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Abstract: This paper proposes a new framework for reconfigurable intelligent surface (RIS)-equipped
unmanned aerial vehicles (UAVs) in free-space optical (FSO) communication. To ensure practicality,
we consider atmospheric loss caused by fog, which leads to an inhomogeneous medium for laser
propagation. In addition, we incorporate the pointing error loss caused by the power fraction on
the photodetector (PD) into the system and derive a closed-form expression for the elliptical beam
footprint in the pointing error loss. We then propose a leading angle assisted particle swarm optimiza-
tion (PSO) method to efficiently optimize the numerical results of pointing error loss. Furthermore,
after obtaining these numerical results as a precondition, the UAV trajectory is optimized using the
proximal policy optimization (PPO) method to achieve the maximum average capacity. Numerical
simulations demonstrate that the proposed optimization method achieves greater efficiency and
accuracy compared to the decode-and-forward (DF) relay and deep Q-learning (DQN) methods.

Keywords: free space optical communications; reconfigurable intelligent surfaces; unmanned aerial
vehicle; particle swarm optimization; deep reinforcement learning

1. Introduction

Free space optical (FSO) communications were developed and researched extensively
as a potential technology for sixth generation (6G) wireless communication networks [1].
Different from radio frequency (RF) communications, the main feature of FSO commu-
nications is to use the laser beam to carry information, which brings various benefits,
including high transmission rate, free of eavesdroppers by transmission directivity, and free
of frequency spectrum crowding [2]. However, there are two problems that affect the
performance of FSO communications. The first one is that FSO communication requires
line-of-sight (LOS) links between the light source (LS) and the photodetector (PD); however,
in practical circumstances, the connection between LS and PD could be blocked by obsta-
cles [3]. The second problem is the susceptibility to the varying propagation environment
caused by rain, fog, and other low-visibility atmospheric phenomena [4].

With the intention of dealing with the non-LOS requirement and maximizing the
throughput, the authors in [5] utilized a fixed position relay. Usually, this type of relay is
deployed on a building to assist non-LOS transmission. Following that, inter-relay coopera-
tion was proposed in FSO communication to reduce the outage probability in [6]. However,
the relay is fixed in a position, so that the communication between the transmitter and
receiver lacks flexible connectivity capability. To tackle this issue, a UAV was introduced as
an operating platform to assist communication and improve system performance flexibility
and efficiency. For example, in [7], the authors considered a UAV decode-and-forward relay
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in a downlink maritime communication scenario, solving the average achievable rate maxi-
mization problem. Furthermore, the authors in [8] proposed a multi-UAV assisted solution
to achieve the capacity maximization criterion assuming a cognitive network. Motivated
by using a UAV in RF communications, there are existing works that consider a UAV relay
for improving FSO communication. For example, in [9], the authors introduced a dual-hop
space-air-ground integrated RF/FSO network; with the assistance of a UAV, the satellite
could link the terrestrial users with low outage probability. In [10], a similar scenario
was proposed for the multi-users on the ground using quadrature amplitude modulation.
Furthermore the UAV facilitating the link between space and air, in [11], was utilized to
assist the FSO communication between ground non-LOS transmitter and receiver deployed
in an urban area. Therefore, the deployment of the UAVs for FSO communication is a valid
solution for high data rate purposes, especially under complex circumstances. However,
the power consumption and additional signal processing are significant problems for a
UAV equipped-relay mobile platform [12], which is a limitation for performance and UAV
operating endurance.

For the purpose of reducing power consumption and processing time delay, reflecting
intelligent surface (RIS) technology was widely utilized in wireless networks. Thanks
to the feature of RIS that can control wireless signal transmission through passive phase
adjustment with low cost [13]. In [14], the feasibility was described for RIS application on
new generation RF communication, where the channel has been turned into a controllable
system that can apply the optimization. Furthermore, in paper [15], the phase shifts
of RIS can be designed and improved by the joint transmit beamforming method. Not
only in RF communication but the work [16] also indicated that RIS and its feature of
freedom rotations could be utilized in FSO communication. What is more, the work
in [17] showed that RIS could be regarded as a mirror with a phase shift function in FSO
communication, which means eliminating the time delay and power consumption caused
by signal processing. The works in [16,17] showed the fixed position mounted RIS could
solve the LOS requirement of FSO communication. However, the flexibility and capability
coverage for fixed mounted RIS is limited. Therefore, in [18], a UAV was deployed to
improve the flexibility and capability of coverage for FSO communication. The work [19]
indicates that the RIS can be assembled in a UAV platform and capture the advantages
from both to maximize the system throughput. However, the UAV was set to hovering in a
fixed position, which lacks the consideration of dynamic trajectory. To further highlight
and clarify the novelty of this work, the main difference between the proposed work and
existing works is given in Table 1.

