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Abstract: In challenging tasks such as large-scale resource detection, deep-sea exploration, prolonged
cruising, extensive topographical mapping, and operations within intricate current regions, AUV
swarm technologies play a pivotal role. A core technical challenge within this realm is the precise
determination of relative positions among AUVs within the cluster. Given the complexity of un-
derwater environments, this study introduces an integrated and high-precision underwater cluster
positioning method, incorporating advanced image restoration algorithms and enhanced underwater
visual markers. Utilizing the Hydro-Optical Image Restoration Model (HOIRM) developed in this
research, image clarity in underwater settings is significantly improved, thereby expanding the
attenuation coefficient range for marker identification and enhancing it by at least 20%. Compared to
other markers, the novel underwater visual marker designed in this research elevates positioning
accuracy by 1.5 times under optimal water conditions and twice as much under adverse conditions.
By synthesizing the aforementioned techniques, this study has successfully developed a comprehen-
sive underwater visual positioning algorithm, amalgamating image restoration, feature detection,
geometric code value analysis, and pose resolution. The efficacy of the method has been validated
through real-world underwater swarm experiments, providing crucial navigational and operational
assurance for AUV clusters.

Keywords: autonomous underwater vehicle; underwater swarm localization; visual localization;
image processing; visual markers

1. Introduction

Autonomous Underwater Vehicles (AUVs) have become increasingly vital in military
operations, marine resource exploration, and other advanced underwater tasks. Bolstered
by advancements in artificial intelligence, their potential applications are perceived to
surpass those of Remotely Operated Vehicles (ROVs). However, when tasked with large-
scale missions such as extensive resource detection, deep-sea exploration, prolonged patrols,
comprehensive topographical mapping, and operations in complex current regions, the
capability of individual AUVs is challenged. Consequently, AUV swarm technologies
have been thrust into the research spotlight, as depicted in Figure 1, which showcases the
collaborative efforts of the TS Mini-AUV from the Shenyang Institute of Automation at the
Chinese Academy of Sciences.

In the realm of Autonomous Underwater Vehicle (AUV) swarms, precise inter-vehicular
positioning is crucial for effective collective perception and control, representing a funda-
mental aspect of AUV swarm technology. Established positioning technologies in terrestrial
environments, including LiDAR-based Simultaneous Localization and Mapping (SLAM),
Real-Time Kinematic GPS (RTK-GPS), and WiFi triangulation, have undergone significant
development. Chen et al.’s [1] innovative approach to unstructured scene planning and
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control for all-electric vehicles, Meng et al.’s [2] HYDRO-3D object detection and tracking
system utilizing 3D LiDAR, and Liu et al.’s [3] work on accurately estimating vehicle
sideslip angles exemplify advancements in land vehicle control and detection.
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Figure 1. (left) TS Mini-AUV from Shenyang Institute of Automation at the Chinese Academy of
Sciences. (right) AUV Swarm from the same institution.

However, the adaptation of these technologies for underwater use faces numerous
challenges [4]. The obstruction of GPS signals by water makes GPS technology unsuitable
for underwater applications. The substantial scattering and absorption characteristics
of water severely diminish LiDAR systems’ efficacy. Moreover, the rapid attenuation
of wireless signals in aquatic environments renders WiFi-based triangulation methods
ineffective for underwater positioning. These limitations underscore the impracticality of
directly applying terrestrial positioning technologies to underwater settings. Furthermore,
internal sensors such as Inertial Measurement Units (IMUs) are constrained by long-term
cumulative errors, compromising their ability to provide stable and reliable navigation data
for cluster positioning. While Ullah et al. [5] have demonstrated success in underwater
target detection and positioning using acoustic signals, this method still faces challenges in
terms of positioning accuracy and the feasibility of deploying equipment in densely packed
underwater clusters.

In an underwater environment, the efficiency of visual positioning technology is
underscored by its exploitation of light signals’ effective propagation for precise, omnidi-
rectional positioning, demonstrating marked efficacy over short ranges. This technology is
particularly suited for Autonomous Underwater Vehicles (AUVs), constrained by spatial
and structural limitations due to the monocular vision methodology’s streamlined struc-
ture, compactness, and rapid processing capabilities. Utilizing a monocular camera, this
approach captures image data and employs known feature points to align two-dimensional
with three-dimensional data, thereby achieving accurate positioning. The criticality of
visual markers in this process is evident, as their distinctive geometric structures provide
precise coordinates for these feature points within images. By integrating the spatial coor-
dinates of these markers with their corresponding image coordinates, efficient matching
of images to three-dimensional models is facilitated. The application of the Perspective-
n-Point (PNP) algorithm is instrumental in computing the target’s six-axis pose data,
culminating in enhanced visual positioning accuracy.

Consequently, this study employs a monocular camera, noted for its simple structure
and compact size, to achieve accurate visual positioning in complex underwater environ-
ments. Innovations include the development of enhanced AR-coded markers, as illustrated
in Figure 2. These markers, strategically placed on Autonomous Underwater Vehicles
(AUVs), maintain their streamlined design while optimizing marker visibility. Each AUV
is equipped with five high-resolution underwater monocular cameras, positioned to cap-



Electronics 2023, 12, 4882 3 of 25

ture visual marker data from multiple perspectives, thus enabling effective positioning
within the swarm’s visual range. The focus of this research is on refining the precision
and robustness of positioning through the improvement in visual markers and the clar-
ity of underwater imagery. A significant advancement is the introduction of enhanced
AR-coded markers, which increase the density of usable feature points within the visual
markers, enhancing matching precision and adapting to unique underwater conditions
to improve locational accuracy. Furthermore, this paper presents the Hydro-Optic Image
Restoration Model (HOIRM), an innovative approach based on the physical model of
underwater image degradation. This model applies an inverse degradation process to
restore image clarity, markedly enhancing the accuracy and robustness of marker detection
in high-turbidity conditions.
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Figure 2. (left) schematic representation of cluster localization featuring the TS Mini-AUV.
(right) physical depiction of the TS Mini-AUVs.

