
Citation: Faiz, R.b.; Shaheen, S.;

Sharaf, M.; Rauf, H.T. Optimal

Feature Selection through

Search-Based Optimizer in Cross

Project. Electronics 2023, 12, 514.

https://doi.org/10.3390/

electronics12030514

Academic Editor: George A.

Tsihrintzis

Received: 23 December 2022

Revised: 6 January 2023

Accepted: 9 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Optimal Feature Selection through Search-Based Optimizer in
Cross Project
Rizwan bin Faiz 1, Saman Shaheen 1, Mohamed Sharaf 2 and Hafiz Tayyab Rauf 3,*

1 Faculty of Computing, Riphah International University, I-14 Campus Islamabad, Islamabad 46000, Pakistan
2 Industrial Engineering Department, College of Engineering, King Saud University,

P.O. Box 800, Riyadh 11421, Saudi Arabia
3 Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
* Correspondence: hafiztayyabrauf093@gmail.com

Abstract: Cross project defect prediction (CPDP) is a key method for estimating defect-prone modules
of software products. CPDP is a tempting approach since it provides information about predicted
defects for those projects in which data are insufficient. Recent studies specifically include instructions
on how to pick training data from large datasets using feature selection (FS) process which contributes
the most in the end results. The classifier helps classify the picked-up dataset in specified classes
in order to predict the defective and non-defective classes. The aim of our research is to select the
optimal set of features from multi-class data through a search-based optimizer for CPDP. We used the
explanatory research type and quantitative approach for our experimentation. We have F1 measure
as our dependent variable while as independent variables we have KNN filter, ANN filter, random
forest ensemble (RFE) model, genetic algorithm (GA), and classifiers as manipulative independent
variables. Our experiment follows 1 factor 1 treatment (1F1T) for RQ1 whereas for RQ2, RQ3, and
RQ4, there are 1 factor 2 treatments (1F2T) design. We first carried out the explanatory data analysis
(EDA) to know the nature of our dataset. Then we pre-processed our data by removing and solving
the issues identified. During data preprocessing, we analyze that we have multi-class data; therefore,
we first rank features and select multiple feature sets using the info gain algorithm to get maximum
variation in features for multi-class dataset. To remove noise, we use ANN-filter and get significant
results more than 40% to 60% compared to NN filter with base paper (all, ckloc, IG). Then we applied
search-based optimizer i.e., random forest ensemble (RFE) to get the best features set for a software
prediction model and we get 30% to 50% significant results compared with genetic instance selection
(GIS). Then we used a classifier to predict defects for CPDP. We compare the results of the classifier
with base paper classifier using F1-measure and we get almost 35% more than base paper. We validate
the experiment using Wilcoxon and Cohen’s d test.

Keywords: search-based optimizer; cross project defect prediction; artificial neural network information-
gain; ANN filter; K-nearest neighbor (KNN filter); random forest ensemble (RFE)

1. Introduction

For prediction of software, software defect proneness (SDP) is a study area that
provides effective techniques. From previous versions of the same project, defective
data can be used to detect fault proneness. At early stages of software development,
prediction of defects in software subsystems (modules) plays a vital role in decreasing the
development costs and time. It eradicates the excessive efforts to find defects from the
software modules in later stages of the software development. Preceding studies in this
research area consider the within project defect prediction (WPDP) in which the same data
are used for training and predicting defects and are cross-validated [1]. However, according
to [2], WPDP approach is only valid when there is a large dataset with less granularity. Yet,
such approaches do not hold in training data specifically for inactive software projects.

Electronics 2023, 12, 514. https://doi.org/10.3390/electronics12030514 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030514
https://doi.org/10.3390/electronics12030514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6722-8366
https://orcid.org/0000-0002-1515-3187
https://doi.org/10.3390/electronics12030514
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030514?type=check_update&version=3

Electronics 2023, 12, 514 2 of 20

In order to assure the quality of data, quality assurance activities help software engi-
neers in testing defect modules and in code inspection to consume less time and facilitate
more usage. Recently, software defect prediction (SDP) practice specifies defective modules
based on metrics of software process and products. Thus, [3,4] use Chidamber and Kemerer
(CK) metrics as a feature set to predict software prediction models (SPM) using logistic
regression (LR). Whereas [5] used static code, metric (SCM), and object-oriented (OO)
metrics. Some researchers used historical data from other projects [6]. Where [7,8] used
feature subsets for feature selection i.e., SCM + OO + LOC (all), CK + LOC, and info-gain
(IG) subsets.

Furthermore, there are many open-source public datasets available such as Apache,
NASA, Tera PROMISE data repositories. However, many researchers provide results to
overwhelm the problem of WPDP in context of CPDP. Cross project defect prediction
(CPDP) is an approach of using historical data from different projects which has been
experimentally proven by different researchers [9,10]. The defects are available on the given
available open-source public datasets on the Internet. Therefore, quality of data is very
crucial for training data for better software model prediction. Data quality is one of the
challenging tasks therefore, for CPDP, there are two solutions to this problem.

One of the solutions given by researchers is feature selection (FS), which is validated
on different datasets in order to reduce dimensions in the projects. The results validate
that using FS approach improves the performance and efficiency of SDP [1,10]. Second
solution used by researchers is reducing the data size of training data [11,12] by selecting
suitable and excluding irrelevant training data. Training data selection (TDS) is considered
preferable for the simplification of data volume to get better prediction in terms of software
defect prediction. Hence, the above-mentioned techniques and methods were used to
address the most important issues, such as quality of data and defect-prone modules for
software prediction models. Some researchers applied boosting and bagging technique, and
others used filter and wrapper approaches and local data from previous projects. Therefore,
we used one feature selection (FS) method i.e., info-gain sub setting [7] in conducting
research analysis and used all features in our experiment. For filtering approach, we
used the ANN-filter; for optimal feature sets, we used the random forest ensemble (RFE)
technique; and in the end, we used classifier [13,14] for predicting the software prediction
model (SPM).

2. Literature Review

It is evident from the research analysis among all feature selection (FS) methods i.e.,
Info-Gain (IG) sub setting [7] improved the defect prediction accuracy. Because of which,
IG in combination with filter (ANN) for feature selection gives optimal feature for better
classification [2]. Besides the existing literature, critical analysis reveals gaps that the dataset
is multi-class and has issues in noise, class imbalance, and distribution gap. However, we
believe that by combining all these techniques, defect prediction accuracy for multi-class in
cross-project can be improved.

Various studies reviewed in the literature have developed software prediction models
for estimating the prediction of software product including effort estimation, maintain-
ability, defect proneness, and change proneness during the development lifecycle of the
software. These software attributes are used to identify delicate parts of a software product
and hence provide good practices to software project managers to examine the delicate
parts of the software product. These practices help software project managers to assure the
quality of software products.

