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Abstract: Robust optimization over time (ROOT) is a relatively recent topic in the field of dynamic
evolutionary optimization (EDO). The goal of ROOT problems is to find the optimal solution for
several environments at the same time. Although significant contributions to ROOT have been
published in the past, it is not clear to what extent progress has been made in terms of the type of
problem addressed. In particular, we believe that there is confusion regarding what it actually means
to solve a ROOT problem. To overcome these limitations, the objective of this paper is twofold. On
the one hand, to provide a characterization framework of ROOT problems in terms of their most
relevant features, and on the other hand, to organize existing contributions according to it. As a result,
from an initial set of 186 studies, the characterization framework was applied to 35 of them, allowing
to identification of some important gaps and proposing new research opportunities. We have also
experimentally addressed the effect of available information on ROOT problems, concluding that
there is indeed a significant impact on the performance of the algorithm and that the proposed
classification is appropriate to characterize the complexity of ROOT problems. To help identify
further research opportunities, we have implemented an interactive dashboard with the results of the
review conducted, which is available online.

Keywords: robust optimization over time; literature review; dynamic optimization problems

1. Introduction

Several real-world optimization problems are dynamic. Some examples are the landing
of a spaceship, the traffic light system of a city, and the optimal distribution of goods and
services to customers that appear or disappear over time, among others. The mathematical
goal in these problems is to find optimal solutions at every time step (or at every time
period where no changes happen). In some cases, the complexity present in the problem
makes this task difficult for traditional optimization methods. So, an effective alternative
is to employ methods based on computational intelligence [1] (e.g., bio-inspired meta-
heuristics), which are able to find high-quality solutions with an acceptable computational
cost [2].

During the last three decades, using population-based meta-heuristics to solve dy-
namic optimization (DOP) problems [3,4] became an active research area, giving rise to a
field known as dynamic evolutionary optimization (EDO) [5]. While some DOP variants
have been studied extensively in the past, for instance tracking moving optimum (TMO),
others remain somewhat unexplored. This is the case of what is known as robust opti-
mization over time (ROOT) [6]. Unlike traditional DOPs, where the goal is to find the best
solution in the current time (environment), in ROOT problems, the goal is more complex. It
involves finding a solution that can be “useful” for several environments at the same time.
For example, for the current and for the next n future environments. An environment is
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defined as a time period where the problem does not change, and therefore, it is possible to
perform optimization.

Given the wide range of possible variants of ROOT problems that can be derived from
the previous description, it would be important to know the progress made in solving these
problems. This would avoid “re-inventing the wheel” while some interesting research
opportunities can be easily identified. To our knowledge, just a few works have focused
on providing answers to this issue. In [7], the authors briefly review the literature on
ROOT published up to 2019, while [8,9] surveyed the literature on evolutionary dynamic
optimization up to 2021. More recently, the review of [10] organized the literature around a
classification for ROOT problems based on two criteria: the requirements for changing or
keeping deployed solutions and the number of deployed solutions. While these studies are
useful to obtain an overview of what has and has not been carried out, we believe there is
still room to make this overview more complete and comprehensive. In particular, there
are aspects of ROOT problems, not addressed by these previous reviews, that can help us
characterize current progress in this field.

In this context, this work has two objectives: on the one hand, to characterize ROOT
problems through their most relevant features, and on the other hand, to organize the
existing literature according to this characterization. Specifically, a classification framework
is proposed that includes seven characteristics of ROOT problems organized in five dimen-
sions. This framework was applied to classify the existing literature contributions, i.e., with
the purpose of identifying trends and knowledge gaps that may lead to the development
of future research. In addition, we have experimentally addressed the effect of one of the
categories of major interest in our proposed classification: the availability of information.

The rest of the work is organized as follows. Section 2 defines the ROOT problems and
explains in detail the task involved when solving a ROOT problem. Section 3 describes the
proposed framework. The application of the framework in organizing current contributions
on ROOT is presented in Section 4, where the experimentation carried out is also described,
as well as the gaps and further research opportunities that were identified. Finally, the
main conclusions of the investigation, including our future work, are outlined in Section 5.