The primary contributions of this paper are summarized as follows:
The development and application of an enhanced AR-coded marker for underwater

usage are presented. This novel marker demonstrates a notable 1.5-fold increase in visual
positioning accuracy compared to existing markers.

A brand-new Hydro-Optic Image Restoration Model is introduced. This model signifi-
cantly outperforms existing dehazing algorithms, broadening the discernible range of the
light attenuation coefficient by 20%, thereby enhancing the quality of underwater imagery.

Our research extends to the creation of supplementary algorithms and the empirical
analysis of cluster positioning techniques using enhanced AR-coded markers. These
advancements prove to be highly effective in the real-time, stable detection and positioning
of AUVs within a cluster, offering a dependable solution for proximal robot positioning in
underwater clustering technologies.

The ensuing sections of this paper will methodically address several key areas: firstly,
the context of underwater monocular vision positioning; secondly, the conceptualization
and design of enhanced AR-coded markers; and thirdly, the development of the Hydro-
Optic Image Restoration Model, followed by a detailed discussion of the positioning process
leveraging these technologies. This paper will then progress to the experimental framework
and an analytical evaluation of the results. Finally, it will conclude with a summary and
perspectives for future research endeavors in this field.

2. Related Work

In the domain of underwater robotics, visual markers have emerged as a reliable
positioning strategy, offering a novel approach for the positioning of Autonomous Un-
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derwater Vehicles (AUVs). Zhang et al. [6] integrated optical beacons with traditional
image processing techniques to estimate distance and depth. Feng et al. [7] designed a
hybrid positioning strategy wherein long-range positioning utilized optical beacons and
short-range positioning switched to AR markers. Meanwhile, Xu et al. [8] opted to deploy
multiple ArUco markers on the seabed, thereby advancing underwater visual navigation.
Wu et al. [9,10] designed a monocular visual positioning system for manned submersibles
reaching depths of up to 7000 m based on cooperative markers. However, the aforemen-
tioned visual positioning techniques, employing optical, cooperative, and AR markers,
exhibit notable constraints when applied to underwater cluster positioning, as detailed in
the following discussion.

Specifically, optical markers employ the centroid of luminous sources in images as fea-
ture points for positioning. However, the precision of optical marker-based positioning re-
mains relatively low, is constrained by ambient light, and, when mounted on AUVs, greatly
affects the AUV’s maneuverability, flexibility, and stealth. Cooperative markers [11–13]
primarily rely on specific geometric shapes for recognition, but they are more suitable
for individual AUVs rather than clusters. Concurrently, AR markers like ArUco and
AprilTag [14–20] possess distinctive encoding schemes, enabling the differentiation of vari-
ous targets. Yet, they provide a limited number of feature corners. Underwater, the large
errors in image coordinate detection greatly affect the positioning results. Additionally,
the feature points are prone to loss, leading to the inability to achieve positioning. To
address this, previous studies opted to use multiple AR markers to enhance positioning
precision [7,8,21], but this method poses challenges for integration on AUVs with rigorous
structural constraints. To overcome these constraints, this paper introduces an enhanced
AR-coded marker that is applied in underwater cluster positioning.

Moreover, Yang Yi and his team from the Institute of Automation at the Chinese
Academy of Sciences [22] proposed an AUV visual positioning solution based on under-
water vector laser patterns for dense formations. However, in well-lit environments, the
visibility of the vector laser significantly diminishes, making light detection challenging.
This method also faces limitations in lateral positioning within cluster carriers. Therefore,
there’s a need for cluster positioning methods that address these challenges. In recent years,
visual positioning methods based on inherent target characteristics and leveraging deep
neural networks [23–27] have offered new solutions for underwater cluster positioning.
But due to constraints such as lower accuracy, slower computational speed, difficulties in
dataset acquisition, and challenges in multi-target positioning, they are currently not ideal
for underwater cluster positioning applications.

Ensuring a high success rate for visual marker detection in cluster visual positioning
necessitates underwater image enhancement. Traditional enhancement techniques, such as
the Dark Channel Prior (DCP) formulated by He et al. [28], histogram equalization [29,30],
Retinex-based methods [31,32], and filter-guided techniques [33,34], have not shown ideal
performance in actual underwater applications. Research on underwater image enhance-
ment, like Carlevaris-Bianco’s wavelength-dependent light attenuation [35], Wang’s convo-
lutional neural network color correction [36], and other recent studies [37–41], has shown
some positive progress. However, their outcomes in real, complex underwater settings
remain suboptimal. Consequently, a highly adaptive cluster positioning approach requires
an image enhancement technique suitable for complex underwater environments.

3. Enhanced AR-Coded Marker Design

Visual markers enable the alignment of objects in images with their three-dimensional
counterparts through feature points. Notably, passive markers, including cooperative and
AR markers, adeptly deliver precise feature point information, yielding higher positioning
accuracy. In visual measurement systems, the image coordinate-detection error, identified
as the sole irreducible error source [42,43], becomes more evident in challenging underwater
environments with complex light propagation. Advancements in sub-pixel-level feature
point coordinate detection and optimization of passive visual marker structures, including
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increased feature point density, are effective strategies. These enhancements are crucial for
improved matching accuracy and precision in underwater positioning.

3.1. Analysis of the Impact of Feature Point Quantity on Positioning Accuracy

In the realm of monocular visual positioning, the primary objective is to address the
Perspective-n-Point (PNP) problem. This involves the computation of the pose matrix,
denoted as

[
R T

]
.

