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Abstract: This paper proposes a fully digital background calibration method for time-interleaved
analog-to-digital converter (TIADC) mismatches. The method analyzes the frequency and phase of
spurious signals caused by three types of mismatches in TIADCs in the frequency domain. By utilizing
the Hilbert transform and frequency shifting, orthogonal basis signals located at the mismatch
frequencies can be constructed. The calibration of mismatches is achieved by linearly combining
the orthogonal basis signals with the estimated coefficients and subtracting them from the original
signal. The estimation of coefficients is determined by evaluating the correlation between the linear
combination of orthogonal basis signals and the calibrated signal. Furthermore, an exponential
moving average (EMA) and least mean square (LMS) algorithm are introduced to expedite the
coefficient estimation process. The entire calibration process converges in merely 600 samples,
significantly improving the convergence speed. By monitoring the amplitude of the input signal and
adjusting the LMS step, the algorithm is functional under different amplitude signals, enhancing the
robustness. An off-chip calibration is conducted based on a commercial 14-bit, 8-channel, 2.4GSPS
TIADC. Results indicate that all spurious signals are suppressed below 80 dB, and the convergence
rate is consistent with the simulation.

Keywords: time-interleaved analog-to-digital converter; mismatch calibration; Hilbert transform;
orthogonal decomposition; polyphase filter

1. Introduction

With the advancement of communication technology and semiconductor technology,
high-speed and high-precision ADCs are widely used in radar, software radio, base sta-
tions, and other fields [1,2]. Despite the increasing performance requirements of electronic
systems for analog-to-digital converters (ADCs), it is difficult for a single-chip ADC to
simultaneously meet the requirements for both speed and precision due to limitations in
the manufacturing process and circuit architecture. TIADCs utilize alternate sampling of
multiple high-precision but lower-speed sub-ADCs to achieve high-speed sampling for
the entire ADC system [3–5]. However, due to factors such as chip processing and man-
ufacturing, temperature, and voltage variations, there are mismatches between different
sub-ADCs, resulting in an inconsistent sampling behavior of each sub-ADC. The main
mismatches of the TIADC include offset mismatch, gain mismatch, and timing mismatch,
which can all severely degrade the dynamic performance of the TIADC. Therefore, the
original sampling data need to be calibrated for reducing the spurious signal caused by
these mismatches.
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The common calibrations for offset and gain mismatches first need to accumulate and
average the input signal and then subtract it from the original signal. This method is simple
and effective, but it requires a large amount of data for computation, resulting in a slower
convergence speed [6–8].

With the progress of advanced processes, clock frequencies and channel counts are
continually increasing, whereas the performance deterioration originating from the timing
mismatch becomes the main challenge. Thus, many studies focus on the timing calibration
methods, which can be divided into hybrid and digital circuit calibrations. The hybrid
calibration method estimates the magnitude of the mismatches through digital circuits and
uses analog circuits with variable delay lines (VDLs) or delay loop locks to compensate
and adjust for the mismatches [9–12]. However, analog circuits have poor portability,
and the VDLs vary with different manufacturing processes, temperature, and voltage
variations. In addition, controlling the switching of sampling channels in TIADC using
random sequences generated by digital circuits can effectively eliminate periodic spurs
caused by timing mismatches [13,14]. However, this method increases the noise floor and
cannot effectively improve the signal-to-noise ratio (SNR).

In the calibration of digital circuits, based on variations in calibration algorithm princi-
ples, two distinct types can be identified: time-domain calibration and frequency-domain
calibration. The time-domain calibration methods estimate and compensate different
mismatches in turn. Hereunto, the derivative filter is a conventional timing mismatch
compensation method, which can be compensated within a small mismatch range [15–19].
For a large mismatch, a derivative filter with higher order is necessary, causing a rapid in-
crease in resource consumption. The Farrow structure-based fractional delay filter is also a
commonly used compensation method, but its performance will deteriorate seriously when
the input signal frequency is high [20]. Reconstructed filter banks can effectively calibrate
the mismatched signal, but the circuit structure is complicated [21,22]. In time-domain
calibration methods, three mismatches of offset, gain, and timing are generally calibrated in
order. These methods have residual errors after each calibration, thus affecting the accuracy
of the next calibration. In terms of convergence speed, the successive calibration needs to
wait for the convergence of the estimated values by three mismatches one by one, resulting
in a long time requirement.

As the aforementioned counterpart, the frequency-domain calibration method is
generally based on the spectrum method. The Hilbert transform is used to construct the
mismatched signal and subtract it from the original signal [23]. The genetic algorithm, as
another commonly used estimation method of mismatches, is rarely applied to background
calibration [24]. Inverse Fourier transform [25] and the polynomial estimation of channel
response [26] can also be employed to calibrate the mismatches. However, there is a
clear penalty for high complexity, slow convergence speed, and low compatibility with
varied amplitudes of input signals in these traditional calibration methods based on the
frequency domain.

In this paper, we propose a new frequency domain calibration method that can simul-
taneously calibrate three key types of mismatch (i.e., offset, gain, and timing mismatches),
rather than calibrating them one by one. The orthogonal base signal is generated by the
input signal and the linear coefficient is estimated to be subtracted from the original signal
to calibrate the mismatches. By introducing a variable step LMS algorithm that emulates
the effect of an adjustable low-pass filter, fast convergence can be achieved at any amplitude
to meet the needs of some fast convergence applications. And for larger mismatches, this
calibration method can also be completed well.

