior of an N-dimensional Gaussian
function. The individual parameters (Vr, Vc, Ibias) for each bump circuit are adjusted
independently. This design methodology of the architecture focuses on the utilization
of ultra-low-power circuits as foundational elements for constructing the primary cells.
As a result, all transistors within the architecture operate within the sub-threshold range.
The classification result is not affected by the current noise of the implemented circuits,
since its worst-case value, as extracted after simulations, is less than 20 pA within the
frequency operating range (<1 kHz). In order to enhance the CLF’s relevance in scenarios
where battery dependence is a concern, the power supply voltages are configured to be
VDD = −VSS = 0.3 V.

Ibias

Ibias

VDD

VDD

VDD

Vc1

Vr1

Vin1
Bump 1

Vin

Vr

Vc

Iout

VSS

VSS

Iout1

Iout2

Ibias

VDD

VDD

Vc2

Vr2

Vin2
Bump 2

Vin

Vr

Vc

Iout

VSS

VSS

IoutN

Ibias

VDD

VDD

Vc N

Vr N

Vin N
Bump N

Vin

Vr

Vc

Iout

VSS

VSS

Iout N-1

Figure 2. By arranging a series of N basic bump circuits in sequence, the final output of this arrange-
ment provides the behavior of an N-dimensional Gaussian function. The individual parameters
(Vr, Vc, Ibias) for each bump circuit are adjusted independently.
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4.1. Gaussian Function Circuit

A broad spectrum of bump circuits has been developed for numerous applications [20].
However, for the purposes of this research, a modified version of the bump circuit (aspect
ratio equal to 7) [65], as shown in Figure 3, has been employed to enhance the quality
and resilience of the resulting Gaussian curve. Specifically, the adjusted circuit employs
a symmetric current correlator (comprising transistors Mp1–Mp6 in Figure 3) with a ratio
of 2 instead of the non-symmetric version utilized in [41]. This modification is driven by
the necessity for symmetric Gaussian curves when comparing two CLF prototypes. The
adoption of a symmetric current correlator ensures that even minor currents maintain
symmetry around the mean value, as illustrated in Figure 4. Moreover, with a ratio equal to
7, we achieve an increase in the linear region of the circuit (higher variance for the same Vc).
Furthermore, to enhance mirroring performance even with low bias currents, a cascode
current mirror consisting of transistors Mn5–Mn10 (Figure 3) has been integrated. Details
pertaining to the dimensions of the transistors are outlined in Table 1.

✄ ☎ ✠

✄ ☎ ✞

✄ ☎ ✡

☛

☞ ✌ ✍ ✎

☛

☞ ✌ ✍ ✌

✏ ✑ ✒

✄ ☎
✟

✄ ☎
✓

✄ ☎
✔

✒ ✑ ✏

✄ ☎ ✠ ✠

✜

✢ ☞ ✣ ✤

✁ ✁

Mn7

Mn4Mn3Mn2Mn1 1 : 77 : 1

Mn6Mn5

Ibias

Vin
VDD Vc Vc Vr

VSS

Vs1 Vs2

Mp4
Mp1

Mp3

Iout

✄ ✝ ✠

Mp2

✁ ✁ ✁ ✁VDD ✁ ✁

I1 I2

Mp5 Mp6

✄ ☎
✔Mn10Mn9Mn8

Figure 3. The utilized Gaussian function circuit is presented. The output current Iout resembles a
Gaussian function controlled by the input voltage Vin. The parameter voltages Vr, Vc and the bias
current Ibias control the Gaussian function’s mean value, variance, and peak value, respectively.

Table 1. Bump circuit transistors’ dimensions.