In order to mitigate atmospheric loss and pointing error loss, UAV trajectory opti-
mization is considered for UAV-assisted FSO communication. The paper [20] shows that
machine learning can be utilized in communication scenarios. In [21], a traditional UAV tra-
jectory optimization method based on geometry analysis was proposed to find the shortest
path and best cellular network coverage in a connectivity-constrained system. Furthermore,
in [22], a 2D UAV trajectory was designated by the conventional non-convex optimization
under different optimal conditions such as speed limitation, hovering duration requirement,
and coverage requirement. As the learning method identifies the trends and patterns of
data much more easily, the efficiency and accuracy can be improved continuously by gain-
ing experience [23]. Therefore, when the optimal problem is non-convex or NP-hard, an AI
or learning-powered method is a potential option for UAV trajectory optimization [24].
For example, in [25], trajectory design and power allocation based on typical machine
learning optimization were formulated for maximizing the instantaneous sum rate of
multi-UAVs. Moreover, conventional machine learning was limited when processing the
raw data such as UAV flight status [26]. The deep reinforcement learning (DRL) method
constructed by multiple processing layers to learn representations of data is, therefore,
more efficient for trajectory optimization in wireless communication scenarios. The DRL
algorithm is proposed to solve the instability problem and to improve the data inefficiency.
In [27], by proposing the policy-based learning method, where an estimator of the policy
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gradient is been added. Also, a stochastic gradient ascend is exploited in order to achieve
the maximum rewards. These features showed us more clear options for our optimization
method. In the work [28], the DRL learning method was proposed as an online altitude
control and scheduling policy for UAVs to obtain instantaneous channel state information
(CSI) in real time along with any adjustment to its deployment altitude. What is more,
in [29], a multi-UAV network was constructed, where the problem is non-convex with
sophisticated states, and the individual UAV may not know the reward functions of other
UAVs, the DRL was utilized as an improved clip and count-based algorithm for the multi-
agent deep reinforcement learning scenario, which enables each UAV to select its policy in
a distributed manner. Not only the altitude control and multi-agent optimization, in [30],
the DRL method was proposed to optimize the new generation terahertz communication
throughput, including UAVs to ground stations association, transmit power, and trajectory
optimization problems. In [31], the DRL shows its high applicability for the complicated
scenario where a multi-UAV trajectory planning task is required. Both the geographical
fairness of user equipment and overall energy consumption are needed to optimize.

Table 1. Comparisons of some existing works, the % stands for not included, the ! stands for
included, and the N/A stands for not applicable.

Ref. Channel
Medium

Fog Impact
Modelling

No Transmission
Delay

RIS
Optimization

UAV Trajectory
Design

[5] FSO/RF % % N/A N/A

[6] FSO % % N/A N/A

[7] RF N/A % N/A %

[8] RF N/A % N/A %

[9] FSO/RF % % N/A %

[10] FSO/RF % % N/A %

[11] FSO % % N/A %

[12] RF N/A ! ! %

[13] RF N/A ! ! %

[16] FSO % ! ! N/A

[17] FSO % ! ! N/A

[18] FSO % ! ! %

This
paper FSO ! ! ! !

Motivated by these works, the RIS-equipped UAV for FSO communication under
the influence of atmospheric and pointing error loss will be investigated in this paper.
To overcome the physical impacts and improve performance, the optimization proposed
for pointing error loss uses a novel leading angle assisted particle swarm optimization
(PSO) method, which is competent in efficiently finding the optimal continuous phase
shifts. Furthermore, we consider a PPO optimization for determining the UAV trajectory in
FSO communication. The main contributions of this work are as follows:

• We propose a new RIS-equipped UAV FSO communication technique in a non-LOS
scenario with atmospheric and pointing error loss and derive a closed-form expression
with the laser beam incident upon the PD having non-orthogonality status. An ellipse
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beam footprint geometrical model is considered to express the power density on
the PD.

• Based on the proposed framework, we derived the closed-form expression for physical
impacts, a novel leading angle assisted PSO optimization method is proposed to
optimize the numerical results of pointing error loss as a precondition. Then, the
PPO method is introduced to solve the UAV trajectory optimization to reduce the
complicated physical impacts and optimize the average capacity.

• Simulation results verify that the leading angle assisted PSO and PPO methods are
efficient and indicate that the UAV tends to fly to the area with the maximum value
of average capacity and avoids the fog. Furthermore, the proposed RIS-assisted
strategy improves the average capacity significantly compared to the conventional
decode-and-forward (DF) relay-assisted UAV networks.

The remainder of this paper is organized as follows. In Section 2, the system and
problem formulation are described, where we clear our aim and model the FSO channel
coefficients. After confirming the target of optimization, Section 3 presents the first opti-
mization with the PSO method for optimizing the phase shifts of the RIS, which minimizes
the impact of pointing error loss. Then, Section 4 operates the second optimization for
the UAV trajectory, based on the PPO learning method. The details of the UAV operation
under these two optimizations with analysis and discussion are shown in Section 5. Finally,
the conclusion of the work is given in Section 6.

Notations: We use lower-case, boldface lower-case letters to represent scalars and
vectors, respectively. Furthermore, || · || is the norm of a vector; erf(·) denotes the error
function and exp(·) denotes the exponential function; “ · ” and “× ” denote the dot and
cross product between vectors, respectively.

2. System and Problem Formulation

In this paper, we consider a 3D Cartesian coordinate system for FSO communication
networks, as shown in Figure 1. A laser source (LS) as a transmitter aims to communicate
with a photodetector (PD) receiver through a Gaussian laser beam. Furthermore, a UAV
carries the RIS as a reflecting platform. We assume that the UAV could acquire the needed
information in our scenario, such as the position of and PD [32]. We also assume that there
is no direct link between the LS and PD, and the LS is located at the origin point at O(0, 0, 0),
and consider a PD has a circular detection aperture with radius a and the center of the PD
is located at S(xs, ys, 0). For practical consideration, we assume the beam is affected by fog,
which means the atmospheric conditions vary during the beam propagation. We model
a fog that can severely affect the system’s Channel State Information (CSI), and treat fog
as a spherical entity with radius r f for the sake of simplicity and initial simulations [33]
(Note: In the ’Optimization Results’ of this paper, we address the fog in irregular shape
for practical thinking and present corresponding results), located at F(x f , y f , z f ) (Note:
It should be noted that the UAV’s ability to ascertain the location of fog is facilitated
by certain technologies and methods. These can include meteorological data services,
onboard atmospheric sensors, or advanced imaging techniques [34,35]). To satisfy the
aiming conditions from LS to PD via RIS, we assume that the rotations of the LS can
keep tracking the UAV (Note: The details of the laser tracking and aiming method can be
achieved by using precise pointing, acquisition and tracking technology [36], we assume
the UAV is deployed and control by other ground station to operate the communication
task in this area, This paper does not consider the orientation of the UAV because the
phase shift change caused by the orientation of the UAV can be added to the optimal phase
shifts of the RIS once we know the flight orientation of the UAV). Moreover, we assume
the area of the RIS is big enough to cover the beam footprint from the LS [37]. Due to the
laser beam following the specular reflection with the RIS, this perspective is central to our
methodology as the reflective properties of the RIS allow it to direct the path of light, we
consider the status of RIS instead of UAV and introduce the concept of leading angles,
which stand for the rotation status of RIS. As shown in Figure 2, the leading angles can
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be expressed by θ1 and θ2, which stand for the rotations along the x-axis and y-axis with
counterclockwise direction. This approach integrates the UAV status information such
as the Angle of Arrival (AoA) of the UAV into the leading angles of the RIS. Therefore,
the phase shifts of the RIS at the nth time slot can be set as