2. TIADC Model and Mismatch Analysis in the Frequency Domain
2.1. Mismatch Model of TIADC

The M channel TIADC uses M sub-ADCs to sample with equal intervals and output
sequentially. Figure 1 shows the structure of the M-channel TIADC. The sampling period of
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the sub-ADC is MTs, when the period of the TIADC is Ts. For an ideal TIADC, the output
of the m-th sub-ADC is

ym[n] = x[(nM + m) · Ts], m = 0, 1, . . . , M − 1, (1)

where x is the signal to be sampled.

subADC0subADC0

subADC1

subADCM-1

...

clk0

clk1

clkM-1

+

M M

M M

M M

...

0[ ]y n

1[ ]y n

M-1[ ]y n

[ ]y n
( )x t

Figure 1. The structure of M channel TIADC.

The sampling clock phase of each sub-ADC is evenly distributed in the clock cycle of
a TIADC; that is, the phase deviation of two adjacent subADCs is Ts, as shown in Figure 2.

MTs

clk0

clk1

clkM-1

clk

. . .

Ts

. . .

Figure 2. The sampling clock of four-channel TIADC and sub-ADCs.

Considering the mismatches, the m-th sub-ADC can be expressed as

ym[n] = x[(nM + m + ∆tm) · Ts] · (1 + ∆gm) + ∆om. (2)

The ∆om, ∆gm, ∆tm represent offset mismatch, gain mismatch, and timing mismatch
of the m-th channel, respectively. The transfer function of the m-th channel is

Hm(jω) = (1 + ∆gm) · ejω(m+∆tm)︸ ︷︷ ︸
frequency-dependent

+ ∆om · δ(jω)︸ ︷︷ ︸
frequency-independent

, (3)

where δ(jω) is a Dirac function, indicating that the offset mismatch exists only at zero
frequency in the frequency domain. The right side of Equation (3) can be divided into two
parts, one is the input signal frequency-dependent term (FDT), which is composed of gain
and timing mismatches. The other part is the frequency-independent term (FIT), which is
composed of offset mismatch.

As shown in Figure 1, the M channel interleaving of the TIADC can be regarded
as the sum of M-times up-sampling. And thus, the periodic spurious signal caused by
up-sampling will appear at ωspur on the spectrum.

ωspur = ωin +
n
M

ωs, n = 1, 2, · · · , M − 1. (4)
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Take the case of a four-channel TIADC; the spectrum of the sub-ADC before and after
four-time up-sampling is shown in Figure 3.

Signals3 s1 s2 s2 s1 s3 SignalSignal Signal

upsample 4

20  3 4 2  20  3 4 2 

( )Y j

(a) Before up-sampling (b) After up-sampling

Figure 3. The spectrum of sub-ADC. (a) Spectrum of sub-ADC without up-sampling; the red line
represents the input signal. (b) Spectrum of sub-ADC with up-sampling; s1, s2 and s3 are spurious
signals at ωspur.

Considering up-sampling and mismatches, the discrete-time Fourier transform (DTFT)
of each sub-ADC can be expressed as

Ym

(
ejω

)
=

1
M

M−1

∑
n=0

e−j 2πmn
M Hm

(
ej(ω−2πn/M)

)
︸ ︷︷ ︸

m-ch frequency response

X
(

ej(ω−2πn/M)
)

︸ ︷︷ ︸
input signal

, m = 0, 1, . . . , M − 1. (5)

The sampling data of the 0-th channel at the frequency domain can be obtained by

Y0(ejω) = 1
4

M−1
∑

n=0
H0

(
ej(ω−2πn/4)

)
X
(

ej(ω−2πn/4)
)

= 1
4

 H0

(
ej(ω)

)
X
(

ej(ω)
)
+ H0

(
ej(ω−2π/4)

)
X
(

ej(ω−2π/4)
)
+

H0

(
ej(ω−2π·2/4)

)
X
(

ej(ω−2π·2/4)
)
+ H0

(
ej(ω−2π·3/4)

)
X
(

ej(ω−2π·3/4)
) .

(6)

The sub-ADC0 consists of four groups of frequency components, which are the product
of the frequency response of the sub-ADC0 with the up-sampled input signal. The up-
sampling and mismatches do not change the signal frequency, so the DTFT of each sub-ADC
is similar to Figure 3. The k-th component of the m-th channel can be represented as

Sk
m = Hm

(
ej(ω−2πk/4)

)
X
(

ej(ω−2πk/4)
)

. (7)

Then, the DTFT of subADCs in the four-channel TIADC can be represented as

4 · Y0 = S0
0+ S1

0 + S2
0 + S3

0,
4 · Y1 = S0

1+ S1
1 · e−j 2π

4 + S2
1 · e−j 2π·2

4 + S3
1 · e−j 2π·3

4 ,
4 · Y2 = S0

2+ S1
2 · e−j 2π·2

4 + S2
2 · e−j 2π·4

4 + S3
2 · e−j 2π·6

4 ,
4 · Y3 = S0

3+︸︷︷︸
input signal

S1
3 · e−j 2π·3

4︸ ︷︷ ︸
spur 1

+ S2
3 · e−j 2π·6

4︸ ︷︷ ︸
spur 2

+ S3
3 · e−j 2π·9

4︸ ︷︷ ︸
spur 3

.
(8)

Similar to Y0, the first item of Ym represents the original input signal, and the other
items represent spur s1, s2, and s3. There is no phase shift in the four signal components of
Y0, but the phases of the other terms in Ym are different except for the first term representing
the input signal. Since the amplitude spectrum of Figure 3 do not exclude phase information,
the amplitude spectrum of each sub-ADC is similar to Figure 3.