NMOS Differential Block W/L (µm/µm) Current Correlator W/L (µm/µm)

Mn1,Mn4 2.8/0.4 Mp1,Mp2 1.6/1.6
Mn2,Mn3 0.4/0.4 Mp3,Mp4 0.4/1.6
Mn5–Mn8 0.4/1.6 Mp5,Mp6 0.4/1.6
Mn9,Mn10 1.6/1.6 - -

Figure 4. The output current of the implemented bump circuit with respect to the aspect ratio of the
input differential pair transistors. The simulation was conducted under Vr = 0 V, Vc = 180 mV and
Ibias = 6 nA.
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A multivariate Gaussian distribution as well as a corresponding multivariate Gaussian
distance metric is formulated based on mathematical equations outlined in the background.
In practical application, the serial connection of two or more bump circuits is akin to their
multiplication [41]. The mean value and variance of each bump circuit are controlled by
specific voltage parameters referred to as Vr and Vc. In this arrangement, the initial bump
circuit incorporates an Ibias, which determines the peak of the Gaussian probability density
function (PDF) and corresponds to the height of the Gaussian curve. Subsequent bump
circuits are biased using the output current from the previous bump unit. An illustration
of this cascade of bump circuits, facilitating the implementation of a multivariate distance
function, can be observed in Figure 2. Nonetheless, a constraint of this design emerges
as the count of bump cells within a cascaded implementation rises to accommodate high-
dimensional data. In this scenario, the current scaling induced by Ibias does not exhibit a
fully linear behavior. This deviation from linearity can be traced back to slight inaccuracies
inherent in analog circuits. While these inaccuracies might have minimal impact on low-
dimensional inputs, the cumulative effect becomes pronounced as more bump cells are
linked in a series configuration. Consequently, the output current is notably influenced.

4.2. Winner-Take-All Circuit

The next circuit under consideration is the WTA circuit. To gain a comprehensive
understanding of the modified WTA circuit implemented in this research, a concise analysis
of the conventional Lazzaro WTA circuit is provided [21]. In the Lazarro WTA circuit
configuration, Ncla neurons are interconnected, sharing a common Ibias current as depicted
in Figure 5. Each neuron corresponds to a distinct class and solely manages its input and
output functions. Among these neurons, the one with the greatest input current generates
a non-zero output equal to Ibias while the remaining neurons output zero. Instances
involving similar input currents can result in multiple winners, a situation typically deemed
undesirable in most classification scenarios.

✄ ☎
✟Mn2

✄☎
✟Mn1

VSS

✜

✢ ☞ ✣ ✤Iin1

✁ ✁

VDD
Ion1

    NMOS 
Neuron Cell 1

NMOS
Neuron Cell 2

✁ ✁

VSS

Ion2

✁ ✁

IonNcla

✁ ✁

VDD

Iin2

NMOS
Neuron Cell Ncla

✁ ✁

VSS

✁ ✁

VDD

IinNcla

...

Ibias
✁ ✁

VSS
Figure 5. A Ncla-neuron standard Lazzaro NMOS Winner-Take-All (WTA) circuit.

A resolution to this challenge arises through the utilization of a cascaded WTA cir-
cuit, as depicted in Figure 6. The devised configuration integrates three WTA circuits
interconnected in a cascaded manner [65]. The one-dimensional decision boundaries
of the conventional Lazzaro WTA circuit and the proposed cascaded version are visu-
alized in Figure 7. Notably, it becomes evident that the cascaded WTA circuit presents sig-
nificantly steeper decision boundaries compared to the basic Lazzaro WTA circuit. As a
result, the cascaded topology proves to be the appropriate choice for the essential argmax
operation of the CLF. The dimensions of all transistors for the NMOS and PMOS neurons in
Figure 6 are established at W/L = 0.4 µm/1.6 µm. The preference for extended transistors is
guided by the requirement for reduced noise and enhanced linearity to effectively execute the
argmax operator.
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...
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Figure 6. A cascaded NMOS-PMOS-NMOS WTA circuit. It is utilized to improve the performance of
the standard WTA circuit.

Figure 7. Decision boundaries of the standard and the cascaded WTA circuit.

5. Application Examples and Simulation Results

In this section, the proposed design methodology is tested on two real-world datasets:
(a) the epilepsy seizure prediction problem from the CHB-MIT Scalp EEG database [12,13]
and (b) thyroid disease detection from the University of California, Irvine (UCI) Machine
Learning Repository [9] to confirm its proper operation. The design procedure has been
designed using the Cadence IC suite in a TSMC 90 nm CMOS process. All simulation results
are conducted on a single layout (post-layout simulations), which is shown in Figure 8.
This layout, which integrates bell-shaped CLFs, has been meticulously designed with a
primary emphasis on achieving area efficiency. Composed of three CLF cells (classes), each
consisting of three sub-cells and with a total of five input dimensions, this layout is adept
at accommodating all desirable bell-shaped CLFs (both datasets).
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983 μm

57
3 
μm

Figure 8. Layout related to the general design methodology. It combines all the implemented CLFs
and extra switches in order to select the appropriate one.