2. Robust Optimization over Time

In general terms, a robust optimization over time problem is defined as:

max
x∈Ω
R(x, t) (1)

where Ω is the search space and x ∈ Ω is a candidate solution. t ∈ N is an environment of
the problem. So, function R : Ω×N→ R defines the robustness of a given solution x at
environment t. The task is to find the set of solutions X* = {x*

t : t = 1, 2, . . . , N} such that
x*

t maximizesR.
Several definitions for Equation (1) have been proposed in the past, which largely

depends on what the decision maker assumes as a robust solution. A typical definition
involves the aggregation of several values from specific objective functions characterizing
the solution’s quality in T subsequent environments. T is commonly referred as the Time
window. This approach has been used by authors like [11], in which two variants for
definingR were proposed. The first one, known as Average Fitness, is the average of the
solution’s quality from environments in the range {t, . . . , t + T− 1}. Formally, this function
is defined as [11]:

Ra(x, t) =
1
T

T−1

∑
i=0

ft+i(x) (2)

where ft+i is the objective function for the environment t + i.
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The second variant called Survival Time, defines robustness as the number of environ-
ments in a solution that remains with quality over a certain threshold V. More formally,
the Survival Time is defined as [11]:

Rs(x, t) =

{
0 if ft(x) < V,
1 + max{l | ∀i ∈ {t, . . . , t + l} : fi(x) ≥ V} otherwise.

(3)

Aside from the fact that ft can be defined in multiple forms, as we will see in the next
section,R can admit other forms different from the previous two.

3. Proposed Framework

A proper characterization of an optimization problem allows for a better design of a
solving strategy [12]. Of course, this statement also applies to ROOT problems, which so
far have not been explicitly characterized.

In this section, we propose a framework to characterize ROOT problems across five
dimensions, namely, the (assumed) available information, the definition of robustness,
the number of objectives, search space features (i.e., in terms of its dimension, decision
variables, and feasible region) and the problem source.

This framework allows to mapping of current contributions on ROOT to highlight
which types of problems have been addressed and which ones not, thus allowing re-
searchers not only to define specific solution strategies but also to tackle problems not
studied before.

3.1. Dimension 1: Available Information

The availability of information represents, from our viewpoint, the most important
factor for classifying the types of problems in ROOT. It refers to the information that an al-
gorithm is assumed to know about the environments of the problem, i.e., the environments’
fitness function. Note that three types of environments are relevant: past environments,
present (current) environments, and future environments, each of them with a specific
fitness function. Since robustness in a given environment depends on the fitness of a subset
of environments, knowing or not knowing these fitness functions is crucial to computing
the robustness accurately.

Putting this issue in a real context, consider, for example, a stock market, where a
decision is required at present to maximize not only the current profits but also future
ones. Since, in this scenario, it is not possible to precisely know the future profits, finding
the robust optimal solution to this problem is an error-prone task. Forecasting the future
environments is perhaps the only effective strategy here, but that depends largely on
how well the past environments have been stored or modeled [13]. Even in a case where
the past environments can be exactly stored or modeled (e.g., knowing or accessing the
exact definition of an environment’s fitness function) and an optimized forecasting model
is employed, estimating the robustness is error-prone. Finally, there is an extreme case
(although somewhat unrealistic) where the fitness function from future environments can
be evaluated exactly. In this case, past environments are not necessary, but this does not
necessarily mean that the optimization is free of uncertainty. Since fitness functions are
black box models, the optimization process is an approximation task, i.e., without any
guarantee that an optimal solution can be found.

As such, uncertainty arises in ROOT problems from three major sources: the future
environments, the past environments, and the black-box nature of the environments’
fitness functions. In this context, we defined three ROOT scenarios according to the
available information:
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• Scenario 1 (S1): This is the case of ROOT problems where fitness functions from
future environments can be evaluated exactly. Hence, it comprises a family of ROOT
problems where the robustness of a solution can be quantified exactly. As mentioned
earlier, the only source of uncertainty here is the black-box nature of the environment’s
fitness function. So, in this type of ROOT problem, typical TMO algorithms like [4],
ref. [14] could be applied without any major adaptation. In other words, problems
belonging to this scenario are slightly different from traditional dynamic optimization
problems, where tracking the optimum is the main goal. To better visualize this,
consider the Averaged Fitness as the robustness definition and as the fitness function
guiding the optimizer during the search. Since it is an aggregation of the present
and future values of objective functions that can be evaluated exactly, the problem
is reduced to a TMO problem with a single, dynamic objective function, i.e., the
Averaged Fitness. In the case of robustness defined in terms of Survival Time, it
is not trivial to transform problems from this scenario into TMO problems. The
difficulty arises because, in theory, the robustness value could be infinite. This is the
case of a problem with an endless number of changes (environments) in which it is
possible to find a solution that both in the current and future environments maintains
a fitness above the threshold V (Equation (3)). If the number of changes has a finite,
computationally tractable limit, then it would be possible to construct an objective
function that captures this definition in each environment t. Note that here, instead of
using an average to aggregate the information from several environments, the values
of the objective function are integers. For these reasons, this scenario is suitable for
studying how the optimizer part of the algorithm copes with the uncertainty of the
black box fitness function.