In Equation (8), the horizontal direction represents different sub-channels, while the
vertical direction represents different frequency components of the signal. Since the TIADC
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is the vector sum of M sub-ADCs, it can not only decompose the signal based on sub-ADCs
but also be based on different frequency components. By combining the same frequency
components of each sub-ADC in the vertical direction, M groups of frequency components
Sk can be obtained, which can be represented as

Sk
(

ejω
)
=

M−1

∑
m=0

e−j 2πmk
M · Sk

m

(
ejω

)
=

M−1

∑
m=0

e−j 2πmk
M Hm

(
ej(ω−2πk/M)

)
X
(

ej(ω−2πk/M)
)

, k = 0, 1, ..., M − 1.

(9)

2.2. The Input Signal Component

The first group of frequency components S0 of the sub-ADCs are all located at the
input signal position and can be expressed as

S0
(

ejω
)
=

1
M

M−1

∑
m=0

Sm
0 =

1
M

M−1

∑
m=0

Hm

(
ejω

)
X
(

ejω
)

. (10)

Ideally, the sampling behavior of each sub-ADC is completely consistent, with the
same frequency response Hm = 1. At this time, S0 can be expressed as

S0
(

ejω
)
= X

(
ejω

)
. (11)

Taking M = 4 as an example, the mean of four vectors with the same amplitude and
phase is the same as that of the scalars. The vector sum of FDT or FIT can be shown in
Figure 4a.

(b) With Mismatches(a) Without Mismatches

subADC0 
subADC1 
subADC2 

subADC3

vector sum

0

0S

0

3S

0

2S

0

1S

0S

subADC0 
subADC1 
subADC2 

subADC3

vector sum

0

0S

0

3S

0

2S

0

1S

0S

Phase plane

Figure 4. The vector sum of FDT or FIT in S0. (a) The vector sum of the S0 component of the four
sub-ADCs without mismatches. (b) The vector sum of the S0 component of the four sub-ADCs with
mismatches.

When considering the mismatches, S0 is

S0
(

ejω
)
=

1
M

M−1

∑
m=0

(1 + ∆gm) · X
(

ejω
)
· ejω∆tm

︸ ︷︷ ︸
FDT

+
1
M

M−1

∑
m=0

∆om · δ(jω) · X
(

ejω
)

︸ ︷︷ ︸
FIT

. (12)

The right side of Equation (12) consists of the FDT and FIT. On one hand, the amplitude
and phase mismatch of the M groups of frequency components that are related to the input
signal will result in small phase and amplitude deviations in the vector sum compared to
the original input. For the output of the TIADC, the small amplitude and phase deviations
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do not affect the dynamic performance of the ADC. The FDT with four different phase
amplitudes can be represented as shown in Figure 4b. On the other hand, the mismatches
caused by the FIT will lead to a small spurious signal at zero frequency, that is, a small
DC signal.

2.3. The Remaining Frequency Components

Except for the input signal components S0, the remaining frequency components, Sk,
are unwanted signals, which are the spurious signals. Due to the phase interval of the
sampling clock, the phase of each sub-ADC is different at the same frequency component
in Sk.

Without the mismatches, the frequency response of each sub-ADC is the same, and Sk

can be expressed as

Sk
(

ejω
)
=

1
M

M−1

∑
m=0

e−j 2πmk
M · X

(
ej(ω−2πk/M)

)
, k = 1, ..., M − 1. (13)

Similarly, the S1 component of the four-channel TIADC is described as

S1
(

ejω
)
=

1
M

 X
(

ej(ω−2π/4)
)
+ e−j 2π

4 X
(

ej(ω−2π/M)
)

+e−j 4π
4 X

(
ej(ω−2π/M)

)
+ e−j 6π

4 X
(

ej(ω−2π/M)
) . (14)

As shown in Figure 5a, when there are no mismatches, and S1 contains four identical
frequency components with the same amplitude and phase, which is uniformly distributed
over a 2π period. Therefore, the vector sum of these four components is zero, meaning that
S1 is zero and Sk for k > 0.

(a) Without Mismatches (b) With Mismatches

subADC0 

subADC1 

subADC2 
subADC3

vector sum

1

0S

2 3

1 4
3

j

S e
 

−



2 2

1 4
2

j

S e
 

−



2

1 4
1

j

S e


−



1S

S1

Phase plane

Figure 5. The vector sum of S1. (a) The vector sum of the S1 component of the four sub-ADCs without
mismatches. (b) The vector sum of the S1 component of the four sub-ADCs with mismatches.

Considering the mismatches, Sk is

Sk
(

ejω
)
=

1
M

M−1

∑
m=0

(1 + ∆gm) · X
(

ej(ω−2πk/M)
)
· ej(− 2πmk

M +ω·∆tm)

+
1
M

M−1

∑
m=0

∆om · δ(j(ω − 2πk/M)) · X
(

ej(ω−2πk/M)
)

.

(15)
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And S1 can be expressed as

S1
(

ejω
)
=

1
M


(1 + ∆g0) · ejω∆t0 · X

(
ej(ω−2π/4)

)
+(1 + ∆g1) · ej( 2π

4 −ω∆t1) · X
(

ej(ω−2π/4)
)

+(1 + ∆g2) · ej( 4π
4 −ω∆t2) · X

(
ej(ω−2π/4)

)
+(1 + ∆g3) · ej( 6π

4 −ω∆t3) · X
(

ej(ω−2π/4)
)


+

1
M

M−1

∑
m=0

∆om · δ(j(ω − 2π/4)) · X
(

ej(ω−2π/4)
)

.