The epilepsy seizure dataset [12,13] encompasses EEG signals obtained from children
grappling with intractable epilepsy. This dataset has been meticulously labeled by expert
physicians with the ictal periods being definitively identified. In this context, the scope of
pre-ictal and post-ictal spans an hour before and an hour after the seizure correspondingly.
Data instances that do not correspond to the ictal, pre-ictal, or post-ictal intervals are
categorized as inter-ictal occurrences. For classification purposes, the system leverages four
distinct features; the peak-to-peak voltage and energy percentages in the alpha, the first
half of the gamma, and the second half of the gamma frequency bands [66]. These features
can be effectively extracted from the raw EEG signals using analog feature extraction
methodologies [6,67].

Prior to the operational deployment of the circuit, the system’s essential parameters are
ascertained through software-based training. The overarching objective of this classifier is
to adeptly discriminate between the pre-ictal and inter-ictal periods. To function effectively
as a low-power front-end wake-up circuit, it is imperative that the circuit accurately predicts
all potential seizures while simultaneously minimizing the occurrence of false positive
alarms. This dataset is a binary class problem with four features.

The second dataset is sourced from the University of California, Irvine (UCI) Machine
Learning Repository [9]. It comprises blood test metrics associated with thyroid conditions,
specifically normal thyroid function, hypothyroidism, and hyperthyroidism. These metrics
are directly fed into the classifier for analysis. To establish the classifier’s operational
parameters key metrics, including the mean value, variance, and prior probability of each
class are calculated. This dataset is a three-class problem with five features.

To underscore the advantages introduced by the proposed design methodology a
comprehensive examination is undertaken through two distinct tests for each CLF. In
the initial test, a comparative assessment of classification accuracy is performed among
the hardware implementation and a software-based one. To mitigate the influence of
stochastic variability stemming from the training algorithm, a total of 20 independent
software-based training iterations are executed to derive the essential CLF parameters.
Importantly, across all iterations, all CLFs are tested with the same parameters to ensure
equitable evaluation. In the second test, a Monte Carlo simulation with N = 100 data
points is executed to evaluate the proposed architecture’s sensitivity behavior. The CLF’s
parameters under consideration in this instance are chosen to be one of the 20 candidates
previously established in the first test. Regarding the epileptic seizure prediction all the
CLFs successfully predict all 17 seizures (100% sensitivity) of the test set.

5.1. GMM CLF Implementation and Simulation Results

In this subsection, the implemented GMM-based CLF and its simulation results for
both datasets are provided. Based on the proposed design methodology and the simula-
tion result of the software implementation, the generic GMM-based CLF is composed of
NCla = 3 classes, NClu = 2 clusters per class, and Nd = 5 input dimensions. The high-level
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architecture of this CLF is depicted in Figure 9. More specifically, each class is composed of two
5-D Gaussian function circuits, which correspond to the two clusters and two current mirrors
that are used to add the output currents of each cluster. In Figures 10 (thyroid) and 11 (epilepsy),
the classification accuracy for both implementations (hardware/software) is presented, encom-
passing a total of 20 distinct training test cases (first case) for both datasets. The results are also
summarized in Tables 2 and 3. Regarding the sensitivity, the Monte Carlo histogram shown
in Figure 12 has a mean value of µM = 94.85% and a standard deviation of σM = 2.31%.
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Figure 9. An analog GMM-based classifier comprises 3 classes, 2 clusters per class, and 5 input dimensions.
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Figure 10. Classification results of the GMM architecture and the equivalent software model on the
thyroid disease detection dataset over 20 iterations.
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Figure 11. Classification results of the GMM architecture and the equivalent software model on the
epileptic seizure prediction dataset over 20 iterations.
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Figure 12. Post-layout Monte Carlo simulation results of the GMM architecture on the thyroid disease
detection dataset with µM = 94.85% and σM = 2.31%.