• Scenario 2 (S2): In this scenario, we consider ROOT problems with unknown future
environments, but with past environments that can be evaluated exactly. Hence, the
algorithm requires a forecasting model to estimate the future fitness values. Uncer-
tainty is present here due to the future environments and the black box definition of
fitness functions. From an experimental perspective, problems in this category are
suitable to study forecasting models which help to evaluate future environments.

• Scenario 3 (S3): In this type of ROOT problem, neither the future environments nor
the past environments can be evaluated precisely. This implies that algorithms must
include mechanisms to not only forecast the future but also to store or approximate
the past effectively. It is easy to infer that, of the three scenarios, this one encloses
ROOT problems with the highest level of uncertainty. In addition to the performance
of the optimizer and the forecasting model, problems in this category are suitable for
studying function approximation models that properly represent past environments.

Figure 1 shows the above scenarios, illustrating how they can be represented taking
into account what can be evaluated exactly (past and/or future environments). See that
uncertainty increases from S1 to S3, which indicates that, under similar conditions, scenario
S1 is less complex than S2, while S3 is the most complex one. It is worth noting that
the proposed classification is in line with that existing in other contexts such as Game
Theory [15], in which environments can be of perfect information, imperfect information
(asymmetric), or incomplete information. Of course, these categories would correspond
to Scenarios 1, 2, and 3 of our classification, respectively. We will return to this category
later, when we will analyze experimentally what effects the available information has on
the performance of an algorithm.
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No

Yes

Can future
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No
Can past

fitness functions
be exactly 
evaluated?

ROOT
problem

Scenario 2
(S2)

Scenario 3
(S3)

Scenario 1
(S1)

Available information

Figure 1. Possible scenarios for classifying ROOT problems according to the information available
(e.g., the possibility of exactly evaluating (or not) both past and future fitness functions).

3.2. Dimension 2: Robustness Definition

Like in other optimization/decision problems, in ROOT, the decision makers play
a crucial role in defining the desired kind of solution, i.e., what they consider to be a
robust solution. As far as we know, this aspect has not been taken into account by existing
studies on ROOT, which have been focused on finding solutions that are robust in a given
period T (time window). In this context, robustness has been studied mainly in the form of
Averaged Fitness and Survival Time. Real-world problems may sometimes involve different
perspectives about robustness. Since robustness relies on several environments, it is not
hard to consider its definition as a multi-objective optimization problem. Consequently,
robustness can be defined as a weighted sum of fitness functions from T environments,
or as the task of finding Pareto optimal solutions using such fitness functions. Note that,
from this perspective, the Averaged Fitness definition can be viewed as a special case of
the weighted version, where all environments’ fitness values have the same importance.
However, no research exists that explores other cases where weights can be different in
each environment.

Each of these cases assumes a mathematical representation that approximates reality
as closely as possible. Starting to study these types of robustness can therefore expand the
application area of ROOT to real scenarios.

3.3. Dimension 3: Number of Objectives

One aspect that distinguishes optimization problems regardless of whether they are
ROOT or not, is the number of objective functions to be optimized. When one seeks to
optimize two or more of these objectives, then the optimal solutions that are individually
optimal for each objective will not necessarily be optimal for all objectives at the same time.
Consequently, the algorithm must implement some approach to deal with this issue. In
this sense, the field of dynamic evolutionary multi-objective optimization [16] is a well-
established field involving a large number of approaches and algorithms. In the context of
ROOT, one of the main challenges is how to define the robustness of a solution from a multi-
objective perspective. Concepts such as “robust Pareto-optimal solution over time” have
been proposed by some authors [17]. In summary, in this dimension, we will consider two
levels to classify problems: single and many to refer to single-objective and multi-objective
problems, respectively.

3.4. Dimension 4: Search Space Features

Although search space features are not exclusive to ROOT problems, they are impor-
tant factors that affect the complexity of the problem. Hence, they influence our selection
of certain problem-solving strategies. Several search space features can be considered, for
instance, ref. [12], which provides a classification of optimization problems according to
eight characteristics that include: the existence of constraints, the nature of the decision
variables, the physical structure of the problem, among others. However, we focused here
on the following three: dimension, nature or type of decision variables, and feasible region.
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Regarding the dimension of the search space, which states the number of decision
variables of the problem, we consider three levels: low (D ≤ 30), moderate (30 < D ≤ 100)
and high (D > 100). The reader should be aware that other levels could have been
considered for this characteristic, i.e., by defining other value ranges or labels. However,
for our research, we consider the levels defined above to be sufficient and in line with
well-accepted problem definitions in the community [18].