(16)

Due to the influence of gain and timing mismatches, the signal amplitude and phase of
the FDT in Equation (16) will undergo slight changes. As shown in Figure 5b, the changes
in the frequency components of the four sub-ADCs result in a non-zero vector sum, which
is equivalent to any signal with arbitrary amplitude and phase at that frequency. This
vector sum signal acts as spurious signals in the output spectrum of the TIADC, as shown
by s1 in Figure 6b. Similarly, the FIT will introduce a spurious signal ok caused by offset
mismatch at frequency ωoffset = 2πn/M.

Figure 6 shows a comparison between the ideal spectrum of a four-channel TIADC
and the appearance of spurious signals due to the mismatches.

s3
s1

s2

Signal Signal

20  3 4 2  20  3 4 2 

( )Y j

s2 s1

s3

o3o2o1o0

Signal / s0

(b) With Mismatches(a) Without Mismatches

Signal / s0

Figure 6. The spectrum of TIADC. (a) Spectrum of TIADC without mismatches; the signal represents
the input signal. (b) Spectrum of TIADC with mismatches. sk are spurious signals caused by FDT. ok

are spurious signals caused by FIT.

2.4. Orthogonal Decomposition of Spur Signal

According to the orthogonal decomposition theorem, any signal with arbitrary am-
plitude and phase can be decomposed into a linear combination of two phase-orthogonal
signals with the same frequency. As shown in Figure 7, the two orthogonal signals are
respectively referred to as Ik and Qk.

sk

Phase plane
k

sQ

k

sI

ˆ
k

I

sw

ˆ
k

Q

sw

Figure 7. The orthogonal decomposition (i.e., Ik and Qk) of the spurious signal Sk. These two
orthogonal signals with the same frequency are combined linearly.
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In other words, by constructing orthogonal basis signals and linearly combining them
with appropriate coefficients, the spurious signal Sk can be obtained by

Sk
(

ejω
)
=wI

sk · Ik
s + wQ

sk · Qk
s + wI

ok · Ik
o + wQ

ok · Qk
o

=wI
sk · X

(
ej(ω−2πn/M)

)
+ wQ

sk · X
(

ej(ω−2πn/M)
)
· e−j π

2

+wI
ok · δ(j(ω − 2πn/M)) + wQ

ok · δ(j(ω − 2πn/M)) · e−j π
2 ,

(17)

where Ik
s and Qk

s (Ik
o and Qk

o) represent the two orthogonal basis signals of the FDT (FIT).
The w represents the coefficient corresponding to the orthogonal basis component.

ŷ[n] =y[n]−
M−1

∑
k=0

ŷ f d
k [n]−

M−1

∑
k=0

ŷ f i
k [n]

=y[n]− yI/Q
sk [n]× ŵI/Q

sk − yI/Q
ok [n]× ŵI/Q

ok .

(18)

3. The Proposed Calibration Method and Hardware Structure

As shown in Figure 8, by multiplying the estimated orthogonal basis coefficients with
the orthogonal basis signals and subtracting them from the original sampled signal, it is
possible to simultaneously calibrate the three types of mismatches.

Orthogonal 

Basis

Generation

Coefficient 

Estimation

[ ]y k ˆ[ ]y k
Compensation

/

/k k

I Q

s oy
/

/
ˆ

k k

I Q

s ow

Figure 8. The structure of mismatch calibration.

3.1. Orthogonal Basis Signals Generation
3.1.1. Principle of Generating Orthogonal Basis Signals

From the above analysis, it can be seen that a TIADC with M channels has M groups
of frequency components. The first group S0 of the input signals is the desired signal. The
remaining groups are undesired signal components introduced by mismatches, which need
to be constructed and compensated. Therefore, the orthogonal basis signal at frequency
ωspur needs to be generated, and the coefficients of the orthogonal basis signal need to be
estimated for linear combination.

Firstly, the sampled signal is transformed by Hilbert transform and combined with
the original sampled signal to obtain the analytical signal ya; that is, the bilateral spectrum
of the real signal is changed into the unilateral spectrum:

ya[n] = y[n] + j · y_hilb[n]. (19)

Then, the analytic signal ya is frequency-shifted by ej(2πk/M) to generate M-1 groups
of signals at frequencies ωspur, and the k-th frequency-shifted signal is

ysk [n] = ya[n] · ej(2πkn/M). (20)

According to Euler formula:

ej(2πkn/M) = cos(2πkn/M) + j · sin(2πkn/M) (21)
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Obviously, the frequency of the real part of the signal is the same as that of the
imaginary part, and the real part is the derivative of the imaginary part. According to
the trigonometric function, the phase of the real part and imaginary part is orthogonal.
Therefore, the signal is separated into its real and imaginary parts, which form a pair of
orthogonal basis signals. The orthogonal basis signals are represented as yI

sk
and yQ

sk signals:

yI
sk
= Re

[
ya · ej(2πkn/M)

]
= y[n] · cos(2πkn/M)− y−hilb [n] · sin(2πkn/M),

yQ
sk = Im

[
ya · ej(2πkn/M)

]
= y[n] · sin(2πkn/M) + y−hilb [n] · cos(2πkn/M).

(22)

Figure 9 shows the spectral changes of the orthogonal base signals generated from the
input signal.

Hilbert transform

Analytical signal

Hilbert transform

Analytical signal

SignalSignal Signal

20  3 4 2  20  3 4 2 

( )Y j

s1 s2 s3

20  3 4 2 

(a) (b) 

s3 s1 s2 s2 s1 s3

20  3 4 2 

( )Y j

Frequency shift

Orthogonal

 Basis

(c) (d) 

Figure 9. The spectral changes of the orthogonal base signals generated from the input signal. (a) The
spectrum of original input. (b) The spectrum of analytic signal composed by Hilbert transform.
(c) The analytic signal spectrum shifted to three corresponding frequencies. (d) The real or imaginary
part of the spectrum.