Θ[n](θ1[n], θ2[n]) ∈ (−π, π). (1)

X Y

Z

LS

PD

RIS

Figure 1. The position and orientation of the system in the considered coordinates.

X

Y

Z

LS

PD

G

O’

O

ϴ2

ϴ1

uR

S’

H
EBeam footprint

Figure 2. The visual LS and the project center of laser.

We consider the 3D flight operation for the UAV with the nth time slot, n ∈ {1, 2, . . . , N}.
The constraints of phase shifts of RIS can be denoted as Φ = {Θ[n], n = 1, 2, . . . , N}.
The coordinates of the UAV with time slots are also set as following the positive integer
waypoints in the flight zone, which are denoted as G[n](xg[n], yg[n], zg[n]), where G[1] and
G[N] denote the initial and final positions of the UAV. We set the velocity of the UAV as
V[n] at the nth time slot, and the maximum and minimum velocity of the UAV are set as
Vmax and Vmin, the operation height of the UAV is limited from Hl to Hh. According to the
above description, we have the following constraints:

Φ = {Θ[n], n = 1, 2, . . . , N}
− π ≤ Θ[n] ≤ π

G[1] = (xg[1], yg[1], zg[1])

G[N] = (xg[N], yg[N], zg[N])

Vmin ≤ V[n] ≤ Vmax, n = 1, 2, . . . , N

Hl ≤ zg[n] ≤ Hh.

(2)

The channel modeling of the system is measured by the channel coefficients at the nth
time slot from the LS to PD via the RIS as h[n], which are represented by (Note: Here, due
to the turbulence of atmosphere, is a random variable that only relies on the constant from
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circumstances, most of the papers engage the UAV and FSO communication optimization
and do not take it into consideration, such as [38,39])

h[n] = htha[n]hp[n], (3)

where ht is the turbulence of the atmosphere, this parameter is related to the wind speed
in refractive index and the laser wavelength [40], where the probability density function
(PDF) of ht can be denoted as [41]

f (ht) =
2(αβ)

α+β
2 h

α+β
2 −1

t Kα−β(2
√

αβht)

Γ(α)Γ(β)
, (4)

where Kα−β(.) is the modified Bessel function of the second kind, the Γ(.) is the Gamma
function, and the α and β denote the numbers of small and large turbulence cells as follows,

α =

exp

 0.49σ2
R(

1 + 1.11σ
12
5

R

) 7
6

− 1


−1

,

β =

exp

 0.51σ2
R(

1 + 0.69σ
12
5

R

) 5
6

− 1


−1

,

(5)

respectively, where Rytov variance σR, which can be calculated as σ2
R = 0.5k

7
6 C2

N L
11
6 ,

and C2
N is the index of refraction structure parameter, k = 2π

λ f
, can be obtained by optical

wavelength λ f .
The ha[n] is the atmospheric loss caused by fog, which can be given by

ha[n] = exp(−σcdc[n]− σf d f [n]), (6)

where σc and σf denote the measurement of atmospheric attenuation conditions un-

der clean air and fog [42], respectively, which can be given as σc = 3.91
Lv

(
λ

550

)−pc
and

σf =
3.91
Lv

(
λ

550

)−p f
where

pc =

{
1.6 Lv > 50
1.3 6 < Lv < 50,

(7)

and

p f =


0.16Lv + 0.34 1 < Lv < 6

Lv − 0.5 0.5 < Lv < 1
0 Lv < 0.5,

(8)

where Lv denotes the visibility range in air. Furthermore, dc[n] and d f [n] denote the laser
propagation distances in clear air and fog at the nth time slot, respectively, which can be
obtained as in Appendix A.

Due to the UAV operating with a 3D flight, the incident laser beam is not perpendicular
to the PD, and the Gaussian profile beam footprint is an ellipse on the PD plane as shown
in Figure 3. The pointing error loss hp[n] is caused by laser power fraction on the PD and
can be the integral results from the beam power intensity, denoted as

I(ρ; [n]) =
2

πWx[n]Wy[n]
exp

(
− 2||ρ||2

Wx[n]Wy[n]

)
, (9)
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then consider it under the polar coordinate system of the detector plane with radial a and
angular 2π, we can express the pointing error loss as

hp[n] =
∫

A
I(||ρ[n]− r[n]||)dρ[n]

=
∫ a

0

∫ 2π

0

2
πWy[n]Wx[n]

exp
−2(ρ[n]− r[n])2

Wy[n]Wx[n]
ρ[n]dφ[n]dρ[n]

(10)

where A is the detector area, I is the normalized spatial distribution of the transmitted
intensity, ρ[n] is the radial vector which starts from the beam center and ends at any point
on the PD, r[n] is the pointing error vector starting from the center of the PD and ending at
the center of the beam footprint with norm r[n].