In this case, the reported literature on ROOT has been only focused on problems with
low dimensions. Most of the works studied problems with dimension D = 2. However,
real-world problems may involve moderate and even higher dimensions. So, research on
these problems could be of practical interest.

It should be noted that as the dimension increases, several challenges arise when solv-
ing a ROOT problem. For instance, in problems belonging to S3 not only the optimization
task will be affected, but also storing or modeling the past environments.

Regarding the type of decision variables, we considered three levels: continuous,
discrete, and mixed-variable. Often, discrete optimization problems are harder to solve
than continuous ones. However, so far, ROOT research has focused mainly on problems
with continuous decision variables, regardless of several real-world problems involving
discrete [19] and mixed-variable search spaces [20].

The shape of the search space depends on the constraints present in the problem.
Solutions that satisfy the problem constraints conform to the feasible region. In this regard,
we considered three cases: (1) unbounded, (2) bounded, unconstrained, and (3) constrained.

Most of the works on ROOT studied problems with bounded and unconstrained
feasible regions. More complex problems, such as those with functional constraints (typical
of real problems), have been less addressed.

3.5. Dimension 5: Problem Source

Another important factor to consider when organizing ROOT’s contributions around
the problem addressed is the source of the problem. We refer to three categories: (1) real-
world, (2) real-world inspired, and (3) artificial. In the first case, we include problems
coming from real-world decision scenarios (e.g., based on real data). The second category
groups those problems that, although based on real-life decision scenarios, use artificial
data from hypothetical situations. Finally, artificial problems are those that are abstract and
bear no relation to real scenarios. A typical example within this last category is the existing
benchmarks for comparing algorithms.

4. Literature Review, Analysis, and Research Opportunities

This section describes the application of the proposed framework for organizing
current progress and identifying potential research opportunities. To gather the current
published studies on ROOT, we conducted searches on six databases, namely Scopus
(https://www.scopus.com, accessed on 1 May 2023), ACM Digital Library (http://portal.
acm.org, accessed on 1 May 2023), IEEE Xplore (http://ieeexplore.ieee.org, accessed on
1 May 2023), ScienceDirect (http://www.sciencedirect.com, accessed on 1 May 2023),
Springer Link (http://link.springer.com, accessed on 1 May 2023) and ISI Web of Science
(https://www.sciencedirect.com, accessed on 1 May 2023). Specifically, we employed the
following query:

(“robust optimization over time” OR “robust optimisation over time”)

The search and selection methodology is illustrated in Figure 2. As can be seen,
186 studies were found in the database searches. After excluding 66 duplicate studies,
the title and abstracts of the remaining 120 were screened. At this point, 81 studies were
excluded for several reasons. Note that in Figure 2, the two reasons for rejection were
studies that did not address ROOT problems (60) and studies whose scope was that of a
literature review or survey. After this step, the remaining 39 were subjected to an in-depth
review of their full text. As a result, four studies were discarded, of which three were not

https://www.scopus.com
http://portal.acm.org
http://portal.acm.org
http://ieeexplore.ieee.org
http://www.sciencedirect.com
http://link.springer.com
https://www.sciencedirect.com
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related to the topic of ROOT and one was not accessible. Finally, 35 were selected and
classified using the proposed framework.
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Not addressing ROOT

problems (60), Secondary
studies (21).

39 full-text studies accessed
for eligibility

4 studies excluded: 
Not related to ROOT (3), Not

accessible (1)

35 studies classified by the
proposed framework

Figure 2. Literature search and selection methodology.

In what follows, we present the results obtained and the possible research opportuni-
ties derived from them.

4.1. Results

Table A1 (Appendix A) contains the 35 studies we found. Note that, in addition to
the dimensions/categories proposed in our framework, we include the year of publication
and the paper source (e.g., Conference or Journal). To supplement this analysis, we have
also summarized d these data in the graphs grouped in Figures 3 and 4. Note that these
graphs describe how the number of studies is distributed according to the combination of
the Available Information (y-axis) vs. the rest of the characteristics. We decided to keep
Available Information as a reference in all plots because it is, in our opinion, the most
relevant aspect to characterize ROOT problems. Thus, the trends and gaps that will be
discussed below will be of most interest to the reader who wishes to contribute to this
field. However, the reader interested in exploring combinations of different variables is free
to do so through the dashboard hosted on https://modougr.shinyapps.io/root_review/,
accessed on 1 November 2023.