Table 2. GMM-based CLF’s accuracy for thyroid disease detection dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 100.00% 93.20% 97.35% 2.36%
Hardware 99.60% 92.80% 96.20% 2.07%

Table 3. GMM-based CLF’s accuracy for epileptic seizure prediction dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 71.80% 70.00% 70.90% 0.54%
Hardware 70.60% 67.20% 69.20% 1.06%

5.2. Radial Basis Function CLF Implementation and Simulation Results

In this subsection, the implemented radial basis function (RBF) CLF and its simulation re-
sults for both datasets are provided. Based on the proposed design methodology and the simula-
tion result of the software implementation, the generic RBF CLF is composed of NCla = 3 classes,
NClu = 3 clusters per class, and Nd = 5 input dimensions. The high-level architecture of this
CLF is depicted in Figure 13. More specifically, each class comprises three 5-D Gaussian function
circuits which correspond to the three clusters and three current mirrors that are used to add
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the output currents of each cluster. In Figures 14 (thyroid) and 15 (epilepsy), the classification
accuracies for both implementations (hardware/software) are presented, encompassing a total
of 20 distinct training test cases (first case) for both datasets. The results are also summarized in
Tables 4 and 5. Regarding the sensitivity, the Monte Carlo histogram shown in Figure 16 has a
mean value of µM = 93.83% and a standard deviation of σM = 2.33%.
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Figure 13. An analog RBF-based classifier comprises 3 classes, 3 clusters per class, and 5 input dimensions.
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Figure 14. Classification results of the RBF architecture and the equivalent software model on the
thyroid disease detection dataset over 20 iterations.
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Figure 15. Classification results of the RBF architecture and the equivalent software model on the
epileptic seizure prediction dataset over 20 iterations.
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Figure 16. Post-layout Monte Carlo simulation results of the RBF architecture on the thyroid disease
detection dataset with µM = 93.83% and σM = 2.33%.

Table 4. RBF CLF’s accuracy for thyroid disease detection dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 99.60% 92.00% 95.55% 2.69%
Hardware 98.40% 91.60% 94.10% 2.16%

Table 5. RBF CLF’s accuracy for epileptic seizure prediction dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 71.20% 69.30% 70.20% 0.55%
Hardware 69.20% 61.20% 66.75% 2.53%

5.3. Bayes CLF Implementation and Simulation Results

In this subsection, the implemented Bayes CLF and its simulation results for both datasets
are provided. Based on the proposed design methodology and the simulation result of the soft-
ware implementation, the generic RBF CLF is composed of NCla = 3 classes, NClu = 1 clusters
per class, and Nd = 5 input dimensions. The high-level architecture of this CLF is depicted
in Figure 17. To elaborate further, each class is composed of 5-D Gaussian function circuits
corresponding to individual clusters. Subsequently, the resultant output current is fed into one
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of the inputs of the WTA circuit. In Figures 18 (thyroid) and 19 (epilepsy), the classification
accuracy for both implementations (hardware/software) are presented, encompassing a total of
20 distinct training test cases (first case) for both datasets. The results are also summarized in
Tables 6 and 7. Regarding the sensitivity, the Monte Carlo histogram shown in Figure 20 has a
mean value of µM = 94.49% and a standard deviation of σM = 2.29%.
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Figure 17. An analog Bayesian classifier comprises 3 classes and 5 input dimensions.
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Figure 18. Classification results of the Bayesian architecture and the equivalent software model on
the thyroid disease detection dataset over 20 iterations.
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Figure 19. Classification results of the Bayesian architecture and the equivalent software model on
the epileptic seizure prediction dataset over 20 iterations.
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Figure 20. Post-layout Monte Carlo simulation results of the Bayesian architecture on the thyroid
disease detection dataset with µM = 94.49% and σM = 2.29%.