The FIT only has frequency shift components, so the k-th group of the orthogonal basis
can be expressed as

yI
ok
[n] = cos(2πkn/M),

yQ
ok [n] = sin(2πkn/M).

(23)

3.1.2. Multi-Phase Structure of Orthogonal Basis Signal Generation

In the TIADC, the low-speed ADC of M channels is used to sample alternately to
obtain the sampling signals of M sub-ADCs. The M channel data can be considered as
the M-phase data of the TIADC. When implementing filters in digital circuits, it is also
necessary to use polyphase filters to process multi-phase data. The unit impulse response
of the Hilbert filter is given by

h(t) = 1/πt. (24)

For filters that require multi-phase processing, it is preferable for the order to be an
integer multiple of 2M. A 32-order polyphase FIR Hilbert filter is recommended to improve
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accuracy, and a Hamming window to the coefficients is applied to reduce truncation effects.
The 32-order filter without polyphase processing is expressed as

y_hilb[n] =
32

∑
k=0

h[k] · y[n − k]. (25)

In the 32-order polyphase filter, the 0-th phase sub-filter is

y_hilb0[n] =y_hilb[4n] =
32

∑
k=0

h[k] · y[4n − k]

=h[0] · y[4n] + h[1] · y[4n − 1] + · · ·+ h[32] · y[4n − 32].

(26)

The m-th phase filter can be expressed as

y_hilbm[n] = y_hilb[4n + m] =
32

∑
k=0

h[k] · y[4n − k + m]. (27)

The Hilbert FIR filter is antisymmetric, and when the total order is even, half of the
coefficients of the Hilbert filter are zero. After folding and coefficient optimization, the
4-phase filter is expressed as:

y_hilbm[n] = y_hilb[4n + m] =
7

∑
k=0

h[2k] · (y[4n − 2k + m]− y[32 − (4n − 2k + m)]). (28)

The structure of the four-phase Hilbert filter is shown in Figure 10. The data from the
four sub-ADCs pass through a four-phase delay chain and then through four sub-filters.

Dealy

Chain

Hilbert FIR Phase0

Hilbert FIR Phase1

Hilbert FIR Phase2

Hilbert FIR Phase3

[4 ]y n

[4 1]y n +

[4 2]y n +

[4 3]y n +

_ [4 ]y hilb n

_ [4 1]y hilb n +

_ [4 2]y hilb n +

_ [4 3]y hilb n +

Figure 10. The structure of 4-phase Hilbert filter.

The specific structure of the delay chain is shown in the Figure 11. The number of
stages of the shift register is the order of the filter Taps/M, where the tapped output after
each delay is used by four sub-filters.

z-1 z-1 z-1

z-1 z-1 z-1
[4 1]y n +

z-1 z-1 z-1
[4 2]y n +

z-1 z-1 z-1
[4 3]y n +

[4 ]y n [4 4]y n −

[4 3]y n −

[4 2]y n −

[4 1]y n − [4 5]y n −

[4 6]y n −

[4 7]y n −

[4 8]y n −

[4 25]y n −

[4 26]y n −

[4 27]y n −

[4 28]y n − [4 32]y n−

[4 31]y n−

[4 30]y n−

[4 29]y n−

Figure 11. The delay chain structure of 4-phase 32-order Hilbert filter.
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The FIR sub-filter using a folding structure is shown in Figure 12. Since the even
coefficients are all 0, each sub-filter requires only eight multipliers.

- ×

- ×

+

- ×

- ×

+

+
_ [4 ]y hilb n

[1]h

[3]h

[13]h

[15]h

[4 1]y n −

[4 13]y n −

[4 19]y n −

[4 31]y n −

[4 3]y n −

[4 29]y n −

[4 15]y n −

[4 17]y n −

Figure 12. The structure of 4-phase 32-order Hilbert sub-filter.

According to Equation (22), after undergoing the Hilbert transform, the input signal
further requires multiplication with a trigonometric function sequence for frequency shift-
ing. Analogously, this trigonometric function sequence corresponds to the orthogonal basis
signals of the FIT.

yI
o1
[n] = cos(2πn/4) = [1, 0,−1, 0, . . .], yQ

o1 [n] = sin(2πn/4) = [0, 1, 0,−1, . . .]
yI

o2
[n] = cos(4πn/4) = [1,−1, 1,−1, . . .], yQ

o2 [n] = sin(4πn/4) = 0,
yI

o3
[n] = cos(6πn/4) = [1, 0,−1, 0, . . .], yQ

o3 [n] = sin(6πn/4) = [0,−1, 0, 1, . . .].

(29)

From Equation (29), the trigonometric function sequence is periodic with a period
of M. In the hardware implementations of multi-phase processing, each phase datum
corresponds to a fixed set of coefficients. Therefore, when the constant coefficients are 1, −1,
and 0, the multipliers can be omitted, thereby reducing hardware resources. The process of
generating the I and Q orthogonal basis signals can be represented by Figure 13.