Particularly, from Figure 3a, we can see that since 2010, interest in ROOT moderately
increased over the years, with a notable tendency to address problems S1 and S3. In
addition, Figure 3b shows that the number of journal articles is very similar to the number
of conference papers, with the three papers exploring S3 problems being published as
conference papers.

Regarding the features defined in our framework, the graph in Figure 4a shows that
Survival Time is the most commonly used definition of robustness so far (n = 19, 54% of

https://modougr.shinyapps.io/root_review/
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studies). In contrast, other studies are based exclusively on the Average Fitness (n = 5, 14%)
or very specific definitions (n = 7, 20%), with different formulas than Equations (2) and (3).
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Figure 3. Distribution of the number of studies over the years (plot a) and according to the type of
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From Figure 4b, it can be seen that most of the contributions addressed problems with
only one objective function (n = 25, 71%), while the rest (n = 10, 28%) multi-objective
problems. Within the latter group, the study by [21] stands out, in which robustness is
defined in terms of two objectives: Average Fitness and Survival Time.

If we turn our attention to the dimension Search Space Features, represented by plots
c, d and e in Figure 4, we can notice that the problems most frequently addressed are those
of low dimension, with continuous decision variables and bounded search space. Although
not shown in these graphs, 21 (60%) studies addressed problems with these characteristics.

Finally, Figure 4f most of the researchers (n = 27, 77%) rely on artificial ROOT
problems. This pattern is consistent with the predominance of robustness definitions
based on fitness or survival time, which originated in artificial problem experimentation
environments [11].

4.2. On the Effect of the Available Information

To illustrate to what extent the performance of an algorithm is affected by the informa-
tion available, we have designed a small computational experiment involving the three
scenarios defined in Section 3.1. To this end, we considered one of the artificial problems
proposed in [11], which has the characteristics listed in Table 1. This kind of problem is
known as RMPB-I [11]. Note that this is a single-objective problem, with a two-dimensional,
bounded search space and continuous decision variables. In addition, the landscape of the
objective function is multi-modal (with several local optima) as shown in Figure 5. This
aspect is controlled by the presence of peaks for each dimension of the problem, in this
case, five peaks.
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Figure 5. Landscape of the fitness function in one of the problem environments. The graph on the
left shows its representation in 2D, while the one on the right is in 3D. The regions in lighter shades
correspond to high values of the function, while the darker ones correspond to lower values..

Structurally, the problem can be viewed as a composition of several environments
marked by time t ∈ N0. Each environment t is a stationary optimization problem defined
by a specific objective function ft, and with a common search space. As previously noted,
if this problem is approached as a Tracking Moving Optima problem, the objective of the
algorithm is to optimize ft in each environment t. On the other hand, if approached as
a ROOT problem, the algorithm must consider several consecutive environments at the
same time to optimize robustness. In our experiment, we considered the Average Fitness
(Equation (2)) as the robustness definition.

The objective function ft in each environment t is as follows:

ft(x) =
1
d

D

∑
j=1

max
i=1,...,m

{
h(t)ij − w(t)

ij

∣∣∣c(t)ij − xj

∣∣∣} (4)
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where i stands for the i-th peak, while j denotes de j-th dimension of the search space.
Parameters cij, hij and wij are the position, height and width of peak i in dimension j,
respectively.

Table 1. Parameter settings of the test problem.

Parameter Values

Number of peaks (m) 5
Dimension (D) 2
Search space [−25.0, 25.0]× [−25.0, 25.0]
Number of changes (environments) (N) 30
Change frequency (∆e) 1000
Change type Small step (Equation (5))
Peaks’ height range (h) [30.0, 70.0]
Height severity (hseverity) 5.0
Peaks’ width range (w) [1.0, 13.0]
Width severity (wseverity) 0.5
Rotation angle range (θ) [−π, π]
Angle severity (θseverity) 1.0
Time window (T) 3
History size (period P) 12

In each environment t, the algorithm has a budget (change frequency) of 1000 evalu-
ations of the objective function ft. After consuming all of them, the problem switches to
environment t + 1. This new environment shares the same search space as the previous one,
but with a new objective function that is obtained by perturbing the parameters defining
the objective function of the previous environment. Formally, the parameters w and h are
perturbed as follows:

φt+1 = φt + 0.04(φmax − φmin)rand(−1, 1)φseverity (5)

where φ ∈ {w, h} and rand(−1, 1) is a rand number uniformly generated in the range
[−1, 1]. In the case of the peak coordinates (c), they change through a rotation operator. This
operator is implemented by a rotation matrix and an angle θ that is previously perturbed
according to Equation (5).