This process begins with obtaining feature point coordinates from the captured image.
Subsequently, these coordinates are employed to transform Equation (1) into a linear system
of equations, as illustrated in Equation (2). The image coordinates of these feature points,
along with their corresponding world coordinates, are then inserted into the system of
equations to compute the matrix. However, aquatic environments in the real world often
introduce noise, adversely impacting the accuracy of image coordinate collection and
subsequently increasing the detection error associated with these coordinates.
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= AT = 0, (2)

The least-squares optimization method is capable of extracting optimal solutions
for linear equations, even when inaccuracies in parameters are present. However, this
method’s iterative results’ accuracy is reduced due to the inherent detection error in image
coordinates. This reduction in precision becomes more pronounced in underwater environ-
ments with elevated noise levels. Under the framework of least-squares optimization, it has
been observed that an increase in the number of feature points correlates with a reduction
in solution error, thereby leading to a more precise computation of the pose matrix. In
environments characterized by high noise, such as underwater settings, this increase in
feature points proves particularly beneficial. It effectively mitigates noise interference,
resulting in the stabilization and enhancement of the accuracy of positioning solutions.

To conduct a quantitative evaluation, a simulation model for camera imaging and
pose computation was established, encompassing actual visual markers and intrinsic
camera parameters. Simulations were conducted to evaluate how varying numbers of
feature points affect measurement accuracy within the context of different levels of image
coordinate detection errors. The intrinsic matrix and distortion matrix derived from actual
underwater camera calibrations are defined in Equations (3) and (4), respectively:14914.22 0 1239.18

0 14912.74 1088.06
0 0 1

, (3)

[
0.33049 4.74831 0 0 0

]
, (4)
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To simulate varying levels of image coordinate-detection errors under different water
quality conditions, Gaussian noise with different standard deviations was introduced into
the feature point coordinates. Specifically, five experimental groups were created, each
representing a different noise level. Within each group, the number of feature points
systematically increased from 4 to 20. For each configuration, 1000 trials of random
noise superposition were performed, yielding 1000 measurement errors. These errors
were subsequently compiled to determine a cumulative measurement error. The relative
reduction in distance error was adopted as the evaluation metric, defined in Equation (5):

erot = n·
∣∣dx − dx0

∣∣+∣∣dy − dy0
∣∣+∣∣dz − dz0

∣∣
3

− error20, (5)

where n is the number of measurements and error20 represents the cumulative error with
20 feature points at the same noise level.

Having compiled data from 1000 measurements across the five experimental groups,
grouped bar charts were utilized to visually present the cumulative errors (Figure 3).
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In Figure 3, bar charts of five distinct colors depict cumulative errors at different noise
levels. With a constant number of feature points, cumulative errors exhibit a continual rise
as the standard deviation of the Gaussian noise augments. When the noise level remains
consistent, the bar charts illustrate a decline in cumulative errors with an increasing number
of feature points. The decline is more pronounced at higher noise levels. Specifically, with
a noise standard deviation of 16, increasing the feature points from 4 to 12 results in a
significant reduction of 588.32 mm in cumulative error. However, beyond 11 feature points,
the decline in error becomes less discernible.

By integrating simulation study findings with theoretical insights, it was concluded
that increasing the feature points can significantly augment measurement precision, es-
pecially in high-noise settings. Nonetheless, it is imperative to recognize that, once the
number of feature points surpasses a specific threshold, the reduction in error plateaus.
Consequently, optimizing the effective number of feature points per unit area emerges as a
crucial factor in achieving precise positioning in high-noise aquatic environments.
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3.2. Marker Structure Design

Grounded in foundational theories and robust simulation evidence, it is ascertained
that an increase in the number of feature points markedly mitigates the diminution in
positioning accuracy arising from image coordinate-detection errors. Simultaneously, vi-
sual positioning entails the identification of diverse Autonomous Underwater Vehicles
(AUVs) within a swarm. This requires that the visual markers incorporate encoded fea-
tures, demanding a prudent equilibrium between the expansion of feature points and the
optimization of spatial efficiency. Reflecting these prerequisites, the enhanced AR-coded
markers conceptualized in this research are illustrated in Figure 4.
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Figure 4. Enhanced AR-coded markers, showcasing a complete example on the left with its internal
coding region representing Marker ID 17. To the right are two additional examples of coding regions,
with the leftmost indicating Marker ID 15 and the rightmost Marker ID 10.

The enhanced AR-coded marker comprises an internal coding region and an external
extension region. The internal coding region is structured as a 6 × 6 grid square QR code,
encompassed by a black square boundary and incorporating black and white modules. At
its core lies a 4 × 4 binary matrix, employed for information encoding and unique code
identification, with coding area instances for IDs 10, 15, and 17 illustrated. In detecting
the internal coding region, the square boundary is initially discerned within the image,
ensuing the interpretation of the internal black and white square layout into binary digits.
These digits are then decoded to their respective identifier IDs. Surrounding the central
coding area, the external extension region, a black frame, bolsters the marker’s contrast
and fortification in recognition, concurrently offering additional boundary insights. In the
process of marker detection, both the internal and external edges of the extension region,
configured as quadrilaterals, are capable of being delineated, contributing an additional
eight feature corners. This expands the total to 12 feature corners, a threefold increase from
the original 4 provided by the coding region. Drawing upon the foundational theories and
corroborating simulation evidence detailed previously, the enhanced AR-coded marker
is evidenced to enhance both the stability and accuracy of positioning. The comparative
analysis within the experimental section of this study illustrates that, relative to existing
visual markers, this enhanced marker yields greater precision in pose data and exhibits
lower variability.

4. Hydro-Optic Image Restoration Model

In intricate underwater environments, image degradation is the primary cause of
challenges in detecting visual markers and significant errors in image coordinate detection.
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Such degradation can eventually lead to large visual positioning errors or even an inability
to position at all. The complexity of light propagation underwater presents immense
challenges to traditional image restoration techniques. Addressing this issue, this paper
introduces a novel algorithm based on the underwater imaging model, harnessing the
theory of underwater light propagation to enhance the quality of underwater images.

4.1. Model Building

Historically, the Single-Scattering Atmospheric Model (SSAM) has been employed
to describe underwater light propagation. This model has also been widely adopted in
previous underwater dehazing studies. The SSAM can be represented as:

I(x) = J(x)t(x) + A(1− t(x)), (6)

where x is a pixel; J(x) is the scene radiance in the absence of fog; A signifies the global
atmospheric light; and t(x) = e−βd(x) is the transmission which represents color or light
attenuation due to the scattering medium. The attenuation is dictated by both the scene
depth d(x) and the attenuation coefficient β.