Beam footprint

PD

Beam footprint

Y

Figure 3. The ellipse beam footprint and circular PD with error vector.

After some derivations, we can obtain the closed-form expression of pointing error
loss as follows:

hp[n] =
(

r[n]
√

2πWy[n]Wx[n]
(

erf

 √
2r[n]√

Wy[n]Wx[n]


+ erf

 √2(a− r[n])√
Wy[n]Wx[n]

)+ Wy[n]Wx[n]

(
exp

(
−2r2[n]

Wy[n]Wx[n]

)
− exp

(
−2(a− r[n])2

Wy[n]Wx[n]

)))
1

Wy[n]Wx[n]
.

(11)

where Wy[n] and Wx[n] denote two different beamwidths of the beam footprint, which can
be calculated by using a rotation matrix and the law of specular reflection as in Appendix B.

According to the intensity modulation and direct detection (IM/DD) method as in [43],
the average capacity between the LS and PD can be obtained by representing the probability
density function (PDF) of the received electrical signal-to-noise ratio (SNR) f (γ[n])

c[n] = log2(1 + εγ[n]), (12)

where ε = e
2π [44], and the received SNR γ[n] can be obtained by

γ[n] =
2P2

t µ2h2
a[n]h2

p[n]h2
t

σ2 , (13)

where Pt is the transmitting power from the LS, and σ2 is the Gaussian noise variance,
and µ is the detector responsivity.

Then, to overcome the atmospheric and pointing error loss, and maximize the average
capacity by optimizing the phase shifts of the RIS Φ = {Θ[n], n = 1, 2, . . . , N}, and the
trajectory of the UAV GGG = {G[n], n = 1, 2, . . . , N}, we formulate a problem as follows:
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(PPP1) : max
Φ,GGG

1
N

N

∑
n=1

c[n]

s.t. (1)(2).

(14)

According to the formulated optimal problem, it can be seen that the constraint of
phase shifts problem (1) and the UAV trajectory constraint (2) are independent; the optimal
problem can be divided into two independent optimal problems, one is to optimize the
phase shift, and the other is optimizing the UAV trajectory to maximize the average capacity.
In the following section, the phase shift optimization of the RIS is proposed.

3. PSO-Based Optimization of RIS Phase Shifts

On the purpose of fulfilling the target to achieve the maximum average capacity,
where the maximum SNR γ[n] should be reached. Then, the target translates to maximize
the pointing error and atmospheric loss coefficients ha[n] and hp[n]. Therefore, we exploit
Particle Swarm Optimization (PSO) to optimize the pointing error loss within each position
point of the UAV during its operation. Due to the UAV operating the 3D flight, the incident
laser beam is not perpendicular to the PD, and the Gaussian profile beam footprint is an
ellipse on the PD plane. Furthermore, we considered the pointing error loss hp[n] in this
work to model the effect of the fluctuation, which is equivalent to considering imperfect CSI
at the PD. By iteratively adjusting leading angles of RIS in each iteration m ∈ {1, 2, . . . , M}
of PSO, the number of hp[n] will be maximized as a precondition in each UAV position,
denoted as

(PPP2) : max
Φ,GGG

hp[n]

s.t. (1)(2).
(15)

This method allows for the decoupling of the phase shifts optimization problem and
the UAV trajectory optimization problem, which simplifies our optimization challenge into
two independent yet separated problems. In this paper, the PSO algorithm was proposed
for the purpose of obtaining high-precision continuous phase shifts leading angles for the
most optimized RIS status. The steps of PSO are listed as:

3.1. Initialization

Set the initial conditions of the PSO, which starts from generating the population
p ∈ {1, 2, . . . , P} of particle swarms. The following description of the algorithm is for each
swarm, as we set the loop iterations in the PSO algorithm as m ∈ {1, 2, . . . , M}. Then the
initial velocity of each swarm can be set as v1[1] and v2[1]. After that, the corresponding
updating parameter including local and global acceleration c1 and c2 are also defined.

3.2. Calculate the Leading Angles

The leading angles θ∗1 and θ∗2 are RIS phase shifts, which are proposed to accelerate
the optimization, calculated as the center of the beam aligned with the center of the PD,
and the calculation method can be found in Appendix C.

3.3. Set Personal and Global Best

After calculating the leading angles of phase shifts, we set the initial personal best
θP1 = θ∗1 and θP2 = θ∗2 , as the same as the global best θG1 and θG2 .

3.4. PSO Main Loop

At the beginning of the main loop of the PSO algorithm, the swarm status is updated
by the initial settings, denoted as

θ1[m + 1] = θ1[m] + v1

θ2[m + 1] = θ2[m] + v2.
(16)
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After updating the swarm status at the beginning of each loop, the swarm velocity in each
loop can be denoted using random parameter s = rand(·) between 0 and 1, and constants
c1 and c2

v1[m + 1] = v1[m]+c1s(θP1 [m]− θ1[m])+

c2s(θG1 [m]− θ1[m])

v2[m + 1] = v2[m]+c1s(θP2 [m]− θ2[m])+

c2s(θG2 [m]− θ2[m]).