Table 6. Bayes CLF’s accuracy for thyroid disease detection dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 100.00% 92.70% 96.85% 2.41%
Hardware 99.00% 92.20% 94.70% 2.22%

Table 7. Bayes CLF’s accuracy for epileptic seizure prediction dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 70.80% 66.20% 68.80% 1.34%
Hardware 68.80% 59.40% 64.80% 3.27%

5.4. Threshold CLF Implementation and Simulation Results

In this subsection, the implemented threshold CLF and its simulation results for
both datasets are provided. Based on the proposed design methodology and the simulation
result of the software implementation, the generic RBF CLF is composed of NCla = 1 class,
NClu = 1 clusters per classm and Nd = 5 input dimensions. The second class is a threshold
current, which is selected as the decision boundary of each classification problem. A thresh-
old CLF operates in a binary manner, enabling us to ascertain, using the thyroid dataset,
whether a patient is healthy or not. The high-level architecture of this CLF is depicted
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in Figure 21. To elaborate further, each class is composed of 5-D Gaussian function circuits,
corresponding to individual clusters. Subsequently, the resultant output current is fed into one
of the inputs of the WTA circuit. In Figures 22 (thyroid) and 23 (epilepsy), the classification
accuracy for both implementations (hardware/software) are presented, encompassing a total of
20 distinct training test cases (first case), for both datasets. The results are also summarized in
Tables 8 and 9. Regarding the sensitivity, the Monte Carlo histogram shown in Figure 24 has a
mean value of µM = 93.12% and a standard deviation of σM = 2.67%.
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Figure 21. An analog Threshold classifier comprises 2 classes and 5 input dimensions. The second
class is the decision boundary for the threshold implementation.
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Figure 22. Classification results of the threshold architecture and the equivalent software model on
the thyroid disease detection dataset over 20 iterations.
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Figure 23. Classification results of the threshold architecture and the equivalent software model on
the epileptic seizure prediction dataset over 20 iterations.
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Figure 24. Post-layout Monte Carlo simulation results of the threshold architecture on the thyroid
disease detection dataset with µM = 93.12% and σM = 2.67%.

Table 8. Threshold CLF’s accuracy for thyroid disease detection dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 100.00% 93.00% 97.15% 2.48%
Hardware 99.20% 92.40% 94.90% 2.13%

Table 9. Threshold CLF’s accuracy for epileptic seizure prediction dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 71.40% 68.80% 70.10% 0.91%
Hardware 69.10% 61.20% 65.00% 2.54 %

5.5. Multiple Centroid CLF Implementation and Simulation Results

In this subsection, the implemented centroid CLF and its simulation results for both
datasets are provided. Based on the proposed design methodology and the simulation
result of the software implementation, the generic RBF CLF is composed of NCla = 1 class,
NClu = 2 centroids for Class 1 and NClu = 1 for Class 2 and Nd = 5 input dimensions.
The first class is related to abnormal thyroid conditions (two centroids per class), and the
second class describes the healthy patient. A centroid CLF operates in a binary manner,
enabling us to ascertain, using the thyroid dataset, whether a patient is healthy or not.
The high-level architecture of this CLF is depicted in Figure 25. To elaborate further,
each class is composed of 5-D Gaussian function circuits, corresponding to individual
clusters. The resultant output current is fed into one of the inputs of the WTA circuit. In
Figures 26 (thyroid) and 27 (epilepsy), the classification accuracy for both implementations
(hardware/software) are presented, encompassing a total of 20 distinct training test cases
(first case), for both datasets. The results are also summarized in Tables 10 and 11. Regarding
the sensitivity, the Monte Carlo histogram, shown in Figure 28, has a mean value of
µM = 95.55% and a standard deviation of σM = 1.93%.
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Figure 25. An analog centroid classifier comprises 2 classes, 2 centroids in the first class, 1 centroid in
the second class, and 5 input dimensions.
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Figure 26. Classification results of the centroid architecture and the equivalent software model on the
thyroid disease detection dataset over 20 iterations.
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Figure 27. Classification results of the centroid architecture and the equivalent software model on the
epileptic seizure prediction dataset over 20 iterations.
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Figure 28. Post-layout Monte Carlo simulation results of the centroid architecture on the thyroid
disease detection dataset with µM = 95.55% and σM = 1.93%.