However, the SSAM does not adequately account for the significant impact of for-
ward scattering on image blurring, rendering it less effective in mitigating the decline
in underwater image quality. To offer a more robust image restoration framework, our
study constructs the Aquatic Light Image Restoration Model. This comprehensive model
analyzes underwater light scattering, absorption, and ambient light interference using the
physical model of underwater imaging. It can be articulated as:

I(x) = J(x) ∗ hps f (x)·t(x) + BL(x) + n(x), (7)

I(x) = J(x) ∗ hps f (x)·t(x) + BL(x), (8)

where J(x) represents the fog-free image, i.e., the desired recovered image; hps f (x) is the
Point Spread Function (PSF); BL(x) is the ambient light function; and n(x) constitutes
various types of noise.

For the purposes of this study, our model (Equation (8)) simplifies ambient light
and noise into a single term, BL(x), encapsulating both elements. This composite term is
referred to as ‘ambient light’ for the sake of simplicity.

Given the above articulation, two sub-problems are identified in the image restoration
process, addressing different facets of underwater image degradation:

I1(x) = BL(x), (9)

Sub-problem (9) is dedicated to estimating and mitigating the influence of ambient light
pre-existing in underwater environments, thereby preliminarily improving image clarity.

I2(x) = J(x) ∗ hps f (x)·t(x), (10)

Sub-problem (10) seeks to tackle the reduction in contrast and clarity of underwater
images, a challenge predominantly caused by light attenuation and forward scattering.

4.2. HOIRM-Based Image Recovery

The recovery of underwater images can be elucidated via the aforementioned models.
This computational process is graphically illustrated in Figure 5 using a representative case
where the light attenuation coefficient is c = 6.12/m.
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In addressing Sub-problem (9), the estimation and subsequent removal of ambient
light are imperative. Ambient light, as defined herein, acts as an environmental parameter
that imparts a consistent blurring effect over time. A sequence of images, as depicted in
Figure 5, is acquired via continuous sampling and subjected to collective analysis.

Each image is processed through a Gaussian blur, mathematically represented as:

Setn(x) = (Imgn ∗ G(x,σ))(x), (11)

where Imgn is the nth captured image, G(x,σ) is the Gaussian function, σ denotes the stan-
dard deviation influencing the extent of blurring, and ∗ denotes the convolution operation.

A synthesized ambient light image BL(x) is computed by applying weights wn to
each Gaussian-blurred image Setn(x), with the weights being contingent upon the relative
temporal intervals tn of the images. This process is encapsulated by the equation:

BL(x) = ∑n wn • Setn(x), (12)

The weights are subject to the constraint ∑ wn = α, where α < 1, ensuring the overall
intensity remains subdued and can be adjusted in response to environmental variations.

The ambient light image BL(x), once derived, is subtracted from its corresponding
blurred image, yielding the denoised image I2(x), as follows:

I2(x) = I(x)− BL(x), (13)

This procedure efficiently counteracts the blurring induced by ambient light, conse-
quently augmenting the image’s clarity and proficiently resolving Sub-problem (9). With
the mitigation of ambient light blur, the image’s overall clarity is enhanced, establishing a
solid foundation for the ensuing underwater image restoration process.

In the resolution of Sub-problem (10), the focus is directed towards issues related
to light attenuation and forward scattering. The formula t(x) = e−βd(x), as delineated in
Equation (8b), serves to quantify the attenuation of light throughout its underwater trans-
mission, a phenomenon that considerably reduces image contrast. This study incorporates
the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique [29], acclaimed
for its efficacy in amplifying contrast levels across diverse luminosity ranges in images. The
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application of CLAHE facilitates adaptive contrast enhancement in underwater images,
significantly alleviating the impacts of light attenuation.

In underwater environments, the forward scattering of light is a phenomenon wherein
light rays deviate subtly from their initial trajectories due to particulate interference in the
water. This deviation transforms the propagation of light from a singular, linear path to
a more intricate pattern of scatter, consequently leading to image blur. The Point Spread
Function (PSF), denoted as hpsf(x), encapsulates the physical process of light undergoing
forward scatter in aquatic settings. Modeled on a generalized Gaussian distribution [44],
this function is defined in the following manner:

hpsf(u, v, p,σ) =
e−(

u2+v2
A(p,σ) )

0.5p

2Γ
(

l + 1
p

)
A(p, σ)

, (u, v)εR2, (14)

where p is related to water quality, σ = 1
2
√

p , and A(p,σ) = σ

(
Γ(1/p)
Γ(3/p)

)0.5
. The mathemati-

cal representation of this function and its associated point spread distribution are depicted
in Figure 6.
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The imaging process, wherein each light source point undergoes forward scattering
before being captured by the camera, can be characterized through the convolution of
an ideal image, J(x), with the Point Spread Function (PSF). This convolution paradigm
implies that the deconvolution of a blurred image facilitates the retrieval of the ideal image,
thereby enabling effective deblurring. Consequently, integrating this approach with the
removal of background illumination and attenuation effects culminates in the restoration
of image clarity.

Figure 7 demonstrates the efficacy of our proposed algorithm across four scenarios
with varying turbidity levels. The visual enhancement is unmistakable—the augmented
contrast and uniform luminance render previously indistinct visual markers distinctly
visible, even under high light attenuation coefficients such as 12.20/m.
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Figure 7. Image restoration outcomes for underwater images at varying light attenuation coefficients.
The figure demonstrates the processing sequences of images taken in environments with distinct
light attenuation coefficients, specifically 6.12/m (row (a)), 8.22/m (row (b)), 10.13/m (row (c)), and
12.20/m (row (d)). Each column within the figure represents images from different stages of the
image restoration process.

Following the enhancement of image clarity, inherently blurred images tend to un-
dergo post-processing distortion. The concluding phase of our image restoration model
involves the application of down-sampling techniques to construct an image pyramid.
Within this structure, layers better suited for edge detection are identified and processed.
This method significantly improves the efficacy of visual marker detection.