The authors in [7] proposed an advanced technique in which NN-filter is embedded
with genetic instance selection algorithm (GIS) and is applied on 41 Tera Promise Repository
of cross project defect prediction (CPDP). To get the optimal solution and to remove noise
from the labeling dataset, they applied the GIS approach. For the cleansing of dataset,
feature-ranking phenomena is used by using iterative info-gain feature sub setting for
feature selection. NN-filter is embedded in the model to create validation set in order

Electronics 2023, 12, 514 3 of 20

to enhance the performance of the cross-project defect prediction (CPDP) by using cross
validation. The base paper is defined in context of F1 and G measures which are used
as a fitness function (F1*G) in GIS algorithm. The prediction is measured in terms of
ROC, AUC, precision, recall, and F-measure. The results show that the performance of the
classifier was enhanced by using such approaches. Thus, above research suggest that in
case of high dimensional, data filters can improve prediction accuracy if applied before
search-based algorithm. Feature Selection (FS) algorithms are proposed in [11,15] i.e.,
binary genetic algorithm (BGA), binary particle swarm optimization (BPSO), and binary
ant colony optimization (BACO) to increase the optimization of software prediction models
(SPMs). Nineteen real-world software projects from Tera PROMISE repository are used in
this experiment. Layered recurrent neural network (L-RNN) is used as a classifier where
feature selection (FS) approach is applied to increase the performance of L-RNN classifier
to find software defect prediction problems. The data are split into test and training dataset
by converting data into binary form i.e., 0 and 1. Training data are then passed through
the classifier and results are cross validated. Results are measured through ROC and AUC
metrics and are compared with classification algorithm i.e., artificial neural network (ANN),
Naïve Bayes (NB), and decision tree (C4.5). Results show that the feature selection approach
has high quality performance as compared with using all fixed features. They [16] explained
that software defect prediction (SDP) is used to increase software dependability and test
proficiency. Therefore, we need to clarify the features used in the software defect prediction,
rather than those features that leads to poor performance of classifiers. However, class
imbalance problem in software defect prediction has concerned the software industry and
academia projects. They proposed a novel technique to solve class-imbalance using learning
method for class imbalance problem both within-project and cross project. They applied
stratification-embedded approach with nearest neighbor (STr-NN) to evolve training data
with balanced data. They directly employed the stratification technique (STr-NN) for defect
prediction in within project [6]. They first mitigate the class distribution between target
dataset and source, then applied the STr-NN technique on the distributed data. They
conducted experiment on NASA and PROMISE datasets. The implied results have higher
precision, recall, and area under curve (AUC).

To optimize software resource allocation, SDP (software defect prediction) helps to
optimize testing by generalizing defects before testing defect prone modules. Recent
studies explicitly predicted defect-prone modules by using historical data for prediction.
Though, one way of prediction of defects is by generalizing predictions from data of other
projects. Software defect prediction is examined [17] by selection training data using
34 PROMISE datasets in context of cross project defect prediction (CPDP). By using cross
project defect prediction, CPDP results are better by using training data from different
projects as compared to the data used from similar projects. They employed five machine
learning (ML) algorithms to construct prediction model, including support vector machine
(SVM), Naïve Bayes (NB), J48, and decision tree (DT). The predictions are predicted by
using recall, precision, and accuracy. Results for recall are greater than 70%, for precision
greater than 50%, and for accuracy greater than 75%. As non-defective and defective
features have imbalance class, therefore, achieving high precision for defect prediction is
hard. Cross project defect prediction (CPDP) is necessary, as local data are used to predict
defects. Data filters are required for the improvement of CPDP. The authors in [18] advised
filter method for the 44 releases of 14 projects from Tera PROMISE data repository. Support
vector machine (SVM) and Naïve Bayes (NB) are used as a classifier. TGF and DCBF are
used as a filter technique that improves the results of the classifier. The results are measured
through AUC.

The local models are used for defect prediction, and limitation of cross project defect
prediction is describe by [1] as the main problem is heterogeneous data in cross project
defect prediction (CPDP). They evaluate the pros and cons of cross project defect prediction
(CPDP) by evaluating the performance of local models. They investigate both within-
defect prediction (WDP) using same data and CPDP by transfer heterogeneous data. The

Electronics 2023, 12, 514 4 of 20

results show that there is a minor difference in comparison between WDP and CPDP. They
experimented on PROMISE data and showed that the results of support vector machine
(SVM) are better than Naïve Bayes (NB) and C4.5 (decision tree) except random forest (RF)
that has similar results as SVM. The results are measured using AUC and F-measure.

In another research [18], the authors proposed a boosting technique to balance the
class for cross project defect prediction (CPDP). They applied combine learning algorithm
SMOTE along with transfer cost-sensitive boost (TCSBoost) in order to reduce the cost
of software prediction model. Experiment is carried out upon PROMISE datasets. They
measure the results of Naïve Bayes classifier using F-measure and G-measure.

The authors in [19] presented an approach for software bug prediction in which
genetic algorithm is used as a search-based algorithm. The feature is selected using the
recombination of feature. The proposed methodology is validated on datasets of NASA
and PROMISE repository. The results are compared using machine learning classification
algorithms. These classification algorithms are decision tree (DT), Naïve Bayes (NB), and
artificial neural network (ANN). The estimation process shows that the proposed approach
has high accuracy rate and shows better performance. The proposed approach is measured
through software quality attributes precision, recall, F-measure, and MMRE. Another
feature selection (FS) technique is formalized in [20] using genetic algorithm and propose
MOFES technique. They imply the multi-objective optimization problem and propose an
advance technique, MOFES, which is then compared with the baseline approaches such as
decision tree (DT), logistic regression (LR). The results show that the technique has better
prediction performance by selecting less instances. The computational cost of software is
acceptable. The results are cross-validated using k-fold. The AUC metric is used to measure
the results.

A combined approach is proposed in [18] using feature selection and ensemble learning
algorithm to predict performance of defect prediction. Average probability ensemble (APE)
is applied along with SVM classifier to attain the performance of prediction model using
NASA datasets that include MC1, PC2, and PC4. They used AUC measure to get the results.

Two multi-purpose approach is described in [9] for cross project defect prediction,
first they minimize the misclassified feature cost and maximize the recall using comparing
results using different classification algorithms, which includes random forest (RF), decision
tree (C45), Naïve Bayes (NB), and logistic regression (LR). Second, they minimize the quality
assurance activities from defect-prone projects. They run experiment using 41 multiple
versions of Tera PROMISE Repository. Among different ML classification algorithms,
logistic regression is highly cost effective than other algorithms which are used as single
objective. The results are measured using recall and normalized misclassification cost.

The authors in [11,12,14] conducted experiment on NASA and PROMISE datasets
and applied the feature subsets and feature ranking approaches in context of cross project
defect prediction CPDP. They used K-nearest neighbor KNN and Naïve Bayes (NB) as a
prediction algorithm. For feature selection, they used CFS and best-first search algorithm.
They compared the results using AUC measures of all and CSF features sets.

Furthermore, the connectivity-based technique is explored in [21] on 26 public datasets
of NASA, PROMISE, and AEEEM in order to overcome the heterogeneity problem of cross
project defect prediction CPDP. They explored using five supervised (which includes
decision tree, random forest, logistic regression, Naïve Bayes, and J48) and unsupervised
algorithms (which includes K-mean clustering, C-mean, neural-gas, and spectral cluster
technique). They measured the results using AUC, and found that unsupervised algorithms
results are better than supervised algorithms.

The authors in [17] proposed a novel technique for cross projects named as multi
transformation (MT+). They used BOX-COX transformation on AEEEM, NASA, and
PROMISE datasets to define relevant training sets for cross projects. They compared the
results of random forest (RF) with log transformation method. The results are measured
by F-measure.

Electronics 2023, 12, 514 5 of 20

The multi-nomial classification technique is adopted in [22] for cross project defect
prediction (CPDP) and within cross project defect prediction (WPDP). They applied random
forest and gradient boosting method on PROMISE datasets as an ensemble-learning model.
They defined their result using F-measure, AUC, and MAP. They labeled class information
as class 0, class 1, and class 2. They identified that proper training data selection is necessary
to optimize efficiency of defect prediction.

Authors [23] conducted and evaluated the combination of different filter methods on
16 high-dimensional datasets and used KNN as classifier. They compared the results of
different combination of filter method to observe which combination gives the best result
with respect to run time and stability aspects.

A novel technique is proposed in [21] for intrusion detection system based on feature
selection and clustering algorithm. They used the filter and wrapper method for feature
selection based on linear correlation coefficient (FGLCC) algorithm and cuttlefish algorithm
(CFA) on KDD Cup 99 large dataset along with decision tree as classifier for proposed
method. They achieved high accuracy of 95.03%.