Given the structure of the expression ft, in [11], it was shown that the optimal ro-
bust solution in terms of Average Fitness can be calculated exactly. Briefly, for a given
environment t the optimal solution in terms of average fitness is the solution c*

t = (c*
1, c*

2),
where c*

1 and c*
2 are two peak centers in dimension 1 and 2, respectively. Specifically, these

centers are the ones guarantying that Ra
t (c

*
1, c*

2) ≥ Ra
t (c

(k)
1i , c(l)2i ), ∀ i, j ∈ {1, . . . , 5} and

∀ k, l ∈ {t, . . . , T− 1}. In simple terms, c*
t is one of the possible combinations of two centers

of peaks from environment t and the next T− 1 future environments. In our problem, since
we have five peaks per dimension and the time window is T = 3, then c*

t is one of the
225 combinations of these centers. Consequently, we can evaluate the performance of the
algorithm in terms of its error. Among the available alternatives [3,5,22], we considered
here the error of the best solution before the change. Formally, this measure is defined as:

BEBC(t) =
∣∣∣Ra

t (c
*
t)−Ra

t (x*
t)
∣∣∣ (6)

whereRa
t is the robustness calculated according to Equation (2), c*

t is the optimal solution
of the problem in environment t, and x*

t is the best solution found by the algorithm in the
environment t.

We utilized Differential Evolution (DE) [23] as the solution method, which is a tra-
ditional meta-heuristic for continuous optimization problems [24]. Our instance of DE
employed a population size of 50 individuals (candidate solutions) and a mutation rate
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that varied randomly between 0.5 and 1.0 during the run. It also included a recombination
rate of 0.7 and the Rand2Exp mutation strategy.

We assume that the algorithm can detect changes in the environment and react to the
loss of diversity by restarting the search at the beginning of each environment. We have
opted for this simplification to mitigate the influence that the factors involved may have on
the performance of the algorithm. As a benefit, we can isolate the effect of the available
information, which is the factor of interest in this experiment.

To deal with the problem of Scenario 1, where the future is known with certainty, the
algorithm as described above should be sufficient. As we highlighted in Section 3.1, it
would be performing a Tracking Moving Optima task. In contrast, in Scenario 2, where only
the past (and present) is known accurately, the algorithm should exploit that advantage
to predict the future. As suggested in [11,13], an alternative here is to apply time series
models. Following [11] we opt for an auto-regressive (AR) model of order 4. So the
algorithm will optimize a variant of Average Fitness in which the values of the future
correspond to those predicted by the AR model based on the history of each candidate
solution. More formally, let x be a candidate solution of the algorithm in environment t,
and { ft−P(x), ft−P+1(x), . . . , ft−1(x), ft(x)} the history of x in the P environments prior to
t; then, the approximate robustness of solution x at time t is given by:

R̃a(x, t) =
1
T

(
ft(x) + f̃t+1 + . . . + f̃t+T−1

)
(7)

where f̃i are the values predicted by the AR model based on the history of x. Note that the
sequence of objective function values is dependent on the parameter P, which is commonly
known as the learning period.

Finally, Scenario 3 optimizes Equation (7) with a crucial variation: each solution’s
history incorporates surrogate models approximating the objective functions of past en-
vironments rather than their exact values. Specifically, each past environment was ap-
proximated by a Radial Basis Function (RBF) interpolation model with a Thin Plate Spline
kernel. For model fitting, we randomly generated 50 search space points using a Latin
hypercube sampling.

Note that in both Scenario 2 and Scenario 3, the algorithm cannot properly evaluate
robustness with the expression Equation (7) until it is in an environment with a time
stamp greater than or equal to P (learning period). Consequently, this creates difficulties
when comparing the results with Scenario 1, where this is not required. Therefore, we
opted to evaluate the algorithm’s performance beginning from environment t = 12 for all
three scenarios.

We executed 30 independent runs of the DE algorithm for each scenario. In every
run, we gathered 30 values of the BEBC measurement. The summarized outcomes of these
runs are displayed in the plots showcased in Figure 6. Specifically, Figure 6a depicts the
evolution of BEBC performance across 30 successive environments starting from t = 12.
Each line represents the average BEBC result of 30 runs, while the gray ribbons denote the
range of values (minimum and maximum). Note that the logarithmic scale base 10 has
been employed on the y-axis to aid the visual comparison of outcomes. As expected, the
algorithm performs better in Scenario 1 than in the other scenarios. The mean BEBC values
are mostly below 0.1. Conversely, in the other scenarios, performance substantially deterio-
rates, with values significantly surpassing those achieved in Scenario 1. To supplement this
analysis, the distribution of BEBC values for each environment and run is summarized in a
box plot shown in Figure 6b. As observed, the best performance corresponds to Scenario
1. Furthermore, it corroborates the order of difficulty in the scenarios, as described in
Section 3.1, with S3 being more complex than S2, and S2 more complex than S1.
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Figure 6. Performance of the algorithm in three ROOT problem scenarios. Plot (a) shows how
performance changed over time, while plot (b) displays the performance distribution for each
scenario and the results of the conducted statistical analyses (* p-value < 0.05, **** p-value < 0.0001).