5. Underwater Cluster Visual Localization Algorithms

Based on the improvements made to visual markers and the construction of an image
restoration model suitable for underwater environments, as discussed in the previous
sections, this paper introduces a comprehensive underwater visual positioning algorithm.
This algorithm integrates image restoration, feature detection, geometric encoding value
analysis, and pose estimation, providing reliable pose data for AUV clusters. Figure 8
provides a detailed structure of the underwater visual positioning algorithm presented in
this study.

Initially, the contour features of the restored images are detected. The extracted
contours are then evaluated and filtered based on geometric attributes such as shape, size,
and edge proximity. The preliminary filtering results can be seen in column “b” in Figure 8.

As illustrated in column “c” in Figure 8, upon isolating the contours that meet the
preset criteria, the contours undergo regional segmentation, divided into a 10 × 10 grid.
Within this grid, geometric encoding value detection is performed. Each cell of the grid is
coded as “0” or “1” based on the average grayscale value: “1” represents areas with higher
grayscale values, while “0” signifies areas with lower grayscale values. These encoded
values are then cross-referenced with a set of standardized encoding values to determine
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the coding ID and validate each contour’s validity. The final contours after filtration are
showcased in column “d” in Figure 8.
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Figure 8. Schematic representation of the underwater visual localization algorithm. Column
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Utilizing these identified contours, the initial image coordinates of 12 feature corners
are determined. Subsequently, a meticulous analysis of the grayscale gradient distribution
and grayscale weighted response vector surrounding each corner is undertaken. This
allows for the iterative refinement of these coordinates at a subpixel level. This refinement
process yields highly precise subpixel feature point coordinates, with the final feature
points depicted in column “e” in Figure 8.

In the final stage, the coordinates corresponding to the 12 markers are inputted
into the iterative Perspective-n-Point (PNP) algorithm. This algorithm triangulates the
spatial positioning of these markers with high precision, enabling accurate underwater
visual positioning.

The aforementioned methodology ensures a balance between computational efficiency
and positioning precision, offering a comprehensive solution for the implementation of the
techniques proposed in this paper.

6. Underwater Cluster Visual Positioning Experiment

For the underwater robot swarm positioning method based on enhanced visual mark-
ers presented in this study, a rigorous assessment of the proposed positioning algorithm’s
underwater performance was deemed imperative. To ascertain its competence in real-world
engineering applications, an underwater pose-measurement platform was constructed.
This allowed for a quantitative evaluation of underwater image restoration capability and
detection positioning accuracy through a series of comprehensive experiments. Subsequent
to this, real-water experiments on swarm positioning were conducted. The underwater
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pose-measurement platform was specifically designed to overcome challenges encountered
in actual water bodies where obtaining precise pose data is elusive and where the control
of the light attenuation coefficient is not quantifiable. This design ensures a thorough
and reliable quantitative assessment. The subsequent real-water experiments bolster the
reliability for actual swarm positioning applications.

Evaluation experiments were conducted on a dedicated high-precision underwa-
ter testing platform, as depicted in Figure 9. The forward-facing camera in the AUV’s
head compartment was utilized to capture image data, with visual markers affixed to the
AUV’s compartment to test genuine positioning outcomes. The camera was mounted
on a high-precision translational platform controlled electronically underwater, boasting
a translational error of merely 0.005 mm. The compartment bearing the visual markers
was secured to an electronic rotation platform capable of high-precision rotation with a
rotation error of just 0.01◦. By introducing various turbid solutions, a range of underwater
conditions were emulated, and the light attenuation coefficient was measured in real time
using a dedicated instrument. The rotation and translational platforms moved according
to predefined trajectories, while the camera continuously gathered image data. In total,
11 distinct water quality conditions were established, and image data were captured under
each condition for subsequent analysis.
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Figure 9. Underwater pose-measurement platform diagram and scenarios under various light
attenuation coefficients.

6.1. Analysis of Image Restoration Efficacy

To validate the image restoration capability of the proposed HOIRM algorithm, under-
water images taken under various water quality conditions were restored. A comparative
analysis followed, contrasting this algorithm with existing image dehazing algorithms. As
shown in Figure 10, four scenarios with higher light attenuation coefficients were selected
for evaluation.
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Figure 10. Comparative results of underwater image restoration using different algorithms. Rows
(a–d) in the figure represent the processed images under light attenuation coefficients of 6.12/m,
8.22/m, 10.13/m, and 12.20/m, respectively. Row (e) specifically displays detailed views of the
images processed by each algorithm, as shown in row (d). Each column represents the results of un-
derwater image processing using the respective algorithms: Original Image, ATV (Author 2012) [34],
DCPA (Author 2010) [28], CLAHE (Author 2018) [29], ALM (Author 2017) [38], Zhang (2022) [40],
Li (2020) [41], and Ours.

As depicted, the algorithm developed in this study excelled in the qualitative enhance-
ment of image restoration. Compared to other dehazing algorithms, it notably improved
underwater image clarity, luminosity uniformity, and contrast. As shown in detail in
Figure 10e, under relatively high light attenuation coefficients, the images exhibited ex-
tensive irregular salt-and-pepper noise. Additionally, inconsistent gradient distributions
near the edge regions resulted in severe edge blurring. While the edge clarity in images
restored by other algorithms remains inadequate, the method introduced in this study
yields images with distinctively sharper edges, improved contrast between high- and low-
grayscale regions, and notably enhanced edge structures, thereby enabling more accurate
edge identification.

Subsequent to an initial qualitative evaluation of diverse algorithms, a comprehensive
quantitative analysis was conducted. This assessment utilized three established image qual-
ity metrics: Structural Similarity Index (SSIM) [45], Peak Signal-to-Noise Ratio (PSNR) [46],
and Contrast-to-Noise Ratio (CNR) [46]. These metrics collectively evaluate various dimen-
sions of image quality, encompassing aspects such as color fidelity, reconstruction precision,
and overall image clarity. Comparative evaluations were systematically executed across
images processed by different algorithms, each subjected to four distinct optical attenuation
coefficients. The collated data from this rigorous analysis are presented in Tables 1–4.
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Table 1. Image metrics after processing by each algorithm when the optical attenuation coefficient is
12.20/m.