To evaluate the impact of hybrid feature selection on PROMISE repository for cross
project defect prediction, the authors proposed feature specific approach [24]. They used
random forest and recursive feature elimination as hybrid feature selection along with NN
classifier. They evaluated that feature selected through hybrid approach does have higher
defect prediction accuracy of AUC 75.98%.

2.1. Gap Analysis

From the above study, we find that many researchers applied different methods includ-
ing feature selection [7,11], filtering methods [16,17], ensemble techniques [2], classification
algorithms [1,21], boosting and search-based optimizer [7,24]; Ref. [25] in order to overcome
the heterogeneity of cross-project defect prediction (CPDP) [26]. There are several tech-
niques applied in context of major issues of cross project defect prediction but researchers
had not addressed the nature of dataset that how to clean data as public datasets have
noise. All techniques are applied but still heterogeneity is the major problem in CPDP. This
problem can be overcome by using multi-nominal classification using filters as data contain
noise; therefore, we first rank and select relevant feature sets then apply search-based
optimizer to optimize the defect prediction.

2.2. Research Questions

To achieve our goal, we focus on following research questions:

• RQ1: What is the impact of feature selection for multi-class compared with binary
class on cross-project defect prediction through F1 measure?

Null Hypothesis: Feature selection for multi-class compared with binary class has no
impact on cross-project defect prediction through F1 measure.
Alternate Hypothesis: Feature selection for multi-class compared with binary class
has an impact on cross-project defect prediction through F1 measure.

• RQ2: What is the impact of ANN filter compared with KNN filter on cross-project
defect prediction through F1-measure?

Null Hypothesis: ANN filter compared with KNN filter has no impact on cross-project
defect prediction through F1-measure.
Alternate Hypothesis: ANN-filter compared with KNN-filter has an impact on cross-
project defect prediction through F1-measure.

• RQ3: What is the impact of search-based optimizer i.e., random forest ensemble com-
pared with genetic algorithm, on cross-project defect prediction through F1-measure?

Null Hypothesis: Search-based optimizer i.e., random forest ensemble compared
with Genetic Algorithm, has no impact on cross-project defect prediction through
F1-measure.

Electronics 2023, 12, 514 6 of 20

Alternate Hypothesis: Search-based optimizer, i.e., random forest ensemble compared
with genetic algorithm, has an impact on cross-project defect prediction through
F1-measure.

• RQ4: What is the impact of our classifier compared with Naïve Bayes classifier on
cross-project defect prediction through F1-measure?

Null Hypothesis: Our classifier compared with Naïve Bayes classifier has no impact
on cross-project defect prediction through F1-measure.
Alternate Hypothesis: Our classifier compared with Naïve Bayes classifier has an
impact on cross-project defect prediction through F1-measure.

3. Research Methodology

This section defines the thorough facts of our experiment which we carry out. Let us
discuss the content in detail.

The context of our research is cross project defect prediction. We predict the defects in
cross project using machine learning algorithm. Our research type is explanatory which
aims to explain the causes and consequences of a well-defined problem. The cross-project
defect prediction is a well-defined problem, and we will find the defect prediction accuracy.

3.1. Data Collection

Our research is based on quantitative research methods to carry out the experiment.
As quantitative research methods focus on numbers and statistics, our dataset is also of
the same type. Objects of our study are source and target projects of PROMISE repository.
In our research, we use different projects of promise repository as input to our model to
train our classifier. Our research normalized our datasets before training our classifier (e.g.,
checking for noise removal, class imbalance, and handling distribution gap between source
and target projects).

3.2. Research Method

Our research uses experimental research method to manipulate and control the vari-
ables in order to determine the cause and effect between variables for prediction accuracy
and authenticity. The purpose of our experiment is optimum feature selection through
search-based optimizer for cross project defect prediction. The perspective of our exper-
iment is earlier defect prediction based on already developed mature projects. We will
predict the defects earlier by training the classifier using mature source project and then
predicting defects in the target projects. Our research has F1 measure as dependent vari-
ables. Our research has different independent variables for every research question. For
Research question 1, our independent variable is KNN filter. For research question 2, our
independent variables are KNN and ANN filter. For third research question, independent
variables are random forest ensemble model and genetic algorithm. For last question, we
have classifiers as independent variables.

3.3. Research Design

Our experiment design is different for every research question. Let us discuss the
design for every question in detail.

• RQ1: What is the impact of feature selection for multi-class compared with binary
class on cross-project defect prediction through F1 measure? For this question, design
is 1 factor and 1 treatment (1F1T) i.e., KNN-filter.

• RQ2: What is the impact of ANN-filter compared with KNN-filter on cross-project
defect prediction through F1-measure? For this question, design is 1 factor and
2 treatment (1F2T) i.e., KNN-filter and ANN-filter.

Electronics 2023, 12, 514 7 of 20

• RQ3: What is the impact of search-based optimizer i.e., random forest ensemble com-
pared with genetic algorithm, on cross-project defect prediction through F1-measure?
For this question, design is 1 factor and 2 treatment (1F2T) i.e., random forest ensemble
and genetic algorithm.

• RQ4: What is the impact of our classifier compared with Naïve Bayes classifier on cross-
project defect prediction through F1-measure? For this question, design is 1 factor and
2 treatment (1F2T) i.e., our classifier and Naïve Bayes classifier.

4. Proposed Methodology

In this section, we describe the model followed in our research. We conduct our
experiment by performing the following visualized experiment (referred Figure 1):

Electronics 2023, 12, x FOR PEER REVIEW 7 of 22

Our experiment design is different for every research question. Let us discuss the

design for every question in detail.

• RQ1: What is the impact of feature selection for multi-class compared with binary

class on cross-project defect prediction through F1 measure? For this question, design

is 1 factor and 1 treatment (1F1T) i.e., KNN-filter.

• RQ2: What is the impact of ANN-filter compared with KNN-filter on cross-project

defect prediction through F1-measure? For this question, design is 1 factor and 2

treatment (1F2T) i.e., KNN-filter and ANN-filter.

• RQ3: What is the impact of search-based optimizer i.e., random forest ensemble com-

pared with genetic algorithm, on cross-project defect prediction through F1-meas-

ure? For this question, design is 1 factor and 2 treatment (1F2T) i.e., random forest

ensemble and genetic algorithm.

• RQ4: What is the impact of our classifier compared with Naïve Bayes classifier on

cross-project defect prediction through F1-measure? For this question, design is 1 fac-

tor and 2 treatment (1F2T) i.e., our classifier and Naïve Bayes classifier.

4. Proposed Methodology

In this section, we describe the model followed in our research. We conduct our ex-

periment by performing the following visualized experiment (referred Figure 1):

Figure 1. Proposed methodology.

Figure 1. Proposed methodology.

4.1. Promise Repository

For the research, we used the PROMISE repository from year 2018. PROMISE is an
open-source repository that is widely used for defect predictions studies. This dataset has
20 sets of features which are as follows (referred Table 1) [1]:

4.2. Exploratory Data Analysis

We explored and analyzed data on PROMISE repository to identify the missing and
erroneous data by mapping and analyzing the structure of the data. EDA reveals that
PROMISE repository is multi-class as shown in Figure 2 and has noise, class imbalance.
The following figures show the variation in data and the presence of multi-class data in
multiple versions of the project.

Electronics 2023, 12, 514 8 of 20

Table 1. Promise repository features.