Table 10. Centroid-based CLF’s accuracy for thyroid disease detection dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 100.00% 94.20% 98.00% 2.23%
Hardware 100.00% 93.20% 96.60% 2.31%

Table 11. Centroid-based CLF’s accuracy for epileptic seizure prediction dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 71.20% 68.80% 70.00% 0.78%
Hardware 69.50% 63.20% 65.80% 2.11%

For the implementation of the argmax operator the Lazzaro WTA circuit will be
used as the basic building block [21]. The overall design is shown in Figure 29. Based
on Equation (6), the similarity of the input vector with the three centroids is compared
to determine the highest one, using a three-neuron WTA circuit. To decrease the linear
region in which the WTA circuit produces multiple winners a second three-neuron WTA
circuit is connected in a cascaded format [65]. The output of the second WTA is three
currents in a digital one-hot-vector format. To convert these outputs into a representation



Electronics 2023, 12, 4211 21 of 28

that corresponds to the two-class application we calculate two currents Iin1,N2 and Iin2,N2
as follows:

Iin1,N2 = Iop1,P1 + Iop2,P1, (7)

Iin2,N2 = Iop3,P1. (8)
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Figure 29. The cascaded WTA circuit composed of two 3-neuron WTA circuits and one 2-neuron
WTA circuit in cascaded connection. The outputs of the second WTA circuit are three currents in a
digital one-hot representation; the two currents are summed up together and subsequently fed as
input to the third WTA circuit along with the third output of the second WTA.

Then, the one additional two-neuron WTA circuit is added to further increase the
quality of the output currents that indicate the winning class.

5.6. Support Vector Machine CLF Implementation and Simulation Results

The classification block of the support vector machine (SVM) comprises M RBF cells,
M switches, and a WTA circuit. The test samples, which are five-dimensional vectors, are
introduced synchronously into the classification block guided by an external clock signal.
In each clock cycle, the M RBF cells individually compute the RBF kernel function for the
current test vector. This calculation is based on the learning samples utilized in the training
procedure. Notably, the RBF cells within the classification block are biased by replicating
the adjusters’ output currents from the learning block.

To predict the outcome of the classifier, it becomes necessary to determine the sign of
the sum in the hardware-friendly SVM’s decision rule. Rather than summing all currents
and evaluating the overall sign, we separately aggregate positive and negative currents.
This differentiation is achieved by employing switches where positive (or negative) currents
correspond to input learning samples with positive (or negative) labels. The comparison
between negative and positive values is facilitated through a current-mode circuit, the
WTA circuit. The output of the WTA circuit encodes the classifier’s prediction using a
one-hot-vector format ([Iout1, Iout2]). A WTA circuit is used instead of a comparator due to
the fact that information processing in the system is performed mainly in current mode.

An SVM CLF operates in a binary manner, enabling us to ascertain whether a patient is
healthy or not using the thyroid dataset. The high-level architecture of this CLF is depicted in
Figure 30. In Figures 31 (thyroid) and 32 (epilepsy), the classification accuracy for both im-
plementations (hardware/software) is presented, encompassing a total of 20 distinct training
test cases (first case) for both datasets. The results are also summarized in Tables 12 and 13.
Regarding the sensitivity, the Monte Carlo histogram shown in Figure 33 has a mean value of
µM = 95.16% and a standard deviation of σM = 0.75%.
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Figure 30. An analog SVM classifier consists of M RBF cells and 2 classes. The RBF cells receive the
input dimensions and generate the suitable RBF patterns utilizing the learned parameters. These
derived RBF patterns correspond to the Support Vectors in the model. To convey the polarity of the
Support Vectors to the classification block switches are employed. A WTA approach is implemented
for contrasting the positive and negative magnitudes.
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Figure 31. Classification results of the SVM architecture and the equivalent software model on the
thyroid disease detection dataset over 20 iterations.
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Figure 32. Classification results of the SVM architecture and the equivalent software model on the
epileptic seizure prediction dataset over 20 iterations.
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Figure 33. Post-layout Monte Carlo simulation results of the SVM architecture on the thyroid disease
detection dataset with µM = 95.16% and σM = 0.75%.