(17)

After the swarm position and velocity are all updated, the current pointing error loss can
be gained for further comparison. Furthermore, the cross boundary treatment [45] is included
as a limitation for the searching swarm could not move outside the search zone, denoted as

θ1[m] =

{
min(θmax, 2θmin − θ1[m]), θ1[m] < θmin

max(θmin, 2θmax − θ1[m]), θ1[m] > θmax,
(18)

θ2[m] =

{
min(θmax, 2θmin − θ2[m]), θ2[m] < θmin

max(θmin, 2θmax − θ2[m]), θ2[m] > θmax,
(19)

where the search boundary is Θ[n](θ1[n], θ2[n]) ∈ (−π, π), and normally the search zone
is set to include all the phase shifts, which make the beam footprint overlap with the PD.
After confirming that the swarm will not be outside the search boundary, the local best
position of the swarm should be updated. The update method uses a comparison of the
target function output between the current swarm and the local best swarm position, then
updates the local best pointing error loss if it’s less than the current output. Similar to
updating the global best, by comparing the global best and local best pointing error loss
output, the most optimized phase shifts and their corresponding pointing error loss can be
found. The whole algorithm is written as pseudocode in Algorithm 1.

Algorithm 1: PSO
1: input the parameter set of the PSO P, M, c1, c2, v1, v2
2: derive the rotation quaternion and its rotation matrix.
3: extract the leading angles of phase shifts.
4: input the initial local and global best positions θP1 , θP2 , θG1 , θG2 .
5: for m = 1, 2, . . . , M
6: for p = 1, 2, . . . , P
7: update the swarm status and swarm velocity as (16) and (17).
8: output the current pointing error loss hp[m]
9: implement the cross boundary treatment as (18) and (19).

10: compare the current swarm output and the local best swarm output.
11: if hp(θ1[m], θ2[m]) > hp(θP1 [m], θP2 [m])
12: update the current angles and output as personal best angles and output
13: end if
14: compare the personal best swarm output and the global best swarm output.
15: if hp(θP1 [m], θP1 [m]) > hp(θG1 [m], θG2 [m])
16: update the personal angles and output as global best angles and output
17: end if
18: end for
19: end for
20: output the global best outcome as the maximum pointing error.
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4. PPO-Based Optimization of the UAV Trajectory

After solving the formulated problem P2 to gain the most optimized pointing error
based on leading angles, the constraints of the optimization problem were only based on
the trajectory of the UAV. Then, when the optimal phase shift is given, problem P1 can be
rewritten as

(PPP3) : max
GGG

1
N

N

∑
n=1

c[n]

s.t. (2).

(20)

To solve P3 as maximizing the average capacity based on the maximum hp[n] and UAV
flight constraints, a PPO algorithm is introduced for planning the operating trajectory of
the UAV. As shown in Figure 4, the proposed PPO-based trajectory optimization algorithm
is based on the Markov decision process (MDP) and improved by the prioritized experience
replay (PER) method, which is introduced in the following.
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Figure 4. The PPO network.

MDP formulation

The deep reinforcement learning (DRL) method is based on the MDP, which includes
the state space, action space, and reward design. The MDP of this system considers time
steps with the index of time slots n with the upper limitation N, where n ∈ {1, 2, . . . , N}.
State space

The state-space S includes the UAV’s operating zone limitations as the input of the
PPO, consisting of all accessible UAV positions in the whole terrain, and also includes the
remaining operation time of the UAV.

Action Space

The action space A includes the current direction, velocity, and coordinates of the UAV.

Reward Design

The reward function is formulated as the average capacity of the FSO communication.
As the UAV can be at any 3D waypoint G[n], there is a corresponding average capacity c[n].

4.1. PPO Algorithm
Learning Algorithm

In this section, we present the proposed PPO learning algorithm for UAV trajectory
design, and the steps are written as pseudocode in Algorithm 2. PPO is an on-policy,
model-free reinforcement learning algorithm in which decision-making is based on data
collected from the most up-to-date policy. The goal of the PPO model is to enable the agent
to execute optimal actions that maximize long-term cumulative rewards. Consequently,
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in the PPO model, the selected action may not be the optimal choice for the current time slot,
but it aims to be the optimal choice for pursuing long-term benefits. The central controller,
which controls the UAV, acts as the agent in this process.

At each time slot, the agent observes a state from the state space S, which consists of
the coordinates of the RIS-equipped UAV. The action space A represents the set of available
actions, the agent based on the current state and decided by stochastic policy πυk , where
the actions decided by policy rules can be denoted as at. After executing the actions,
the agent receives a reward determined by the average capacity under the current FSO
connectivity condition.

In order to adjust the surrogate objective problem where the huge ratio can be denoted
as

rt(υk) =
πυk+1

(
at|st

)
πυk

(
at|st

) , (21)

where υk is the policy parameter that includes the operation movement rules established
for the UAV. Between the current policy πυ and new policy πυk+1 , via the PPO-clip update
policy

υk+1 = arg max Lclip(υk), (22)

to maximize the clipped surrogate objective Lclip(υk), which can be denoted as

Lclip(υk) = Êt

[
min

(
rt(υk)D̂t,

clip(rt(υk), 1− $, 1 + $)D̂t

)]
,

(23)

where the clip function can be denoted as

clip($, D̂t) =

{
1 + $ D̂t ≥ 0

1− $ D̂t < 0
(24)

and $ is a hyperparameter, Êt is the estimator of the advantage function D̂t. The con-
ventional update policy between two iterations relies on the Monte Carlo approximation,
where the surrogate objective is maximized, denoted as

υk+1 = arg max L(υk). (25)

When the value of advantage D̂t for the state-action pair is positive, the objective
reduces to

Lpos(υk) = Êt

[
min

(
πυk+1

(
at|st

)
πυk

(
at|st

) , (1 + $)

)
D̂t

]
, (26)

when the value of advantage D̂t for the state-action pair is negative, the objective reduces to