SR # Attribute Abbreviations Description

1 WMC Weighted Methods per class The number of methods used in a given class

2 DIT Depth of Inheritance Tree The maximum distance from a given class to the root of an
inheritance tree

3 NOC Number of Children The number of children of a given class in an inheritance tree
4 CBO Coupling between Object Classes The number of classes that are coupled to a given class

5 RFC Response for a Class The number of distinct methods invoked by code in a
given class

6 LCOM Lack of Cohesion in Methods The number of method pairs in a class that do not share
access to any class attributes

7 CA Afferent Coupling Afferent coupling, which measures the number of classes
that depends upon a given class

8 CE Efferent Coupling Efferent coupling, which measures the number of classes
that a given class depends upon

9 NPM Number of Public Methods the number of public methods in a given class
10 LCOM3 Normalized Version of LCOM Another type of lcom metric proposed by Henderson-Sellers
11 LOC Lines of Code The number of lines of code in a given class

12 DAM Data Access Metric The ratio of the number of private/protected attributes to
the total number of attributes in a given class

13 MOA Measure of Aggregation The number of attributes in a given class which are of
user-defined types

14 MFA Measure of Functional Abstraction
The number of methods inherited by a given class divided
by the total number of methods that can be accessed by the

member methods of the given class

15 CAM Cohesion among Methods

The ratio of the sum of the number of different parameter
types of every method in a given class to the product of the

number of methods in the given class and the number of
different method parameter types in the whole class

16 IC Inheritance Coupling The number of parent classes that a given class is coupled to

17 CBM Coupling Between Methods The total number of new or overwritten methods that all
inherited methods in a given class are coupled to

18 AMC Average Method Complexity The average size of methods in a given class

19 MAX_CC Maximum Values of Methods in the same Class The maximum McCabe’s cyclomatic complexity (CC) score
of methods in a given class

20 AVG_CC Mean Values of Methods in the same class The arithmetic means of the McCabe’s cyclomatic
complexity (CC) scores of methods in a given class

Electronics 2023, 12, x FOR PEER REVIEW 9 of 22

4.2. Exploratory Data Analysis

We explored and analyzed data on PROMISE repository to identify the missing and

erroneous data by mapping and analyzing the structure of the data. EDA reveals that

PROMISE repository is multi-class as shown in Figure 2 and has noise, class imbalance.

The following figures show the variation in data and the presence of multi-class data in

multiple versions of the project.

Figure 2. Multi-class of Xerces-1.4.

Our repository has noise in term of duplicated rows (referred to Figure 3) which are

709, 262, 718, 629, 648, and 308. We removed the noise from our PROMISE dataset, so that

our trained model predicts the defects accurately with higher accuracy.

Figure 3. Noise as duplicated rows in data.

Our repository has an issue of distribution gap between source and target projects

which diversely affect the prediction accuracy of the classifier. So, we removed the outliers

from the datasets. The visualization for DIT feature of Camel and Ant is given in Figure 4

and Figure 5 respectively.

Figure 2. Multi-class of Xerces-1.4.

Our repository has noise in term of duplicated rows (referred to Figure 3) which are
709, 262, 718, 629, 648, and 308. We removed the noise from our PROMISE dataset, so that
our trained model predicts the defects accurately with higher accuracy.

Electronics 2023, 12, 514 9 of 20

Electronics 2023, 12, x FOR PEER REVIEW 9 of 22

4.2. Exploratory Data Analysis

We explored and analyzed data on PROMISE repository to identify the missing and

erroneous data by mapping and analyzing the structure of the data. EDA reveals that

PROMISE repository is multi-class as shown in Figure 2 and has noise, class imbalance.

The following figures show the variation in data and the presence of multi-class data in

multiple versions of the project.

Figure 2. Multi-class of Xerces-1.4.

Our repository has noise in term of duplicated rows (referred to Figure 3) which are

709, 262, 718, 629, 648, and 308. We removed the noise from our PROMISE dataset, so that

our trained model predicts the defects accurately with higher accuracy.

Figure 3. Noise as duplicated rows in data.

Our repository has an issue of distribution gap between source and target projects

which diversely affect the prediction accuracy of the classifier. So, we removed the outliers

from the datasets. The visualization for DIT feature of Camel and Ant is given in Figure 4

and Figure 5 respectively.

Figure 3. Noise as duplicated rows in data.

Our repository has an issue of distribution gap between source and target projects
which diversely affect the prediction accuracy of the classifier. So, we removed the out-
liers from the datasets. The visualization for DIT feature of Camel and Ant is given in
Figures 4 and 5 respectively.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 22

Figure 4. DIT feature of Camel. Dots circled in red represents the outliers.

Figure 5. DIT feature of Ant. Dots circled in red represents the outliers.

4.3. Data Preprocessing

In this section, we applied different techniques in order to normalize our data for

further experimentation. Normalizing data means to remove all the issues which we iden-

tified in EDA of our repository. Our data contain numeric values in which different num-

bers represent the whole class data. The classes contain (0-62). Therefore, it is required to

sort data so that we can distinguish the total number of classes. After sorting data, we

clean the data, which leads to over-fitting of the model. Therefore, we remove the outliers

which contain the data that are not required for training. Our dataset is unbalanced, which

means it contains more samples for some classes compared to other datasets. Therefore,

we balance our dataset before training our classifier in order to get equal number of sam-

ples in all our datasets. For balancing data, we use feature sampling.

4.4. Feature Ranking

Feature ranking is the procedure of selecting subset of significant instances in build-

ing software model. The significance of feature ranking is the generalization of models to

make them easier to investigate by researchers and to avoid high dimensional data. By

reducing over-fitting, feature ranking improves generalization. In our research, we use

info-gain, a measure of the feature sub setting, which explains highest entropy in the data.

The info-gain is formulated as:

HC = −cϵCpcp(c) (1)

HA = −cϵAp(a)cϵCpap(c|a) (2)

Using the info-gain approach, the features of the datasets are ranked from the highest

to the lowest amount of entropy explained. The iterative Info-Gain is used to select subsets

of applicable set of instances, computed by using top ranked attributes of training set. The

predictor (j + 1) ranks these attributes continuously until all attributes are ranked for pre-

dictions. After feature ranking, we select the features and remove the redundant data from

the feature subsets using info gain.

Figure 4. DIT feature of Camel. Dots circled in red represents the outliers.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 22

Figure 4. DIT feature of Camel. Dots circled in red represents the outliers.

Figure 5. DIT feature of Ant. Dots circled in red represents the outliers.

4.3. Data Preprocessing

In this section, we applied different techniques in order to normalize our data for

further experimentation. Normalizing data means to remove all the issues which we iden-

tified in EDA of our repository. Our data contain numeric values in which different num-

bers represent the whole class data. The classes contain (0-62). Therefore, it is required to

sort data so that we can distinguish the total number of classes. After sorting data, we

clean the data, which leads to over-fitting of the model. Therefore, we remove the outliers

which contain the data that are not required for training. Our dataset is unbalanced, which

means it contains more samples for some classes compared to other datasets. Therefore,

we balance our dataset before training our classifier in order to get equal number of sam-

ples in all our datasets. For balancing data, we use feature sampling.

4.4. Feature Ranking

Feature ranking is the procedure of selecting subset of significant instances in build-

ing software model. The significance of feature ranking is the generalization of models to

make them easier to investigate by researchers and to avoid high dimensional data. By

reducing over-fitting, feature ranking improves generalization. In our research, we use

info-gain, a measure of the feature sub setting, which explains highest entropy in the data.

The info-gain is formulated as:

HC = −cϵCpcp(c) (1)

HA = −cϵAp(a)cϵCpap(c|a) (2)

Using the info-gain approach, the features of the datasets are ranked from the highest

to the lowest amount of entropy explained. The iterative Info-Gain is used to select subsets

of applicable set of instances, computed by using top ranked attributes of training set. The

predictor (j + 1) ranks these attributes continuously until all attributes are ranked for pre-

dictions. After feature ranking, we select the features and remove the redundant data from

the feature subsets using info gain.

Figure 5. DIT feature of Ant. Dots circled in red represents the outliers.