To formally confirm these relationships, we conducted a statistical analysis to com-
pare the algorithm’s performance in each scenario. Since we controlled for both random
number generation and the environment, we conducted an analysis of variance for paired
samples. However, the assumptions of normality and equal variances were not met (e.g.,
Shapiro–Wilk and Levene tests produced p-values of less than the significance level of
0.05). Therefore, we relied on non-parametric tests. We conducted a Friedman test which
yielded a p-value significantly below 0.05, indicating that there are overall differences
among scenario performances. To identify the specific pairs of scenarios that have such
differences, we proceeded with a post hoc analysis. Specifically, we applied a Sign test
with corrections by the Bonferroni method. As a result, we found that there are significant
differences among all scenarios. The box plot displayed in Figure 6b summarizes these
results, with brackets indicating the adjusted p-values. See that in all cases, they were
under 0.05.

Although a wide range of problems or strategies related to the issue of available
information has not been addressed, some conclusions can be drawn from the performed
experiment. Firstly, the algorithm’s performance is significantly impacted by the available
information used to compute the robustness of the solutions. Even in a low-dimensional
problem where robustness is a function of only two future environments, it is challenging to
achieve performance comparable to accurately evaluated future scenarios. We acknowledge
that this is heavily reliant on the forecasting model’s ability to capture trends and make
predictions with minimal errors. In our case, the AR model may be inadequately calibrated
or not suitable to the problem. One challenge in utilizing time series models is the lack
of time for visually interpreting the behavior of a specific solution’s sequence of values
during the optimization process, which is an essential methodological recommendation for
appropriately configuring model parameters. One option is to employ statistical tests to
guide the selection process or to optimize the model parameters. In any case, computational
complexity is added to the optimization process, since for each evaluation in the objective
function that defines robustness, it is necessary to perform these operations. Similarly,
when the algorithm attempts to approximate the history of the solutions (Scenario 3), it is
crucial to do so accurately. This is because the error from this task may make the forecasting
task more prone to errors. In other words, the more precise the approximation models are,
the more reliable our predictions for future environments will be.

4.3. Research Opportunities

From the previous results, it is possible to identify some important research opportu-
nities. Most of them are somewhat obvious since they are based on the gaps detected by
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our classification. However, we have decided not to exclude them as we believe they are
crucial to help advance this field of research. Specifically, we suggest:

1. Defining and/or solving problems with discrete variables, with a moderate or high
number of variables, and considering feasible regions unbounded or constrained;

2. Address more problems of type S2 or S3, rather than those of type S1. Although all
three categories of problems have been addressed in the past, some recent contri-
butions focus on the simpler S1 scenario (e.g., where future fitness functions can be
accurately evaluated). As was stated earlier, this type of problem is in essence the
same as the Tracking Moving Optima if we defined robustness in terms of Average Fit-
ness. In our opinion, the true ROOT problems are those derived from the assumptions
defining scenarios S2 and S3;

3. Exploring alternative robustness definitions. Although alternatives to the typical ones
(e.g., Average Fitness and Survival Time) have appeared in recent years, these defini-
tions are very specific to the problem being solved. Thus, there is room to propose
alternatives that can efficiently guide the algorithm in the search for robust solutions.

4. Address more real-world (inspired) problems. Except for just a few works like [25–30],
the rest were focused on artificial problems. Note that addressing a larger number
of real-world problems is a way to increase the number of contributions that exploit
the opportunities indicated above. This is because a large number of these prob-
lems involve discrete variables, various constraints, uncertainty about the available
information, and very specific definitions of robustness.

5. Conclusions and Future Works

Solving robust optimization over time problems is a recent research topic within the
field of evolutionary dynamic optimization. Although some important contributions have
been made in the last 10 years, there is still room for progress in this field. From our
viewpoint, this topic is in its childhood if it is compared to similar topics like Tracking
Moving Optima [3,5,8,9,22].