Baselines SSIM PSNR CNR

ATV [34] 0.27564 9.8247 0.058818
DCPA [28] 0.74566 14.4325 −1

CLAHE [29] 0.30476 12.9064 2.6078
ALM [38] 0.5761 7.688 −0.33678

Zhang [40] 0.25082 13.8703 2.8194
Li [41] 0.23306 10.9746 1.7332
Ours 0.7467 14.9633 16.901

Red indicates the best metrics in each column, and blue indicates the second-best metrics in each column.

Table 2. Image metrics after processing by each algorithm when the optical attenuation coefficient is
10.13/m.

Baselines SSIM PSNR CNR

ATV [34] 0.20564 6.4765 −0.44538
DCPA [28] 0.51625 6.3799 −1

CLAHE [29] 0.31598 6.1466 1.4678
ALM [38] 0.41861 3.3054 −0.26999

Zhang [40] 0.2351 6.8945 2.6694
Li [41] 0.20563 6.2143 4.0616
Ours 0.67948 7.9747 12.2967

Red indicates the best metrics in each column, and blue indicates the second-best metrics in each column.

Table 3. Image metrics after processing by each algorithm when the optical attenuation coefficient is
8.22/m.

Baselines SSIM PSNR CNR

ATV [34] 0.48772 10.0439 −0.54203
DCPA [28] 0.70481 13.3453 −1

CLAHE [29] 0.35333 12.6422 2.6573
ALM [38] 0.57505 7.4692 −0.32692

Zhang [40] 0.224 13.526 2.6221
Li [41] 0.18944 12.8116 3.6758
Ours 0.74497 14.2165 15.6027

Red indicates the best metrics in each column, and blue indicates the second-best metrics in each column.

Table 4. Image metrics after processing by each algorithm when the optical attenuation coefficient is
6.12/m.

Baselines SSIM PSNR CNR

ATV [34] 0.45012 10.0744 0.040307
DCPA [28] 0.6372 15.6326 −1

CLAHE [29] 0.18878 14.6112 3.318
ALM [38] 0.6703 8.7573 0.047221

Zhang [40] 0.23141 14.0412 3.6045
Li [41] 0.18166 13.3399 4.8769
Ours 0.81372 14.80951 13.1265

Red indicates the best metrics in each column, and blue indicates the second-best metrics in each column.

Upon examining the data presented in the table, it is noteworthy that the algorithm
developed in this research demonstrates a PSNR value less than 5% lower than the CLAHE
algorithm solely in the condition where the light attenuation coefficient is 6.12/m. In
contrast, across various other water quality environments, our methodology consistently
outperforms analogous techniques in all the evaluated metrics. Notably, the CNR value
achieved by our approach is at least double that of related algorithms, evidencing a signifi-
cantly enhanced contrast-to-noise ratio in the visual marker areas of the processed images
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compared to the noise levels in adjacent regions, thus facilitating more effective feature
identification. Additionally, both the SSIM and PSNR values attained by our method
exceed those of other algorithms, indicative of superior image restoration capabilities,
particularly in enhancing luminance, contrast, and structural details, aligning more closely
with the ideal scenario. These findings compellingly validate the efficacy of our algorithm
in underwater image restoration.

The validation of diverse image dehazing algorithms was furthered through compre-
hensive experimental evaluations, prioritizing image contour-detection success rate as the
critical performance indicator. In varying water quality conditions, encompassing six distinct
scenarios, a dataset of 100 images was captured at a uniform distance of 600 mm. This
study then proceeded to evaluate the success rate of contour detection in images restored by
various algorithms, considering different optical attenuation coefficients. Table 5 presents
a summary of these results, highlighting a trend where increased optical attenuation cor-
relates with reduced efficiency in contour detection. Notably, the images processed using
the proposed algorithm consistently demonstrated superior performance compared to other
methods, achieving the highest success rate in contour detection across an optical attenuation
coefficient range of 0–12.20/m. Furthermore, in the more challenging attenuation range of
12.20–14.20, the algorithm maintained its effectiveness in contour detection, outperforming
other algorithms even when they failed to detect contours.

Table 5. Comparison of the success rate of image contour detection after processing by different
algorithms in different water qualities.

Baselines

Profile Detection Success Rate

AC: 5.16/m AC: 6.12/m AC: 8.22/m AC:
10.13/m

AC:
12.20/m

AC:
14.20/m

ATV [29] 1 1 0.26 0 0 0
DCPA [23] 1 1 0.39 0 0 0

CLAHE [24] 1 1 0.87 0.61 0 0
ALM [33] 1 1 0.53 0 0 0

Zhang [40] 1 1 0.91 0.63 0.15 0
Li [41] 1 1 0.89 0.29 0 0
Ours 1 1 1 1 0.79 0.22

Red indicates the best metrics in each column, and blue indicates the second-best metrics in each column.

Conclusively, the extensive experiments conducted to assess image restoration capa-
bilities unequivocally established the superior performance of the algorithm introduced in
this study. Applied in practical settings, it significantly enhanced the success rate of contour
detection, increasing the detectable range of light attenuation coefficients for contours by
20%. This advancement provides a robust assurance of image quality, crucial for swarm
visual positioning applications.

6.2. Positioning Accuracy Test

The enhanced AR-encoded visual marker designed in this study is characterized by
its high feature point density and high marker matching accuracy. Theoretically, this trait
can improve positioning accuracy, especially in aquatic environments with substantial
noise. To provide empirical evidence, we conducted comparative analyses of three different
AR-encoded markers: the enhanced AR-encoded marker from this study, an ArUco marker,
and an AprilTag marker. The evaluation criteria primarily focused on two pivotal metrics:
angular positioning accuracy and distance positioning accuracy.