4.3. Data Preprocessing

In this section, we applied different techniques in order to normalize our data for
further experimentation. Normalizing data means to remove all the issues which we
identified in EDA of our repository. Our data contain numeric values in which different
numbers represent the whole class data. The classes contain (0–62). Therefore, it is required
to sort data so that we can distinguish the total number of classes. After sorting data, we
clean the data, which leads to over-fitting of the model. Therefore, we remove the outliers
which contain the data that are not required for training. Our dataset is unbalanced, which
means it contains more samples for some classes compared to other datasets. Therefore, we
balance our dataset before training our classifier in order to get equal number of samples in
all our datasets. For balancing data, we use feature sampling.

Electronics 2023, 12, 514 10 of 20

4.4. Feature Ranking

Feature ranking is the procedure of selecting subset of significant instances in building
software model. The significance of feature ranking is the generalization of models to
make them easier to investigate by researchers and to avoid high dimensional data. By
reducing over-fitting, feature ranking improves generalization. In our research, we use
info-gain, a measure of the feature sub setting, which explains highest entropy in the data.
The info-gain is formulated as:

HC = −cεCpcp(c) (1)

HA = −cεAp(a)cεCpap(c|a) (2)

Using the info-gain approach, the features of the datasets are ranked from the highest
to the lowest amount of entropy explained. The iterative Info-Gain is used to select subsets
of applicable set of instances, computed by using top ranked attributes of training set.
The predictor (j + 1) ranks these attributes continuously until all attributes are ranked for
predictions. After feature ranking, we select the features and remove the redundant data
from the feature subsets using info gain.

4.5. Feature Selection

We train and test three different sets of features for the base paper, which includes
CK + LOC, the whole sets of features contain OO + SCM + LOC (all) and the third set
contains IG (Info Gain) features which are extracted through iterative Info Gain sub setting
technique using entropy. For CK + LOC, the base paper included features such as wmc,
dit, noc, cbo, rfc, lcom, loc. For OO + SCM + LOC (all), base paper contains whole features
that are defined in datasets. While IG features have, different sets of features for different
versions of project that are given in Table 2.

Table 2. Info gain features of datasets.

SR # Datasets Info Gain Features

1 Ant-1.3 rfc, ca, lcom3, cam, avg_cc
2 Ant-1.4 ce, loc, moa
3 Ant-1.5 wmc, cbo, rfc, ce, cbm
4 Ant-1.6 rfc, lcom3, cam, cbm, amc, avg_cc
5 Ant-1.7 cbo, ce, loc, cbm, amc, avg_cc
6 Camel-1.0 cbo, lcom, ca, npm, mfa
7 Camel-1.2 ca, ce, npm, mfa, cbm
8 Camel-1.4 rfc, ce, lcom3, loc, mfa, avg_cc
9 Camel-1.6 dit, lcom, ca, ce, amc, max_cc

10 Ivy-1.1 lcom, ca, amc, max_cc
11 Ivy-1.4 ca, ce, lcom3, loc, cam
12 Ivy-2.0 cbo, lcom, npm, ic, max_cc
13 Jedit-3.5 cbo, rfc, ca, ce, moa, max_cc
14 Jedit-4.0 lcom, ca, locm3, loc, moa, cam
15 Jedit-4.1 rfc, loc, amc, avg_cc
16 Jedit-4.2 rfc, npm, dam, mfa
17 Jedit-4.3 ca, ce, npm, loc, moa
18 Log4j-1.0 lcom, npm, loc, moa
19 Log4j-1.1 wmc, cbo, loc, mfa
20 Log4j-1.2 rfc, ca, npm, mfa, ic, cbm, amc
21 Lucene-2.0 noc, rfc, moa, mfa, cam, amc
22 Lucene-2.2 ca, npm, lcom3, loc, moa, amc
23 Lucene-2.4 rfc, ca, ce, lcom3, dam, amc
24 Poi-1.5 cbo, rfc, lcom3, loc, cam
25 Poi-2.0 wmc, cbo, lcom, loc, mfa, amc, max_cc
26 Poi-2.5 loc, dam, cam, cbm, amc
27 Poi-3.0 cbo, ce, lcom3, cbm, amc, avg_cc

Electronics 2023, 12, 514 11 of 20

Table 2. Cont.

SR # Datasets Info Gain Features

28 Synapse-1.0 dit, rfc, lcom3, mfa, cam
29 Synapse-1.1 cbo, rfc, ca, npm, mfa, avg_cc
30 Synapse-1.2 rfc, lcom, loc, cbm, amc, avg_cc
31 Velocity-1.4 dit, ce, cam, amc, max_cc
32 Velocity-1.5 noc, lcom, loc, mfa, cam
33 Velocity-1.6 cbo, lcom3, mfa, cam, amc, avg_cc
34 Xalan-2.4 cbo, rfc, ca, loc, amc
35 Xalan-2.5 lcom, loc, cam, cbm
36 Xalan-2.6 rfc, loc, mfa, amc, max_cc
37 Xalan-2.7 rfc, loc, mfa, amc, max_cc
38 Xerces-1.2 noc, cbo, rfc, npm, moa, cam
39 Xerces-1.3 cbo, ca, loc, dam, moa
40 Xerces-1.4 cbo, ca, ce, loc, mfa, avg_cc
41 Xerces-init wmc, cbo, loc, dam, moa, amc, avg_cc

4.6. Search Based Optimizer

The data are split into source and target datasets. The classifier is trained using source
project and tested on the target project. After splitting the datasets into source and target
projects, the source projects are fed into ANN-filter. The projects are fed into this filter in
order to get the best possible feature sets. On getting the best sets of features, we give the
sets to search-based optimizer i.e., random forest ensemble model and genetic algorithm as
well for multi-class feature selection. We compare the results of both the techniques.

In the last step, we classify our results into multi-class by applying the trained model
on the target projects and compared our results with the base paper classifier. In this
section, we explain results of our all-research questions one by one and then we analyze
them in detail.

RQ1: What is the impact of feature selection for multi-class compared with binary
class on cross project defect prediction through F1 measure?

We used 41 datasets of Tera PROMISE Repository for our research experiment. The
datasets have multi-class problem but most of the research are carried out on these datasets
by using binary class. Therefore, we analyzed and compared the results by carrying out
experiments for both binary and multi-class through KNN and then we compared our
results with the base paper. Through results given in Table 3, we describe and explain the
reasons to use multi-class data for the research experiment.

By comparing the multi-class and binary class results with the base paper OO +
SCM + LOC (all), CKLOC, IG, in Table 3, it is seemed that the multi-class F1-measures
are significantly better than binary class F1-measures. The dataset Xerces-1.3 has high
F1-measure, which is 0.92 for base paper OO + SCM + LOC (all) for multi-class-KNN,
whereas for binary-KNN has a value of 0.33. Similarly, Ivy-2.0 has more F1-score for multi-
class-KNN (all) than binary-KNN (all) which has 0.36 F1-score. These results are present in
Table 3. Whereas Lucene-2.4 has the lowest value, 0.29 for multi-class-KNN as compared
to binary-KNN, which has 0.35. Overall results are significantly improved by 40% to 60%
using multi-class for KNN algorithm for the base paper set for the research experiment.

RQ2: What is the impact of ANN filter compared with KNN filter on cross project
defect prediction through F1-measure?

Datasets are imported using sklearn library in python after preprocessing of data,
and the data are fed into ANN-filter. Using ANN (artificial neural network) algorithm,
we filter out the data to select the most relevant features. ANN is used in different ways
such as MLP (multi-layer perceptron), SLP (single layer perceptron), and RBF (radial basis
function). For our experiment, we use MLP, as we have multi-class problem. Therefore, we
compare our results with the base paper shown below in Table 4.

Electronics 2023, 12, 514 12 of 20

Table 3. Multi-class vs binary class of dataset.