Lneg(υk) = Êt

[
max

(
πυk+1

(
at|st

)
πυk

(
at|st

) , (1− $)

)
D̂t

]
. (27)

After updating the policy by maximizing the PPO-clip objective, the value function
needs to be fitted by regression on mean-squared error.
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Algorithm 2: PPO
1: initialize the environment
2: initialize the policy parameter υ0 and value function parameters η0
3: for k = 0, 1, 2, . . . , K
4: collect set of trajectories Pk = υi by running policy πk = π(υk) in the environment.
5: compute rewards R̂t = c[n]
6: compute advantage estimates D̂t based on the current value function Vηk

7: update the policy by maximizing the PPO-clip objective υk+1 = arg max Lclip(υk).
8: fit value function by regression on mean-squared error ηk+1 via gradient descent.
9: end for

5. Optimization Results

This section shows the UAV trajectory after optimization under different conditions.
The parameters used in these numerical results and their corresponding values are listed in
Table 2. The parameter settings follow the practical scenario. For example, the visibility
range in fog follows the research on weather effects on FSO communication [46]. The se-
lected laser type is 1550 nm wavelength that most FSO scenarios use [47], we take ht = 0.91
for weak turbulence when the wind is not strong for this type of laser [48,49]. The UAV
settings follow the civil aviation law [50] of height limitation and flight performance of
consumer drones [51]. Based on [36,37], we also set the minimum and maximum height of
the UAV as Hl = 60 m and Hh = 90 m, and the maximum speed of the UAV as 1.5 m/s
(Note: To simplify the optimization problem, as in [21,22,25,52], the acceleration of the UAV
is not considered in this paper, we note that it is affected by the minimum and maximum
velocity and total flight times).

We use a decode-and-forward (DF) relay-assisted FSO system as a comparison bench-
mark to show the performance gain of the proposed scheme. We assume that the UAV has
both FSO PD and transmitter function, each hop’s pointing error is modeled with a circular
beam footprint, and the misalignment is set as zero between footprint and PD, which will
provide the best case for the benchmark scenario, which also shows the comparison if the
results of PSO is not obtained precondition for trajectory optimization. Moreover, the deep
Q-network (DQN) is utilized as the trajectory optimization benchmark in this paper.

Table 2. Simulation Parameters.

Parameter Value

Visibility range clean/fog 200/0.3 km

Transmitting power 45 dBm

LS coordinate (0, 0, 0) m

PD coordinate (0, 100, 0) m

Laser wavelength 1550 nm

Receiver radius 0.05 m

Detector responsivity 0.5

Atmospheric turbulence 0.91

UAV height limitation 60–90 m

UAV velocity limitation 1.5 m/s

Figure 5 compares the trajectories under RIS and DF scenarios without fog effect with
the different flight times. It is shown that the UAV operating the flight with maximum speed
reaches the area with maximum capacity under both RIS and DF scenarios. The average
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capacity of PPO-based trajectory in the 150-time slots is 4.05 bits/s/Hz. Due to the reduc-
tion in flight times, the UAV could not fly to the optimal location to achieve the maximum
capacity. Therefore the average capacity with 100-time slots is 3.91 bits/s/Hz for PPO.
Furthermore, we calculated the average capacity of the DF relay trajectories under zero
misalignment pointing error in the 150 and 100-time slots, which are 2.64 bits/s/Hz and
2.52 bits/s/Hz, respectively. In Table 3, the comparison results demonstrate the average
capacity of the proposed RIS-assisted FSO system outperforms that of the DF relay-assisted
system significantly. Moreover, compared with the benchmark DQN, the proposed PPO-
based trajectory optimization achieves a higher transmission rate. This result verifies that
PPO could avoid overestimation for efficient convergence to obtain better performance.

Figure 5. The comparison of the UAV trajectories between PPO and DQN methods for different flight
times without fog.

Table 3. Comparison of 150 and 100 flight times without fog.

Flight Time RIS (bits/s/Hz) DF (bits/s/Hz)

PPO N = 150 4.05 2.64

PPO N = 100 3.91 2.52

DQN N = 150 3.87 2.49

DQN N = 100 3.77 2.46

Figure 6 shows the trajectories when fog with radius r f = 15 m with 150, 100, and
50 time slots flight time. The UAV is operating the flight tendency to avoid the fog, which
also passes close to the zone and dives to the lowest altitude to obtain the maximum
value of average capacity. Therefore, the avoidance and diving action of the PPO-based
optimization brings the average capacity to 3.92 bits/s/Hz and 3.77 bits/s/Hz for 150 and
100 time slots, respectively, while DQN only achieves 3.77 bits/s/Hz and 3.64 bits/s/Hz,
respectively. However, the lack of flight time causes the UAV to lose the tendency to dive
for 50 time slots, which only has 1.37 bits/s/Hz average capacity, and the average capacity
comparison is demonstrated in Table 4.



Electronics 2023, 12, 4275 14 of 22

Figure 6. The comparison of the UAV trajectories between PPO and DQN method for different flight
time with fog r f = 15 m.

Table 4. Comparison of 150, 100, and 50 flight times with r f = 15 m fog.

Flight Time Average Capacity (bits/s/Hz)

PPO N = 150 3.92

PPO N = 100 3.77

PPO N = 50 1.37

DQN N = 150 3.77

DQN N = 100 3.64

DQN N = 50 1.17

Figure 7 demonstrates the comparison of the results with 150 time slots between the
different fog conditions, whose radii are 15 m and 20 m. Compared to DQN, PPO achieves
better performance due to avoiding overestimation in Q-networks. Under the same total
flight time, all of the trajectories show the tendency to avoid to entering the fog even when
the radius of fog is changed and also show the tendency to decrease to the lowest altitude
limitation. Table 5 shows the comparison of average capacity among the trajectories when
different fog conditions are assumed. We can see that due to avoiding the fog, the UAV
moves far from the area with maximum average capacity, the trajectory with the highest
average capacity is reached when the fog does not exist, and the fog with the largest radius
causes the lowest average capacity of trajectory.