z-nz-n

Polyphase

Hilbert

Polyphase

Hilbert

×

×

×

×

×

×

+

+

+

( )cos 1k M 

( )cos ( 1)k M M  −

( )sin ( 1)k M M  −

( )cos 1k M 

( )sin 0k M 

( )cos 0k M 
y

0y

1y

1My −

1_ My hilb −

1_y hilb

0_y hilb

,0k

I

sy

,1k

I

sy

, 1k M

I

sy
−

Figure 13. The circuit structure of orthogonal basis signal generation.
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The orthogonal basis coefficients of the FIT are inherent to Equation (29). Obviously,
yI

o1
= yI

o3
, yO

o1
= −yO

o3
, and yQ

o2 = 0. Therefore, for the four-channel TIADC, there are six
orthogonal basis coefficients to be calculated, and only three need to be calculated after
optimization. For the polyphase coefficient generation circuit, the period of each orthogonal
basis sequence is M, so the k-th group of m-th phase orthogonal basis coefficients is

yI/Q
ok,m = yI/Q

ok [m]. (30)

The frequency-dependent k-th component can be expressed as

y f d
k =ŵI

sk
· yI

sk
+ ŵQ

sk · yQ
sk

=ŵI
sk
·

M−1

∑
m=0

yI
sk,m

+ ŵQ
sk ·

M−1

∑
m=0

yQ
sk,m .

(31)

And the k-th FIT component can expressed as

y f i
k =ŵI

ok
· yI

ok
+ ŵQ

ok · yQ
ok

=ŵI
ok
·

M−1

∑
m=0

yI
ok,m

+ ŵQ
ok ·

M−1

∑
m=0

yQ
ok,m .

(32)

Figure 14 is the recommended mismatch compensation circuit. The orthogonal base
signal generated by the input signal is multiplied by the corresponding coefficient to obtain
the mismatch signal estimation value.

-

Frequency  Independence

Frequency Dependence

Hilbert

×××××××× Orthogonal 

Basis

Orthogonal 

Basis

Sin/Cos

Sequence

Sin/Cos

Sequence
×××××××× 

--

,
ˆ
k ms

,
ˆ

k mo

/ˆ
k

I Q

sw

/ˆ
k

I Q

ow

ˆ[ ]y k[ ]y k

,

/

k m

I Q

oy

,

/

k m

I Q

sy

Figure 14. The structure based on FDT and FIT mismatch compensation method.

In the polyphase correction circuit, the data for each phase need to be subtracted
separately and can be expressed as

ŷm[k] = ym[k]−
M−1

∑
m=1

(
ŵI

sk
· yI

sk,m
+ ŵQ

sk · yQ
sk,m

)
−

M−1

∑
m=1

(
ŵI

ok
· yI

ok,m
+ ŵQ

ok · yQ
ok,m

)
. (33)

3.2. Estimation Method of Orthogonal Basis Coefficients
3.2.1. Orthogonal Basis Coefficient Estimation Structure

The structure of the coefficient estimation is shown in Figure 15. The cross-correlation
CorI/Q

sk between the compensated signal ŷ and its orthogonal basis signal ŷI/Q
sk is taken as

the error signal.
CorI/Q

sk = CORR
{

ŷI/Q
sk , ŷ

}
. (34)

The coefficients of the orthogonal basis can be obtained by iterating the error function
through the LMS algorithm. Fundamentally, LMS is a type of adaptive filter; however, when
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a small µ is employed, the resultant coefficients ŵk
I/Q can be considered as a smoothing

process of the input Cor, similar to the effect of a low-pass filter.

ŵk
I/Q[n] = ŵk

I/Q[n − 1] + µ · CorI/Q
sk [n], (35)

µ is the step length.

Hilbert

/

k

I Q

sCor

Orthogonal 

Basis

Orthogonal 

Basis

CorrelationCorrelation LMSLMS

Sin/Cos

Sequence

Sin/Cos

Sequence
CorrelationCorrelation LMSLMS

/

k

I Q

sw

/

k

I Q

ow

ˆ[ ]y k

/

k

I Q

oCor

,

/ˆ
k m

I Q

sy

,

/ˆ
k m

I Q

oy

Figure 15. The structure of the coefficient estimation.

In the initial stage of calibration, there are mismatch signals in ŷ, and the orthogonal
basis signal ŷI/Q

sk and ŷ have strong correlation. At this time, the cross-correlation CorI/Q
sk is

large. As the calibration progresses, the mismatch signal in ŷ is gradually compensated,
and the correlation CorI/Q

sk gradually decreases, and the estimated value of the coefficient
ŵk

I/Q[n] gradually converges.
The correlation function is realized by the cascade of multiplication and exponential

moving average (EMA), as shown in Figure 16. The coefficient of EMA is N, which can be
expressed as:

Ave[n] =
N − 1

N
· Ave[n − 1] +

1
N

· d[n]

=(1 − α) · Ave[n − 1] + α · d[n].
(36)

In multi-phase processing, M data should be accumulated and averaged in each cycle,
so the traditional EMA is not applicable. A multi-phase EMA is proposed that can perform
the cumulative average of M data simultaneously, which is equivalent to M data entering
the EMA sequentially. Figure 17 illustrates the structure of the multi-phase EMA.

EMA×

+ × +[ ]d k

1 N =

[ ]ave k

ˆ
k

I

sy

ks
 k

I

sCor

ˆ
ky

−

1z−

1z−

1z−

Figure 16. The structure of EMA and cross-correlation.

The calculation of cross-correlation can be expressed as:

CorI/Q
sk = CORR

{
ŷI/Q

sk,m , ŷm

}
= lim

N→∞

1
N + 1

N

∑
n=0

M−1

∑
m=0

(
ŷI/Q

sk,m [n] · ŷm[n]
)

. (37)
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sub-EMA sub-EMA sub-EMA

Average

+ >> +

1 N =

[ ]mCor n

1[ ]mCor n−

[ ]n
1[ ]n0[ ]n

[ ]m n

[ ]Cor n

1[ ]M n −

1z−

−

Figure 17. The structure of multi-phase EMA.