Multi-Class Binary-Class

SR # Datasets
ANN (Artificial Neural Network) Filter KNN (K-Nearest Neighbor) Filter

ALL CKLOC IG ALL CKLOC IG
1 Ant-1.3 0.88 0.89 0.87 0.37 0.44 0.48
2 Ant-1.4 0.66 0.68 0.70 0.21 0.18 0.27
3 Ant-1.5 0.87 0.85 0.86 0.31 0.44 0.33
4 Ant-1.6 0.67 0.71 0.67 0.41 0.42 0.45
5 Ant-1.7 0.75 0.76 0.75 0.49 0.42 0.48
6 Camel-1.0 0.74 0.66 0.94 0.18 0.23 0.12
7 Camel-1.2 0.59 0.58 0.58 0.27 0.23 0.24
8 Camel-1.4 0.81 0.83 0.82 0.28 0.23 0.26
9 Camel-1.6 0.79 0.78 0.79 0.21 0.21 0.22
10 Ivy-1.1 0.60 0.65 0.43 0.37 0.22 0.22
11 Ivy-1.4 0.89 0.88 0.88 0.31 0.12 0.18
12 Ivy-2.0 0.91 0.88 0.88 0.36 0.43 0.41
13 Jedit-3.5 0.78 0.75 0.68 0.33 0.22 0.30
14 Jedit-4.0 0.79 0.80 0.79 0.42 0.30 0.36
15 Jedit-4.1 0.83 0.87 0.81 0.49 0.41 0.40
16 Jedit-4.2 0.89 0.89 0.87 0.44 0.37 0.42
17 Jedit-4.3 0.67 0.72 0.97 0.09 0.16 0.15
18 Log4j-1.0 0.59 0.60 0.67 0.51 0.39 0.34
19 Log4j-1.1 0.55 0.58 0.55 0.57 0.50 0.46
20 Log4j-1.2 0.35 0.43 0.42 0.21 0.13 0.16
21 Lucene-2.0 0.50 0.46 0.51 0.44 0.32 0.38
22 Lucene-2.2 0.38 0.36 0.36 0.28 0.22 0.23
23 Lucene-2.4 0.29 0.37 0.38 0.35 0.21 0.25
24 Poi-1.5 0.75 0.78 0.68 0.31 0.21 0.21
25 Poi-2.0 0.85 0.84 0.85 0.26 0.19 0.23
26 Poi-2.5 0.65 0.64 0.53 0.23 0.16 0.17
27 Poi-3.0 0.66 0.63 0.64 0.26 0.18 0.19
28 Synapse-1.0 0.78 0.79 0.84 0.42 0.31 0.41
29 Synapse-1.1 0.63 0.64 0.63 0.46 0.31 0.44
30 Synapse-1.2 0.57 0.55 0.57 0.56 0.31 0.43
31 Velocity-1.4 0.49 0.46 0.47 0.18 0.08 0.13
32 Velocity-1.5 0.54 0.51 0.51 0.22 0.11 0.18
33 Velocity-1.6 0.60 0.63 0.66 0.29 0.20 0.31
34 Xalan-2.4 0.85 0.85 0.84 0.39 0.31 0.34
35 Xalan-2.5 0.61 0.56 0.58 0.37 0.30 0.300
36 Xalan-2.6 0.67 0.62 0.61 0.51 0.40 0.41
37 Xalan-2.7 0.82 0.81 0.81 0.40 0.24 0.25
38 Xerces-1.2 0.80 0.82 0.79 0.24 0.17 0.20
39 Xerces-1.3 0.92 0.93 0.91 0.33 0.29 0.28
40 Xerces-1.4 0.74 0.73 0.68 0.31 0.18 0.19
41 Xerces-init 0.55 0.56 0.55 0.31 0.25 0.27

Mean 0.689268 0.691098 0.69122 0.344341 0.273024 0.29778

Median 0.67 0.71 0.68 0.331 0.239 0.277

There is a combination of neurons (more linear layers) in MLP (multi-layer perceptron).
Usually there are three layers in the three-layer network of neuron. Input layer is the first
layer, hidden layer is the middle layer, and output layer is the last layer. We feed data into
input layer and get output from output layer. The number of hidden layers can increase as
much as it is required for training data.

To train MLP model, we use solver “ibfgs” where two hidden layers are used in which
50 and 5 weights are assign to them. We give maximum 1000 iterations to the model
where random state = 0. The results of this model are shown in Table 4. The following
Table 4 shows the results of ANN filter and KNN filter for multi-class. The results are
compared with the base paper OO + SCM + LOC (all), CK + LOC (ckloc), and Info Gain
(IG) using F1-score.

Electronics 2023, 12, 514 13 of 20

Table 4. ANN vs. KNN result of datasets.

Multi-Class

SR # Datasets
ANN (Artificial Neural Network) Filter KNN (K-Nearest Neighbor) Filter

ALL CKLOC IG ALL CKLOC IG

1 Ant-1.3 0.95 0.57 0.50 0.88 0.89 0.87
2 Ant-1.4 0.94 0.85 0.33 0.66 0.68 0.70
3 Ant-1.5 0.93 0.90 0.75 0.87 0.85 0.86
4 Ant-1.6 0.92 0.94 0.72 0.67 0.71 0.67
5 Ant-1.7 0.99 0.97 0.92 0.75 0.76 0.75
6 Camel-1.0 0.93 0.96 0.85 0.74 0.66 0.94
7 Camel-1.2 0.97 0.92 0.53 0.59 0.58 0.58
8 Camel-1.4 0.97 0.99 0.68 0.81 0.83 0.82
9 Camel-1.6 0.97 0.98 0.83 0.79 0.78 0.79
10 Ivy-1.1 0.90 0.83 0.71 0.60 0.65 0.43
11 Ivy-1.4 0.93 0.95 0.92 0.89 0.88 0.88
12 Ivy-2.0 0.97 0.98 0.92 0.91 0.88 0.88
13 Jedit-3.5 0.88 0.96 0.49 0.78 0.75 0.68
14 Jedit-4.0 0.86 0.91 0.88 0.79 0.80 0.79
15 Jedit-4.1 0.90 0.96 0.90 0.83 0.87 0.81
16 Jedit-4.2 0.96 0.96 0.57 0.89 0.89 0.87
17 Jedit-4.3 0.97 0.98 0.87 0.67 0.72 0.97
18 Log4j-1.0 0.92 0.96 0.62 0.59 0.60 0.67
19 Log4j-1.1 0.90 0.95 0.57 0.55 0.58 0.55
20 Log4j-1.2 0.85 0.95 0.33 0.35 0.43 0.42
21 Lucene-2.0 0.92 0.90 0.18 0.50 0.46 0.51
22 Lucene-2.2 0.93 0.96 0.50 0.38 0.36 0.36
23 Lucene-2.4 0.96 0.98 0.59 0.29 0.37 0.38
24 Poi-1.5 0.96 0.96 0.23 0.75 0.78 0.68
25 Poi-2.0 0.97 0.96 0.85 0.85 0.84 0.85
26 Poi-2.5 0.95 0.95 0.31 0.65 0.64 0.53
27 Poi-3.0 0.91 0.93 0.95 0.66 0.63 0.64
28 Synapse-1.0 0.89 0.96 0.97 0.78 0.79 0.84
29 Synapse-1.1 0.90 0.95 0.53 0.63 0.64 0.63
30 Synapse-1.2 0.98 0.98 0.54 0.57 0.55 0.57
31 Velocity-1.4 0.97 0.96 0.71 0.49 0.46 0.47
32 Velocity-1.5 0.96 0.96 0.33 0.54 0.51 0.50
33 Velocity-1.6 0.97 0.87 0.50 0.60 0.63 0.66
34 Xalan-2.4 0.93 0.98 0.85 0.85 0.85 0.84
35 Xalan-2.5 0.98 0.99 0.88 0.61 0.56 0.58
36 Xalan-2.6 0.97 0.98 0.90 0.67 0.62 0.61
37 Xalan-2.7 0.98 0.98 0.80 0.82 0.81 0.81
38 Xerces-1.2 0.98 0.89 0.80 0.80 0.82 0.79
39 Xerces-1.3 0.94 0.97 0.89 0.92 0.93 0.91
40 Xerces-1.4 0.99 0.97 0.94 0.74 0.73 0.68
41 Xerces-init 0.87 0.94 0.58 0.55 0.56 0.55

Mean 0.943732 0.942707 0.678537 0.689268 0.691098 0.69122

Median 0.95 0.96 0.714 0.67 0.71 0.68

Xerces-1.4 has higher F1-score (99.1%) for the base paper (all) for ANN-filter, whereas
Xerces 1.4 has (74%) F1-score for KNN filter. Log4j 1.2 has least F1-score (85.7%) for the base
paper (all) for ANN-filter while Log4j-1.2 has (35%) F1-score for KNN-filter. The results are
improved more than 45%.