The experiments were executed under four specific water quality conditions. The
visual markers and underwater cameras were fixed at a distance of 610 mm, with a yaw
angle of 30 degrees. For each environmental condition, datasets comprising 100 image
frames were captured for each visual marker. The pose was calculated based on image data
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and compared to the actual pose to quantify measurement deviations. Figures 11–14 depict
the angular and distance errors for all markers under each water quality scenario.
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As illustrated, in clearer water environments (light attenuation coefficients of 0.126/m
and 1.38/m), the median positioning error for our enhanced AR-encoded marker was
the lowest. Specifically, the distance error consistently remained below the threshold of
0.03 mm, and the angular error never exceeded 0.02 degrees. In comparison to the ArUco
and AprilTag markers, the median positioning error was reduced by 35%. Furthermore,
the interquartile ranges of distance error and angular error for our enhanced marker con-
sistently remained below 0.3 mm and 0.2 degrees, respectively, which were over 1.5 times
better than the other two markers.

Simultaneously, in murkier water environments with light attenuation coefficients of
5.16/m and 8.22/m, our marker showcased superior efficacy. The median positioning error
was approximately 50% lower than the other two markers. Additionally, the interquar-
tile range of positioning error for the other two markers was more than double that of
our marker.

To holistically assess marker performance under constant water quality, separate
experiments were conducted for each marker in waters with a fixed light attenuation
coefficient of 3.92/m. The marker was positioned 600 mm away from the camera. The
rotating platform moved in increments of 10 degrees within a ±50 degree range, capturing
100 images at each angle. The difference between the analyzed visual positioning yaw angle
and the actual angle was examined and statistically represented through boxplots, as shown
in Figure 15. From the figure, it can be observed that, compared to the other two markers,
the pose data derived from the enhanced AR-encoded marker exhibited higher overall
positioning accuracy, lower data dispersion, and a more precise and consistent localization.

Lastly, for a comprehensive evaluation, all three markers were placed 600 mm away from
the camera at an angle of 20 degrees under nine distinct water quality conditions, capturing
100 frames for each. Subsequently, the pose data derived from the images were compared with
the actual data to compute the root-mean-square errors (RMSEs) for both distance and angle
measurements. These are graphically presented in Figures 16 and 17. Compared to the other
two markers, the enhanced AR-encoded marker consistently demonstrated a lower RMSE
across all water conditions. With light attenuation coefficients ranging from 0 to 5.16/m, both
distance and angular errors decreased by over 40%. Between 6.12/m and 12.2/m, these errors
decreased by more than 50%.

In conclusion, the positioning accuracy test results indicate that the enhanced AR-
encoded marker introduced in this study consistently delivers superior visual position-
ing accuracy across various water quality conditions. It proves especially effective in
environments with high light attenuation coefficients, showcasing elevated positioning
precision, reduced data dispersion, and markedly enhanced positioning performance.
Such capabilities are invaluable in furnishing high-precision pose data for underwater
swarm technologies.
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6.3. Underwater Swarm Localization Experiment

The experiments detailed above offer extensive quantitative validation of the method
proposed in this paper, particularly in its image restoration capabilities and positional
accuracy, thus ensuring dependable cluster visual positioning. Subsequently, underwater
cluster positioning experiments were conducted in real-world aquatic settings, employing
the proposed method for detection, recognition, and positioning within an AUV swarm.

In this experiment, conducted in waters with a light attenuation coefficient of 0.5/m,
three TS Mini-AUVs served as the experimental platforms, each outfitted with visual
markers identified as IDs 10, 15, and 17. The AUVs, measuring 125 mm in diameter, had
lengths of 1.5 m, 2.2 m, and 1.8 m, respectively. Each AUV’s head was equipped with
five monocular cameras, each with a resolution of 1440 × 1080; one camera was oriented
forward, with the remaining four positioned in the upward, downward, left, and right
directions on the sides. The image data captured by these cameras were processed by the
Jetson Orin NX 16GB processing units integrated within each AUV. Equipped with an
8-core processor functioning at 2 GHz and substantial cache capacity (2MB L2 cache and
4 MB L3 cache), these units facilitated efficient image data processing. This setup enabled
each AUV to accurately perform detection, identification, and positioning within their
visual range. As shown in Figure 18, the method implemented allowed for the identification
and positioning of single or multiple AUVs within the field of view. Table 6 presents the
pose data of the AUVs within each image, demonstrating detection and identification via
the unique ID visual markers. Moreover, the AUVs’ poses, including Tx, Ty, Tz, roll, pitch,
and yaw angles, were ascertained through the alignment of the visual markers’ image
coordinates with three-dimensional coordinates.
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Figure 18. Results of underwater swarm localization experiment (detection and identification).
Images (a–c) show the identification results when only one AUV (Autonomous Underwater Vehicle)
is present in the field of view, while images (d–f) depict the identification results when two AUVs are
within the field of view.

Table 6. Pose data of AUVs in images a–f in Figure 18, encompassing displacement (Tx, Ty, Tz) and
attitude angles (roll, pitch, yaw).

Image ID Tx (mm) Ty (m) Tz (mm) Roll (◦) Pitch (◦) Yaw (◦)

a 15 770.525 574.52 3757.41 −29.2244 16.4337 −13.2625

b 10 200.808 492.161 2935.41 −11.4446 6.87533 −3.5698

c 10 134.463 107.986 979.786 −0.0105203 30.2773 2.01946

d
15 797.536 675.94 2445.91 −7.63387 −5.45088 −1.29422
17 858.992 −200.079 2437.03 17.6244 25.573 3.44574

e 15 638.725 709.163 3855.67 8.76813 4.66085 −5.34771
17 680.908 −207.105 3848.43 −19.2831 3.99968 −8.60579

f
15 989.521 560.189 3085.5 9.33964 17.5074 −6.07655
17 922.165 −292.444 2745.54 21.8831 31.2923 4.13521

To ascertain the real-time positioning proficiency of the method introduced in this
study within practical cluster positioning contexts, posture assessments of AUVs were
conducted over a span of 100 consecutive image frames. Figures 19 and 20 demonstrate
the six-axis pose data for each AUV from the initial to the 100th frame. Figure 19 outlines
the relative pose trajectory of an individual AUV identified by ID 15, while Figure 20
presents the trajectories for two AUVs, IDs 15 and 17, within the field of view. These
illustrations convey that the relative pose data between AUVs exhibited consistent and
stable alterations throughout their relative motion. The analysis of the average time
expended on processing, recognizing, and positioning per frame established that the mean
duration per frame amounted to 61.28 milliseconds, achieving a positioning rate beyond
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16 frames per second. This rate effectively enables high-frequency pose data output among
the AUVs in the cluster.