The input data manifest as M phases, with each phase being composed of M fre-
quency components. Following phase shifting, every frequency component is multiplied
individually with the calibrated ŷ. Subsequently, the distinct phase signals with the unified
frequency are amalgamated, and the mean value is computed through the EMA methodol-
ogy. Ultimately, the estimation of coefficients is obtained via the LMS approach. Figure 18
shows the frequency-dependent orthogonal basis coefficient estimation circuit structure.

Orthogonal 

Basis Signal
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Multi_EMA LMS

Multi_EMA LMS
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Basis Signal
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Q
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1M

I
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0

Q
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0

I
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I
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−

1M

Q
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−

ˆ[ ]y k

0,m

I
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Q

s −
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I

s −

0,m

Q
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××××××××

××××××××

××××××××

××××××××

nz−

Figure 18. The structure of frequency-dependent polyphase orthogonal basis coefficient estimation.

From Equations (30) and (32), the estimated circuit structure of the four-phase frequency-
independent orthogonal basis coefficients can be obtained as shown in Figure 19.
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Figure 19. The structure of frequency-independent polyphase orthogonal basis coefficient estimation.
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3.2.2. Adaptive Step Adjustment Method

From Equation (36), the transfer function of the EMA can be obtained as

H(z) =
1 − z−N

N
· 1

1 − z−1 . (38)

Obviously, the EMA is a low-pass filter. When the EMA coefficient N is determined,
the amplitude of the input signal determines the amplitude of the EMA output. Figure 20
shows the output signal amplitude of EMA at different input signal amplitudes.

Figure 20. The output signals of the EMA when the input signal amplitude is −1 dB and −9 dB,
respectively.

As the amplitude of the input signal increases, the steady-state error of the EMA
output signal becomes larger and larger. The LMS for calculating the coefficient utilizes the
date output by the EMA. From the Equation (35), it can be seen that the LMS is essentially
a low-pass filter, and the step µ determines the filtering ability of the LMS. As the µ
increases, the output of the LMS becomes smoother, but the convergence of coefficients
becomes slower.

In the four-channel 14-bit ADC, the EMA coefficient N = 6. At different input signal
amplitudes, Figure 21a,b respectively depict the calibrated SNR and spurious-free dynamic
range (SFDR) obtained with varying LMS coefficients µ.

(a) (b)

Figure 21. Under different input signal amplitudes, the SNR and SFDR results of the calibrated
TIADC as a function of µ in LMS. (a) The SNR comparison before and after calibration under different
amplitude input signals. (b) The SFDR comparison before and after calibration under different
amplitude input signals.
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In order to acquire the appropriate coefficients at any amplitude fast, a method of
dynamically adjusting the µ by detecting the amplitude of the input signal is proposed. By
detecting the amplitude of the input signal, the step µ can be dynamically adjusted. When
the magnitude is large, a larger µ is used to improve the accuracy, otherwise, a smaller µ is
used to improve the convergence speed. In 14-bit TIADCs, the corresponding relationship
between the quantized step µ and the adjustment interval of the input signal amplitude is

µ =



33, Amp > −1dB
32, −3 dB < Amp < −1 dB
31, −6 dB < Amp < −3 dB
30, −9 dB < Amp < −6 dB
29, −12 dB < Amp < −9 dB
28, Amp < −12 dB.

(39)

4. Experimental Result
4.1. Simulation Result

To verify the effectiveness of the proposed calibration method, a four-channel 14-bit
TIADC model is established. Offset mismatch is modeled as [−0.01, 0.018, 0.024, 0.005] of
the input signal amplitude. The ratio of the gain mismatch to the input signal amplitude is
[0.01, 0.04,−0.02,−0.03]. Timing mismatch is modeled as [0,−0.01, 0.02,−0.015] · Ts.

Figure 22 is the spectrum before and after calibration when the input signal frequency
is 0.43 fs and the amplitude is −3 dB. The five spurious signals caused by offset, gain, and
timing mismatches are well suppressed. The SNR and SFDR are improved from 25.11 dB
and 28.09 dB to 79.95 dB and 109.3 dB, respectively.

Figure 23 shows the convergence process of the orthogonal basis coefficients. All
orthogonal basis coefficient converge before 600 sampling points.

Figure 24 shows the SNR results before and after calibration at different input signal
amplitudes and frequencies. Due to the adaptive step µ, the convergence speed of the
orthogonal basis remains consistent under different amplitudes, requiring only around
600 points. Moreover, TIADC mismatches at different input signal frequencies can be
effectively compensated.

The spectrum before and after calibration is shown in Figure 25, indicating that the
method still effectively compensates for the three mismatches, and the calibration method
is also applicable to a wide mismatch range. In brief, this method can not only be used for
channel mismatch calibration within a chip but also for system-level mismatch calibration
between multiple chips.

(a) (b)

Figure 22. The spectrum of four-channel 14-bit TIADC before and after calibration when the input
signal frequency is 0.43 fs, with an amplitude of −3 dB. (a) Before calibration: the spurious signals
caused by FDT appear in the spectrum of 0.07 fs, 0.18 fs and 0.32 fs. The spurious signals caused by
FIT appear in the 0.25 fs and 0.5 fs. (b) After calibration: all the spurious signals are eliminated except
for the input signal at 0.43 fs.



Electronics 2023, 12, 5042 17 of 21

(a) (b)

Figure 23. The convergence process of four-channel TIADC orthogonal basis coefficients. (a) FDT
orthogonal basis coefficients. (b) FIT orthogonal basis coefficients.

(a) (b)

Figure 24. Calibration under different input signal amplitude. (a) SNR before and after calibration
under different input signal amplitudes. (b) The convergence time of orthogonal basis coefficients.