The results of ANN filter (ckloc) and KNN filter (ckloc) show that the results of projects
including camel-1.4, xalan-2.5, xalan-2.4, Jedit 4.3, and ivy-2.0 have high F1-measure for
ANN filter (0.992, 0.990, 0.989, 0.988, and 0.986) compared to KNN filter (0.83, 0.56, 0.85,
0.72, and 0.88) respectively. Where ant 1.3 has the lowest F1-measure for ANN filter of
0.571 compare with KNN filter which is 0.897 using multi-class.

The results of ANN filter (IG) and KNN filter (IG) show that the results of projects
including synapse-1.0, poi-3.0, xerces-1.4, ant-1.7, and ivy 1.4 have high F1-measure for
ANN filter (0.97, 0.952, 0.947, 0.923, and 0.920) comparing to KNN filter (0.84, 0.64, 0.68,
0.75, and 0.88) respectively. Where lucene-2.0 has the lowest F1-measure for ANN filter of
0.18 compare with KNN filter, which is 0.51 using multi-class IG feature sets.

Electronics 2023, 12, 514 14 of 20

RQ3: What is the impact of search-based optimizer i.e., random forest ensemble
compared with base paper genetic algorithm, on cross project defect prediction through
F1-measure?

We applied the random forest ensemble as a search-based optimizer for multi-class
feature sets. The results are shown in Table 5; we compared the results of search-based
optimizer random forest ensemble (RFE) with genetic algorithm (GA) using base paper
SCM + OO + LOC (all), CK + LOC (ckloc), and IG features.

From Table 5, it is shown the results random forest ensemble (all) including projects
(poi-2.5, poi-3.0, xerces-1.4, and ant-1.5) have high F1-measure which is 0.99, 0.98, 0.980, and
0.97 respectively comparing with genetic algorithm which has values of 0.769, 0.767, 0.665,
0.13 respectively. Where log4j-1.2 has the lowest F1-measure for RFE (all) of 0.67 compare
with GA (all), which is 0.746 using multi-class IG feature sets.

Table 5. RFE vs. GA result of datasets.

SR #
Datasets Random Forest Ensemble (RFE) Genetic Algorithm (GA)

ALL CKLOC IG ALL CKLOC IG

1 Ant-1.3 0.88 0.80 0.54 0.38 0.43 0.41
2 Ant-1.4 0.88 0.78 0.59 0.44 0.39 0.41
3 Ant-1.5 0.97 0.60 0.72 0.31 0.35 0.35
4 Ant-1.6 0.92 0.86 0.69 0.50 0.52 0.55
5 Ant-1.7 0.96 0.90 0.90 0.45 0.48 0.50
6 Camel-1.0 0.96 0.93 0.58 0.20 0.19 0.20
7 Camel-1.2 0.96 0.90 0.78 0.52 0.58 0.51
8 Camel-1.4 0.91 0.93 0.57 0.39 0.41 0.38
9 Camel-1.6 0.95 0.95 0.52 0.40 0.44 0.38
10 Ivy-1.1 0.84 0.60 0.84 0.66 0.70 0.60
11 Ivy-1.4 0.94 0.93 0.78 0.24 0.27 0.27
12 Ivy-2.0 0.95 0.93 0.53 0.36 0.31 0.41
13 Jedit-3.5 0.87 0.90 0.18 0.56 0.61 0.60
14 Jedit-4.0 0.89 0.88 0.65 0.46 0.50 0.51
15 Jedit-4.1 0.89 0.83 0.53 0.52 0.52 0.56
16 Jedit-4.2 0.92 0.85 0.73 0.38 0.36 0.43
17 Jedit-4.3 0.89 0.88 0.84 0.11 0.09 0.12
18 Log4j-1.0 0.85 0.84 0.85 0.49 0.56 0.51
19 Log4j-1.1 0.90 0.95 0.85 0.58 0.63 0.61
20 Log4j-1.2 0.67 0.93 0.48 0.74 0.69 0.79
21 Lucene-2.0 0.91 0.97 0.29 0.63 0.65 0.61
22 Lucene-2.2 0.96 0.98 0.69 0.64 0.68 0.61
23 Lucene-2.4 0.96 0.97 0.76 0.69 0.71 0.66
24 Poi-1.5 0.88 0.88 0.40 0.68 0.70 0.74
25 Poi-2.0 0.93 0.97 0.80 0.28 0.31 0.32
26 Poi-2.5 0.99 0.98 0.55 0.76 0.76 0.80
27 Poi-3.0 0.98 0.98 0.90 0.76 0.80 0.79
28 Synapse-1.0 0.95 0.91 0.97 0.29 0.33 0.34
29 Synapse-1.1 0.94 0.96 0.60 0.46 0.52 0.51
30 Synapse-1.2 0.97 0.98 0.58 0.55 0.57 0.57
31 Velocity-1.4 0.92 0.91 0.75 0.57 0.64 0.72
32 Velocity-1.5 0.95 0.94 0.64 0.63 0.60 0.71
33 Velocity-1.6 0.90 0.94 0.27 0.51 0.53 0.56
34 Xalan-2.4 0.91 0.95 0.84 0.39 0.38 0.40
35 Xalan-2.5 0.92 0.92 0.20 0.57 0.59 0.58
36 Xalan-2.6 0.89 0.92 0.31 0.52 0.58 0.59
37 Xalan-2.7 0.93 0.95 0.31 0.81 0.84 0.78
38 Xerces-1.2 0.92 0.94 0.77 0.24 0.27 0.28
39 Xerces-1.3 0.97 0.97 0.88 0.42 0.35 0.40
40 Xerces-1.4 0.98 0.93 0.84 0.66 0.65 0.71
41 Xerces-init 0.89 0.89 0.52 0.40 0.43 0.51

Mean 0.918293 0.902780 0.634634 0.495878 0.515 0.524073

Median 0.92 0.93 0.65 0.507 0.529 0.519

Electronics 2023, 12, 514 15 of 20

It is shown that the results of random forest ensemble (ckloc) including projects
(lucene-2.2, poi-2.5, poi-3.0, xerces-1.4, and ant-1.5) have high F1-measure which is 0.99,
0.98, 0.980, and 0.97 respectively comparing with genetic algorithm which has values (0.769,
0.767, 0.665, 0.13 respectively). Where log4j-1.2 has the lowest F1-measure for RFE (all) of
0.67 compared with GA (all), which is 0.746 using multi-class IG feature sets.

The results of random forest ensemble (IG) including projects (lucene-2.2, poi-2.5,
poi-3.0, xerces-1.4, and ant-1.5) show high F1-measure which is 0.99, 0.98, 0.980, and
0.97 respectively, comparing with genetic algorithm which has values 0.769, 0.767, 0.665,
0.13 respectively. Where log4j-1.2 has the lowest F1-measure for RFE (IG) that has 0.67 com-
pare with GA (IG), which is 0.746 using multi-class IG feature sets.