Table 12. SVM CLF’s accuracy for thyroid disease detection dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 98.20% 95.20% 96.40% 1.01%
Hardware 98.00% 94.80% 96.20% 1.05%

Table 13. SVM CLF’s accuracy for epileptic seizure prediction dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 76.80% 69.20% 73.00% 2.31%
Hardware 74.20% 68.20% 71.05% 1.76%

6. Performance Summary and Discussion

This section aims to present a comparative analysis of the analog classifiers imple-
mented earlier in this work. Table 14 summarizes the main performance indexes referring
to the thyroid disease detection dataset for a GMM, an RBF, a Bayesian, a threshold, a cen-
troid, and an SVM classifier. Table 15 summarizes the main performance indexes referring
to the epileptic seizure prediction dataset.

Table 14. Implemented analog classifiers’ performance comparison for thyroid disease detection dataset.

Classifier Best Worst Mean Power
Consumption

Processing
Speed

Energy per
Classification

GMM 99.60% 92.80% 96.20% 1.31 µW 112 K classifications
s

11.7 pJ
classification

RBF 98.40% 91.60% 94.10% 2.48 µW 100 K classifications
s

24.8 pJ
classification

Bayes 99.00% 92.20% 94.70% 421 nW 130 K classifications
s

3.2 pJ
classification

Threshold 99.20% 93.00% 94.90% 247 nW 130 K classifications
s

1.9 pJ
classification

Centroid 100.00% 93.20% 96.60% 2.57 µW 112 K classifications
s

22.9 pJ
classification

SVM 98.00% 94.80% 96.20% 44.7 µW 140 K classifications
s

319.3 pJ
classification

In terms of best and mean classification accuracy, the most efficient design turns out to
be the centroid classifier (best: 100%, mean: 96.60%). In contrast, regarding the worst-case
classification accuracy, the highest score is achieved by the SVM classifier (94.80%). This
design also overwhelms the others in terms of robustness, since it effectively minimizes
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the range of variation between the highest and lowest values of classification accuracy
(having the lowest standard deviation of accuracy). In addition, this classifier surpasses
the others in terms of processing speed

(
140K classifications

s

)
, a quality that holds significant

importance when dealing with real-time scenarios. In order to achieve the aforementioned
performance, power consumption is sacrificed. However, the overall consumption of
this design also encompasses hardware training, which comprises various components.
Pertaining to the power consumption of the implemented classifiers, the best option proves
to be the threshold implementation (247 nW), which also outperforms the rest of the designs
in terms of energy per classification

(
1.9 pJ

classification

)
.

Table 15. Implemented analog classifiers’ performance comparison for epileptic seizure prediction dataset.

Classifier Best Worst Mean Power
Consumption

Processing
Speed

Energy per
Classification

GMM 70.60% 67.20% 69.20% 180 nW 112 K classifications
s

1.6 pJ
classification

RBF 69.20% 61.20% 66.75% 231 nW 100 K classifications
s

2.31 pJ
classification

Bayes 68.80% 59.40% 64.80% 123 nW 130 K classifications
s

0.9 pJ
classification

Threshold 69.10% 61.20% 65.00% 111 nW 130 K classifications
s

0.8 pJ
classification

Centroid 69.50% 63.20% 65.80% 355 nW 112 K classifications
s

3.2 pJ
classification

SVM 74.20% 68.20% 71.05% 3.24 µW 140 K classifications
s

23.1 pJ
classification

Similar results regarding the comparative advantages between the various classifiers
occur from the epileptic seizure prediction dataset. In this case, the SVM classifier achieves
the best accuracy because of the complexity of the implemented ML algorithm. However,
this is a trade-off between complexity/accuracy and power consumption, since the most
power-efficient design is the threshold classifier but with significantly lower accuracy.
The necessary characteristic is sensitivity in seizure prediction (successively detects all
17 epileptic seizures) where all classifiers achieve 100%.