According to the proposed framework, which aimed to organize the current advances
around the problems addressed so far, it can be concluded that the most important con-
tributions have been produced in artificial problems with low-dimensional continuous
search spaces. In addition, most of these contributions have considered at most two types
of robustness definitions (e.g., Averaged Fitness and Survival Time). Multi-objective ap-
proaches rely on a combination of one or two of such definitions with another specific
fitness function.

Problems with the above characteristics represent a very small part of real-world
optimization problems. Therefore, research in scenarios with discrete and constrained
search spaces, or with different definitions of robustness (e.g., weighted) would be welcome
to advance the field.

One aspect that affects the performance of the algorithm in ROOT problems is the
information available about future and past environments. Particularly, in scenarios where
the past or future fitness functions can not be evaluated exactly, erroneous estimation of
the robustness guides the algorithm towards solutions far away from the true optimal
solutions. The literature reflects just a few works devoted to understanding such impact
and what causes it [31,32]. We identified three possible scenarios that will contribute to
answering these and further research questions.

Our future work will be aimed at exploiting the opportunities identified above and
increasing the attention of the evolutionary computing community on this type of problem.
In addition, we intend to extend this work by including other important factors in ROOT,
such as performance measures and algorithms.
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Appendix A

Table A1. Studies classified according to the proposed framework.

Ref. Source Year Scenario Robust. Def. N. Object. Dimen. Dec. Var. Feas. Region Prob. Source

[6] Conference 2010 S3 A.F. 1 Single Low Contin. Bounded Artificial
[33] Conference 2012 S1 Others Single Low Contin. Constrain. Artificial
[34] Conference 2013 S2 S.T. 2 Single Low Contin. Bounded Artificial
[25] Conference 2013 S3 Others Single Low Contin. Constrain. Real-world inspired
[13] Journal 2013 S3 A.F. Single Low Contin. Bounded Artificial
[21] Conference 2014 S2 A.F., S.T. Many Low Contin. Bounded Artificial
[17] Journal 2015 S3 S.T. Many Low Contin. Constrain. Artificial
[11] Journal 2015 S3 A.F., S.T. Single Low Contin. Bounded Artificial
[35] Conference 2015 S3 A.F., S.T. Single Low Contin. Bounded Artificial
[36] Journal 2017 S3 S.T. Many Low Contin. Constrain. Artificial
[37] Journal 2017 S3 S.T. Many Low Contin. Bounded Artificial
[38] Conference 2017 S1 A.F., S.T. Single Low Contin. Bounded Artificial
[26] Journal 2018 S1 Others Many Low Mixed Constrain. Real-world inspired
[31] Conference 2018 S3 A.F. Single Low Contin. Bounded Artificial
[39] Conference 2018 S1 Others Single Low Contin. Bounded Artificial
[40] Conference 2019 S1 A.F., S.T. Single Low Contin. Bounded Artificial
[41] Conference 2019 S1 A.F. Single High Discrete Constrain. Real-world inspired
[42] Journal 2019 S3 A.F. Single Low Contin. Bounded Artificial
[43] Conference 2019 S1 A.F. Single Low Contin. Bounded Artificial
[44] Journal 2019 S3 A.F., S.T. Many Low Contin. Constrain. Artificial
[45] Conference 2019 S1 A.F. Single Low Contin. Bounded Artificial
[27] Conference 2019 S1 Others Single Low Contin. Constrain. Real-world
[46] Journal 2019 S3 S.T. Single Low Contin. Bounded Artificial
[28] Conference 2020 S1 A.F. Single High Discrete Constrain. Real-world inspired
[47] Journal 2020 S1 A.F., S.T. Single Low Contin. Bounded Artificial
[32] Conference 2020 S2 A.F., S.T. Single Low Contin. Bounded Artificial
[48] Journal 2020 S1 S.T. Single Low Contin. Bounded Artificial
[49] Journal 2020 S3 A.F., S.T. Many Low Contin. Constrain. Artificial
[29] Journal 2020 S1 S.T. Many Low Contin. Bounded Artificial
[50] Journal 2020 S3 A.F. Many Low Contin. Constrain. Real-world
[51] Journal 2020 S3 Others Single Low Contin. Constrain. Real-world inspired
[30] Journal 2021 S1 Others Single Low Contin. Constrain. Real-world
[52] Journal 2022 S3 S.T. Single Low Contin. Bounded Artificial
[53] Journal 2023 S3 S.T. Single Low Contin. Bounded Artificial
[54] Journal 2023 S3 S.T. Many Low Contin. Constrain. Artificial

1Average Fitness, 2 Survival Time.
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