Table 5. Comparison for different fog conditions under 150 time slots.

Fog Radii (m) Average Capacity (bits/s/Hz)

PPO No fog 4.04

PPO r f = 15 3.92

PPO r f = 20 3.19

DQN No fog 3.87

DQN r f = 15 3.77

DQN r f = 20 2.97
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Figure 7. The comparison of the UAV trajectories between PPO and DQN method for 150 flight time
with different fogs.

Figure 8 exhibits the trajectories comparison with altered flight time as 100 and 60
in the presence of fog with r f = 15 m located at (0, 20, 65) m. The starting and ending
points of the UAV are also adjusted to (−20, 30, 80) m and (20, 30, 80) m, respectively.
As shown in Table 6, the PPO-based optimization method maintains its ability to make UAV
trajectory operating avoiding and diving, yielding the average capacity of 3.91 bits/s/Hz
and 3.09 bits/s/Hz for 100 and 60 time slots, respectively. On the other hand, the DQN
strategy, while effective, demonstrates a lower performance with average capacities of
3.48 bits/s/Hz and 3.02 bits/s/Hz for 100 and 60 time slots, respectively. The results
underline the efficiency of the proposed PPO-based trajectory optimization, validating its
ability to better avoid overestimation for improved performance.

Figure 8. The comparison of the UAV trajectories between PPO and DQN methods with different
flight time slots, where G[1] = (−20, 30, 80) m and G[N] = (20, 30, 80) m.
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Table 6. Comparison of 100 and 60 flight times without fog.

Flight Time Average Capacity (bits/s/Hz)

PPO N = 100 3.91

PPO N = 60 3.09

DQN N = 100 3.48

DQN N = 60 3.02

As shown in Figure 9 and detailed in Table 7, the PPO optimization method still
outperforms DQN under the conditions of irregular fog, achieving an average capacity of
4.31 bits/s/Hz and 3.73 bits/s/Hz for 150 and 100 flight time respectively. As comparison,
the DQN method still achieves lower average capacities, reaching only 3.61 bits/s/Hz and
3.51 bits/s/Hz for the same flight time. These results reaffirm the superiority of the PPO
method in efficiently learning and converging to an optimal UAV flight strategy. Moreover,
these findings underscore the fact that a larger number of flight times (150 compared to
100) provides the UAV with more options for path selection, thereby leading to better
performance in both PPO and DQN cases.

Figure 9. The comparison of the UAV trajectories between PPO and DQN methods with irregular fog.

Table 7. Comparison of 150 and 100 flight times with irregular fog.

Flight Time Average Capacity (bits/s/Hz)

PPO N = 150 4.31

PPO N = 100 3.73

DQN N = 150 3.61

DQN N = 100 3.51

For all results, it is noticed that under the same conditions, if the UAV’s flight extends
and the average capacity increases due to the emergence of a more extensive scope for
the UAV to tactically maneuver to the positions optimal for mitigating the pointing error
loss. Within these specific air spaces, given the spatial 3D space relationships amongst
the LS, UAV, and PD, the laser’s beam footprint on the PD tends to approximate a more
circular shape, thereby elevating the upper constraint of the pointing error loss coefficient.
Thus, when the UAV is close to these optimal spots during its flight, there’s a marked
enhancement in the FSO link’s average capacity.
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6. Conclusions

In this paper, we proposed an RIS-equipped UAV deployed in a non-LOS FSO com-
munication scenario. We considered a practical scenario with atmospheric and pointing
error loss. Our method combined the use of PSO for RIS phase shift optimization with PPO
for UAV trajectory. Specifically, with PSO method, the pointing error loss was efficiently ad-
dressed by optimizing the phase shifts of RIS. This assures the FSO communication quality
for all UAV flight times. Then, the UAV trajectory with optimized average capacity under
determinate flight times was found. The PPO optimization was proposed because of its
stable training compared to the other optimization learning methods as it limits the policy
update at each step, reducing the possibility of policy divergence. Our results showed that
our approach was effective and performed better than other optimization learning methods
we looked into. However, there are more aspects and future work that can be explored.
The PSO and PPO optimization methods have the potential to look into scenarios with
multiple UAVs or multiple links, while other communication impacts could be considered
as well. There is also potential to explore other algorithms or combine methods for even
better results.
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Abbreviations
The following abbreviations are used in this manuscript:

LOS Line of sight
UAV Unmanned Aerial Vehicle
RIS Reconfigurable Intelligent Surface
FSO Free Space Optical
PSO Particle Swarm Optimization
PPO Proximal Policy Optimization
LS Laser source
PD Photodetector

Appendix A. Propagation Distance in Clean Air and Fog

The calculation of all distances is determined by the position of the RIS center at the
nth time slots (Note: The time index n is ignored below unless necessary for notational
convenience). We define the clean air propagation distance as

dc = dc1 + dc2 , (A1)

where dc1 and dc2 denote the clean air propagation distance from LS to RIS and from RIS to
PD, respectively. Then, the propagation distance in fog can be denoted as

d f = dOG + dGS − dc, (A2)

where dOG and dGS denote the beamline from LS to RIS and from the RIS to the PD,
respectively, which are shown in Figure A1. The distance from the fog center to the center
of the RIS is written as dFG. Then we denote distances between the fog center and beamlines
as dFI and dFJ . Furthermore, the points Mu, Nu, N f and M f are the intersection points of
beamlines dOG and dGS with fog surface sphere.
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Figure A1. Illustration of the propagation across fog.