Within contemporary literature, it is clear that a considerable number of analog classi-
fiers are typically tailored for specific applications. This situation presents a difficulty when
aiming to conduct an impartial comparison between diverse implementations. However,
this challenge enables us to adapt analog classifiers to serve a universal application, thereby
facilitating an evaluation that includes both machine learning models and alternative
approaches. It is worth noting that Table 16 provides a comprehensive summary of the
performance metrics from this research alongside related classifiers, all within the context
of epileptic seizure prediction. The presented design methodology introduces a compelling
solution by striking a balance between accuracy, power efficiency, and energy consumption
per classification in comparison to analog classifiers. While the other models attain greater
accuracy, they also entail increased complexity, requiring higher power consumption and a
larger hardware footprint due to their augmented component number. It can be used as
a wake-up circuit design methodology in comparison with other classifiers that consume
µW or mW. It is imperative to highlight that, within this particular application, the design
methodology effectively manages all seizures.

Considering another crucial aspect of design involves finding the right balance be-
tween the power consumption and the specificity of the wake-up circuit. As the specificity
of the wake-up circuit is enhanced, the overall power usage of the digital circuit, typically
higher than its analog counterpart, diminishes. Nevertheless, achieving elevated specificity
values demands a rise in the intricacy of the analog circuitry. In particular, enhancing the
classifier’s performance necessitates better-performing data acquisition devices, increased
integration of analog feature extraction circuits, and larger analog memory units to store
the classifier’s parameters. These enhancements collectively contribute to escalated power
consumption. In practical terms, caution is advised when amplifying the power consump-
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tion of the analog front end; a classification system incorporating a power-hungry analog
classifier that alternates with a digital counterpart might end up consuming more power
than a fully digital system.

Table 16. Analog classifiers’ comparison on the epileptic seizure prediction dataset.

Classifier Best Worst Mean Power
Consumption

Processing
Speed

Energy per
Classification

GMM 70.60% 67.20% 69.20% 180 nW 112 K classifications
s

1.6 pJ
classification

RBF 69.20% 61.20% 66.75% 231 nW 100 K classifications
s

2.31 pJ
classification

Bayes 68.80% 59.40% 64.80% 123 nW 130 K classifications
s

0.9 pJ
classification

Threshold 69.10% 61.20% 65.00% 111 nW 130 K classifications
s

0.8 pJ
classification

Centroid 69.50% 63.20% 65.80% 355 nW 112 K classifications
s

3.2 pJ
classification

SVM 74.20% 68.20% 71.05% 3.24 µW 140 K classifications
s

23.1 pJ
classification

RBF [27] 67.80% 59.90% 64.33% 5.54 µW 170 K classifications
s

32.59 pJ
classification

RBF-NN [29] 69.10% 62.30% 67.41% 870 nW 270 K classifications
s

3.22 pJ
classification

SVM [30] 72.60% 69.40% 71.76% 141.7 µW 870 K classifications
s

162.87 pJ
classification

MLP [38] 85.70% 82.10% 83.47% 677.43 µW 930 K classifications
s

728.42 pJ
classification

K-means [43] 82.40% 76.30% 81.31% 101.32 µW 5 M classifications
s

20.26 pJ
classification

Fuzzy [45] 77.30% 69.20% 74.59% 761 nW 4.55 K classifications
s

167.25 pJ
classification

SVR [51] 81.30% 76.30% 78.42% 81.41 µW 870 K classifications
s

93.57 pJ
classification

LSTM [59] 99.20% 94.30% 97.51% 33.41 mW 870 K classifications
s

38.40 pJ
classification

7. Conclusions

This study introduces an innovative general methodology for adjustable analog in-
tegrated CLFs rooted in the principles of Gaussian function. Through the strategic ma-
nipulation and utilization of the Gaussian function and Winner-Take-All (WTA) circuits,
it becomes possible to fabricate bell-shaped CLFs tailored to address a wide spectrum of
scenarios, encompassing varying class quantities, cluster/centroid configurations and data
dimensions. To illustrate the adaptability and effectiveness of this approach, the proposed
design methodology is employed in the analysis of two distinct real-world datasets specifi-
cally curated for the purpose of thyroid disorder diagnosis and epileptic seizure prediction.
The critical parameters controlling the functionality of this method are established through
offline training of a bell-shaped CLF utilizing software-based methods. Thorough exam-
ination and comparisons of the classification outcomes within these scenarios serve to
emphasize the effective functioning of the proposed methodology and provide validation
for the implemented adjustments. The proposed design methodology can be used as a
basic tool for the design of more complicated and accurate diagnosis systems.
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