Electronics 2023, 12, x FOR PEER REVIEW  22  of  25 
 

 

per frame amounted to 61.28 milliseconds, achieving a positioning rate beyond 16 frames 

per  second. This  rate  effectively  enables  high-frequency  pose  data  output  among  the 

AUVs in the cluster. 

 

Figure 19. Frame-by-frame relative pose trajectory of the AUV with ID 15, including displacement 

(x-axis data, y-axis data, z-axis data) and attitude angles (roll angle, pitch angle, yaw angle). 

 

Figure 20. Frame-by-frame  relative pose  trajectories of  two AUVs with  IDs 15 and 17,  including 

displacement (x-axis data, y-axis data, z-axis data) and attitude angles (roll angle, pitch angle, yaw 

angle). 

In the analysis of the experimental outcomes, it was discerned that, within underwa-

ter environments characterized by a light attenuation coefficient of 0.5, effective position-

ing could be accomplished at distances up to 4 m. Furthermore, considering the encoding 

capabilities of  the visual markers delineated  in  this  investigation and  the field of view 

pertaining to each Autonomous Underwater Vehicle (AUV), a theoretical framework for 

the  formation of an AUV  cluster  comprising no  less  than five units  is presented. This 

Figure 19. Frame-by-frame relative pose trajectory of the AUV with ID 15, including displacement
(x-axis data, y-axis data, z-axis data) and attitude angles (roll angle, pitch angle, yaw angle).

Electronics 2023, 12, x FOR PEER REVIEW 22 of 25 
 

 

per frame amounted to 61.28 milliseconds, achieving a positioning rate beyond 16 frames 
per second. This rate effectively enables high-frequency pose data output among the 
AUVs in the cluster. 

 
Figure 19. Frame-by-frame relative pose trajectory of the AUV with ID 15, including displacement 
(x-axis data, y-axis data, z-axis data) and a itude angles (roll angle, pitch angle, yaw angle). 

 
Figure 20. Frame-by-frame relative pose trajectories of two AUVs with IDs 15 and 17, including 
displacement (x-axis data, y-axis data, z-axis data) and a itude angles (roll angle, pitch angle, yaw 
angle). 

In the analysis of the experimental outcomes, it was discerned that, within underwa-
ter environments characterized by a light a enuation coefficient of 0.5, effective position-
ing could be accomplished at distances up to 4 m. Furthermore, considering the encoding 
capabilities of the visual markers delineated in this investigation and the field of view 
pertaining to each Autonomous Underwater Vehicle (AUV), a theoretical framework for 
the formation of an AUV cluster comprising no less than five units is presented. This po-
tential is further augmented when synergized with advanced swarming algorithms, 
thereby enhancing the prospects for the assembly of larger-scale AUV clusters. 

Figure 20. Frame-by-frame relative pose trajectories of two AUVs with IDs 15 and 17, including
displacement (x-axis data, y-axis data, z-axis data) and attitude angles (roll angle, pitch angle,
yaw angle).

In the analysis of the experimental outcomes, it was discerned that, within underwater
environments characterized by a light attenuation coefficient of 0.5, effective positioning
could be accomplished at distances up to 4 m. Furthermore, considering the encoding
capabilities of the visual markers delineated in this investigation and the field of view
pertaining to each Autonomous Underwater Vehicle (AUV), a theoretical framework for
the formation of an AUV cluster comprising no less than five units is presented. This
potential is further augmented when synergized with advanced swarming algorithms,
thereby enhancing the prospects for the assembly of larger-scale AUV clusters.
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Ultimately, the experimental evidence robustly substantiates the method’s excellence
in positioning accuracy and stability. It affirms the method’s suitability for real-time,
continuous, and stable positioning of Autonomous Underwater Vehicles within real-world
aquatic settings, thus solidifying the practicability of its implementation in underwater
cluster technology.

7. Conclusions

This study has presented an innovative localization method for Autonomous Underwa-
ter Vehicle (AUV) swarms utilizing augmented visual markers. This approach significantly
improves the adaptability and precision of visual localization in aquatic environments.
Key achievements include the development of a Hydro-Optical Image Restoration Model
(HOIRM) and an augmented AR-encoded visual marker, both tailored for underwater
use. The HOIRM effectively counters optical blurring and light attenuation, enhancing
underwater image clarity and marker recognizability. The AR-encoded visual marker,
designed to improve localization accuracy, has demonstrated superior performance in
various water quality conditions, with localization precision increasing significantly in
optimal and challenging environments.

The integration of these developments into a comprehensive underwater visual local-
ization algorithm has enabled real-time, stable visual detection, recognition, and localiza-
tion among AUV swarms. This paper’s findings are instrumental in advancing underwater
AUV swarm technologies, with significant implications for operations requiring high
localization accuracy in complex conditions.

Nevertheless, the methodology proposed in this study encounters challenges in ac-
curately localizing AUVs when visual markers are obscured or otherwise unobservable.
Furthermore, the effectiveness of this approach is hampered at extended distances due
to the inherent limitations in the size of these visual markers. To address these issues,
future research should not only focus on enhancing the efficiency of the algorithm and the
adaptability of the markers but also investigate leveraging the comprehensive structural
features of AUVs for improved visual localization.

This work, therefore, lays a foundation for future advancements in underwater visual
localization, aiming to meet the evolving demands of underwater applications.
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