The different situations for the propagation distances depend on the related posi-
tion between the UAV and the fog. The judgement conditions and situations analysis of
propagation distances are given in (A3) and (A4) on the top of the next page.

dc1 =


dOG, dFI > r f

dOG, (dFI < r f ) ∩ (dOG 6 dOM)

dOG − dOMu , (dFI < r f ) ∩ (dOMu < dOG 6 dOM f )

dOG − dMu M f , (dFI < r f ) ∩ (dOM f < dOG),

(A3)

dc2 =


dGS, dFJ > r f

dGS, (dFJ < r f ) ∩ (dGS 6 dGN)

dGS − dGNu , (dFJ < r f ) ∩ (dGNu < dOG 6 dGN f )

dGS − dMu M f , (dFJ < r f ) ∩ (dGN f < dGS),

(A4)

Wy[n] =
√
(xO′ [n]− xS′ [n])2 + (yO′ [n]− yS′ [n])2 + zO′ [n]2

sin (π −∠κ − δ
2 )

+

√
(xO′ [n]− xS′ [n])2 + (yO′ [n]− yS′ [n])2 + zO′ [n]2

sin (∠κ − δ
2 )

,

Wx[n] = 2
(

tan
(

δ

2

)√
(xO′ [n]− xS′ [n])2 + (yO′ [n]− yS′ [n])2 + zO′ [n]2

)
,

(A5)

Appendix B. Beamwidth Calculation

The beamwidth can be calculated by the rotation matrix and the method of specular
reflection, in Figure A2, we set uOG as the unit vector of incident laser center line OG, whose
reflected beamline is the GS′, and set the unit vector of reflected laser center line as uGS′ .
We set the initial normal unit vector of the RIS surface as uR = (xR, yR, zR) = (0, 0,−1),
due to the RIS being parallel to the ground surface at the beginning. Then, we set the
normal vector after the first rotation as uR′ = (xR′ , yR′ , zR′), and the normal vector after the
second rotation as uR′′ = (xR′′ , yR′′ , zR′′). These two transfer angles θ1 and θ2 describe the
RIS rotations around the x-axis and y-axis. The angles are set as anti-clockwise and positive
when looking toward the origin. The rotations of the RIS can be denoted as the rotations of
the normal unit vector of the RIS surface, according to the rotation matrix, as shown below
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xR′ = xR

yR′ = yR cos θ1 − zR sin θ1

zR′ = yR sin θ1 + zR cos θ1,

xR′′ = zR′ sin (θ2) + xR′ cos (θ2)

yR′′ = yR′

zR′′ = zR′ cos (θ2)− xR′ sin (θ2).

(A6)
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EBeam footprint

Figure A2. The visual LS and the project center of laser.

After confirming the normal vector of the RIS after rotations, according to the law
of specular reflection [53], the unit vector uGS′ of the reflected beam centre line can be
denoted as

uGS′ = 2(uR′′ · uOG)uR′′ − uOG, (A7)

then the problem is transformed to obtain the beam footprint center S′(xS′ [n], yS′ [n], 0)
which is a line–plane intersection problem between reflected beam line O′GS′ and
ground plane.

Then, according to the geometrical analysis with line O′GS′ along with reflected beam,
the beamwidth can be calculated by the visual LS coordinate O′(xO′ [n], yO′ [n], zO′ [n]) and
beam footprint center S′(xS′ [n], yS′ [n], 0), expressed at (A5), where the divergence angle δ
of the Gaussian laser beam can be denoted as [49],

δ =
2λ

πW0
, (A8)

where λ is the wavelength of the laser used for communication and W0 is the initial beam
waist and can be seen as equal to the radius of LS.

Appendix C. Leading Angles of Phase Shifts Calculation

The leading angles of phase shifts, which stand for the center of the laser beam aligned
with the center of the PD under the current RIS coordinate and rotations status. As shown in
Figure A2, the rotation angles can be expressed by θ1 and θ2, which stand for the rotations
along the x-axis and y-axis with counterclockwise direction. Therefore, the inversion
processing of the rotation matrix is proposed.

First, the rotated normal unit vector u∗R can be solved by the specular reflection
equation

uGS = 2(u∗R · uOG)u∗R − uOG, (A9)
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where uGS′ is the laser unit vector from the center of the RIS to the beam projection point,
the unit vector uGS starts from the center of the RIS to the center of the PD. By solving (A9)
to find the solution u∗R, the problem is reversed to find the rotation angles as the solution
from vector uR to vector u∗R.

Second, we use the quaternion rotation method [54] to solve this problem. A quater-
nion is a 4-tuple written formally as q = q1 + q2i + q3 j + q4k, where qm, m ∈ {1, 2, 3, 4} are
real numbers and i, j, k are imaginary parts, the axis-angle expression of rotations between
uR and u∗R can be denoted as the unit vector uR rotation angle ξ around the axis unit vector
ν = νxi + νy j + νzk, which can be written as quaternion

q = cos
(

ξ

2

)
+ (νxi + νy j + νzk) sin

(
ξ

2

)
, (A10)

where ξ = arccos (uR · u∗R), and ν =
uR×u∗R
|uR×u∗R |

. Thus qm can be extracted from the (A10).
Third, after finding the elements qm of the quaternion, the rotation phase shifts can be

expressed by the quaternion elements

θ∗2 =− arcsin (2(q2q4 − q1q3)),

θ∗1 = arctan

(
2(q3q4 + q1q2)

cos θ∗2
,

1− 2q2
2 − 2q2

3
cos θ∗2

)
.

(A11)
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