To verify the efficacy of our calibration method under the some extreme case, we
enlarge the set values of the three mismatches to as high as five times than the initial
set values.

(a) (b)

Figure 25. In the case of large mismatches, the spectrum before and after calibration when the input
signal is 0.43 fs. (a) Before calibration: the SNR of the spectrum before calibration is only 25.1 dB, and
the SFDR is 28.1 dB. (b) After calibration: the other spurious signals are suppressed below the noise
floor except for the input signal.

4.2. Hardware Implementation and Validation

Based on the commercial eight-channel 14-bit TIADC from SIMCHIP, the off-chip
calibration is performed on the FPGA using the recommended method. FPGA is VC707
from Xilinx, and JESD204B interface is used for signal transmission between the TIADC
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and FPGA. The input signal was a 2.5 GHz sine wave with a sampling frequency of 2.4
GSPS. Figure 26 is the test platform composed of the TIADC chip and FPGA circuit board.

TIADC

FPGA

input signal

clock

Figure 26. TIADC off-chip calibration test platform.

Figure 27 shows the spectrum before and after calibration. It is evident that the seven
frequency-related spurs and four offset mismatches have been effectively suppressed, with
an increase in SNR from 37.86 to 51.61 and SFDR from 41.98 to 77.58 dB. Due to the influence
of the second harmonic and the third harmonic, the mismatch signal cannot be completely
eliminated.

(a) (b)

Figure 27. The spectrum diagram before and after off-chip calibration. (a) The spectrum before
calibration shows that the 8-channel TIADC has 7 frequency-dependent spurs and 4 frequency-
independent spurs. (b) The spectrum after calibration, all the spurious are calibrated in 80 dB.

Figure 28 shows the convergence process of the orthogonal basis coefficients during
the calibration process. The entire calibration process converges around 2000 sampling
points. Additionally, the mismatch coefficients can quickly follow fluctuations caused by
mismatches due to thermal noise, voltage, temperature variations, and other factors.
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(a) (b)

Figure 28. The convergence of out-of-chip calibration partial orthogonal basis coefficients. (a) The
convergence process of seven frequency-dependent orthogonal basis coefficients. (b) The convergence
process of seven frequency-independent orthogonal basis coefficients.

Table 1 presents the comparative results of the SNR and SFDR before and after cal-
ibration using FPGA when sampling different input signal frequencies with the TIADC
chip. This demonstrates that the calibration method can effectively enhance the dynamic
performance of the TIADC across various frequencies. Despite fluctuations in the SFDR
metric due to the influence of third-order harmonics and higher-order harmonics, the
overall efficacy of the calibration remains evident.

Table 1. Dynamic performance comparison before and after off-chip FPGA calibration at various
input signal frequencies with the input signal amplitude of −3 dB.

Input Signal Frequency 0.041 fs 0.11 fs 0.145 fs 0.312 fs 0.4 fs

SNR Bef Cali (dBFS) 43.1 dB 43.2 dB 44.2 dB 44.2 dB 42.6 dB
SNR Aft Cali (dBFS) 58.1 dB 57.6 dB 57.6 dB 56.6 dB 55.7 dB
SFDR Bef Cali (dBFS) 46.9 dB 46.7 dB 46.3 dB 46.1 dB 46.6 dB
SFDR Aft Cali (dBFS) 75.2 dB 74.1 dB 70.1 dB 70.5 dB 69.4 dB

Table 2 presents the hardware resource utilization of the calibration circuits synthesized
and implemented on the VC707 for both four-channel and eight-channel TIADCs.

Table 2. Hardware resource utilization of calibration circuits implemented on FPGA.

Resource Utilization
(4-Channel)

Utilization
(8-Channel) Available

LUT 527 (0.17%) 952 (0.31%) 303,600
FF 829 (0.14%) 1113 (0.18%) 607,200

DSP 58 (2.07%) 177 (6.32%) 2800

Table 3 compares the recommended calibration methods with the popular calibration
methods in recent years. Many methods only involve timing mismatch calibration, and
the traditional gain mismatch calibration method is very time-consuming. The proposed
method can not only calibrate offset, gain, and timing mismatches at the same time, but the
whole calibration process is also much faster than other methods.
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Table 3. Comparison of the state-of-the-art calibration methods.

Characteristics [15] [25] [26] This Work

Background Yes No Yes Yes

Methodology Simplify Matrix
Multiplication

Inverse Discrete
Fourier

Transform

Polynomial
Fitting

Orthogonal
Decomposition

Channels 4 4 16 4 & 8
Resolution 12 12 Data 14
Arbitrary
Channel Yes Yes Yes Yes

Matrix operation Yes No No No

Mismatch Type Timing Offset, Gain,
Timing Gain, Timing Offset, Gain,

Timing
Type-by-Type

Calibration Yes No No No

Conve.Time
(sample#) 110k+ 10 M 1.2 M 600

SFDR/SNR
(improvement) 38 dB/25 dB 22 dB/8dB 40 dB/- 36 dB/14 dB

5. Conclusions

This article recommends a fast background mismatch calibration method for TIADCs.
By constructing orthogonal basis signals of the input signal and quickly estimating the
coefficients of the orthogonal basis signals based on correlation functions and the LMS
algorithm, it is possible to effectively calibrate all three mismatches of the TIADC simul-
taneously. With an amplitude-adaptive step size, the coefficients can converge quickly at
any amplitude. The simulation of a four-channel model and the off-chip calibration of a
commercial eight-channel TIADC have verified the calibration accuracy and convergence
speed of this method.
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