The results of multi-class random forest ensemble (RFE) and genetic algorithm (GA)
for IG features, which are significantly, improve 30% to 50%. In addition, results are also
compromised using random forest ensemble (RFE) including ant-1.3, Poi-1.5, xalan-2.7,
velocity-1.6, Xerces-init, and jedit-3.5.

RQ4: What is the impact of our classifier compared with Naïve Bayes classifier on
cross project defect prediction through F1-measure?

In this approach, the complete training set fed into the learner and the model is trained
with all the training data points. For the prediction measure, we use a classifier. Table 6
illustrates the classifier by comparing with Naïve Bayes benchmark classifier SCM + OO +
LOC (all), CK + LOC (ckloc), and IG using F1-measure.

From Table 6, it is shown that the results of classifier (all) including projects (lucene-2.2,
poi-2.5, poi-3.0, xerces-1.4, and ant-1.5) have Naïve Bayes algorithm that has values (0.769,
0.767, 0.665, and 0.13 respectively). Where log4j-1.2 has the lowest F1-measure for RFE (all)
of 0.67 compare with GA (all), which is 0.746 using multi-class IG feature sets.

The results of classifier (ckloc) including projects (lucene-2.2, poi-2.5, poi-3.0, xerces-
1.4, and ant-1.5) have Naïve Bayes algorithm that has values (0.769, 0.767, 0.665, and
0.13 respectively). Where log4j-1.2 has the lowest F1-measure for RFE (all) of 0.67 compared
with GA (all), which is 0.746 using multi-class ckloc feature sets.

Some results are substantially improved and some results are compromised using
IG features for software defect prediction. These projects include Jedit-3.5, Xalan-init,
Xalan-2.6, Lucene 2.0, Ant-1.4, and Xalan-2.5 which have lower values compared with Naïve
Bayes using IG features. The mean values of F1-measure were derived for the experiment
using algorithms. From the experiment, we measure F1 to predict the performance of
algorithms. The error bar shows the linearity between the results. The results measured for
the experiment are shown by using Box Plot as shown in Figure 6.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 22

The results of classifier (ckloc) including projects (lucene-2.2, poi-2.5, poi-3.0, xerces-

1.4, and ant-1.5) have Naïve Bayes algorithm that has values (0.769, 0.767, 0.665, and 0.13

respectively). Where log4j-1.2 has the lowest F1- measure for RFE (all) of 0.67 compared

with GA (all), which is 0.746 using multi-class ckloc feature sets.

Some results are substantially improved and some results are compromised using IG

features for software defect prediction. These projects include Jedit-3.5, Xalan-init, Xalan-

2.6, Lucene 2.0, Ant-1.4, and Xalan-2.5 which have lower values compared with Naïve

Bayes using IG features. The mean values of F1-measure were derived for the experiment

using algorithms. From the experiment, we measure F1 to predict the performance of al-

gorithms. The error bar shows the linearity between the results. The results measured for

the experiment are shown by using Box Plot as shown in Figure 6.

Figure 6. Box plot of F-measure for algorithm used for CPDP.

The above box-plot clearly explains the results of all the algorithms used in our ex-

periment i.e., ANN filter, classifiers, and feature selection technique through F1 measure.

The figure illustrates the mean values of F1-measure conducted for the experiment using

algorithms. From the experiment, we measure the F1 to predict the performance of algo-

rithms. The error bar shows the linearity between the results.

5. Research Validation

In this section, we describe the validity of our research through statistical tests i.e.,

Cohen’s D, Glass’s Delta and Hedges’ G, and Wilcoxon test. Let us review the results in

detail.

5.1. Cohen’s D

Cohen’s d is calculated for the individual T test samples by measuring the mean var-

iance of two sets and then dividing the estimate by the combined standard deviation.

Cohen’s d = (M2 − M1)/SDpooled (3)

Where:

SDpooled = µ ((SD12 + SD22)/2) (4)

5.2. Glass’s Delta and Hedges’ G

Cohen’s d is an effective of effective size if two classes have similar standard devia-

tions and are of the equal size. Glass’s delta, which utilizes only the control group’s stand-

Figure 6. Box plot of F-measure for algorithm used for CPDP.

Electronics 2023, 12, 514 16 of 20

Table 6. Result of our classifier.

SR #
Datasets Our Classifier Benchmark Classifier (NB)

ALL CKLOC IG ALL CKLOC IG

1 Ant-1.3 0.70 0.60 0.51 0.29 0.25 0.38
2 Ant-1.4 0.66 0.71 0.13 0.19 0.13 0.20
3 Ant-1.5 0.80 0.66 0.31 0.34 0.41 0.42
4 Ant-1.6 0.78 0.75 0.48 0.42 0.43 0.46
5 Ant-1.7 0.91 0.90 0.66 0.47 0.45 0.52
6 Camel-1.0 0.83 0.88 0.56 0.34 0.34 0.19
7 Camel-1.2 0.88 0.79 0.57 0.25 0.25 0.24
8 Camel-1.4 0.88 0.86 0.55 0.21 0.22 0.26
9 Camel-1.6 0.92 0.87 0.46 0.20 0.26 0.23
10 Ivy-1.1 0.65 0.52 0.65 0.39 0.35 0.34
11 Ivy-1.4 0.74 0.75 0.48 0.30 0.28 0.30
12 Ivy-2.0 0.81 0.85 0.52 0.39 0.39 0.42
13 Jedit-3.5 0.84 0.80 0.20 0.50 0.39 0.45
14 Jedit-4.0 0.71 0.76 0.38 0.46 0.47 0.51
15 Jedit-4.1 0.78 0.84 0.41 0.60 0.53 0.57
16 Jedit-4.2 0.76 0.83 0.38 0.48 0.47 0.48
17 Jedit-4.3 0.75 0.80 0.49 0.14 0.17 0.16
18 Log4j-1.0 0.84 0.79 0.43 0.38 0.29 0.24
19 Log4j-1.1 0.79 0.78 0.34 0.33 0.16 0.28
20 Log4j-1.2 0.60 0.84 0.39 0.25 0.19 0.19
21 Lucene-2.0 0.69 0.97 0.14 0.27 0.27 0.33
22 Lucene-2.2 0.86 0.88 0.39 0.29 0.23 0.23
23 Lucene-2.4 0.94 0.97 0.78 0.37 0.34 0.31
24 Poi-1.5 0.88 0.88 0.25 0.38 0.30 0.33
25 Poi-2.0 0.88 0.97 0.28 0.23 0.21 0.25
26 Poi-2.5 0.91 0.93 0.48 0.35 0.26 0.34
27 Poi-3.0 0.92 0.94 0.79 0.36 0.30 0.39
28 Synapse-1.0 0.65 0.75 0.85 0.33 0.27 0.33
29 Synapse-1.1 0.82 0.87 0.35 0.38 0.29 0.30
30 Synapse-1.2 0.96 0.99 0.47 0.45 0.32 0.33
31 Velocity-1.4 0.79 0.80 0.48 0.18 0.17 0.21
32 Velocity-1.5 0.92 0.93 0.63 0.26 0.20 0.30
33 Velocity-1.6 0.77 0.88 0.66 0.32 0.32 0.34
34 Xalan-2.4 0.81 0.88 0.83 0.38 0.32 0.40
35 Xalan-2.5 0.90 0.92 0.09 0.41 0.33 0.34
36 Xalan-2.6 0.86 0.88 0.16 0.50 0.44 0.44
37 Xalan-2.7 0.87 0.95 0.17 0.51 0.38 0.38
38 Xerces-1.2 0.88 0.80 0.63 0.24 0.20 0.24
39 Xerces-1.3 0.83 0.82 0.74 0.33 0.33 0.29
40 Xerces-1.4 0.88 0.80 0.82 0.37 0.30 0.30
41 Xerces-init 0.79 0.70 0.23 0.35 0.37 0.36

Mean 0.81561 0.83146341 0.466341 0.350659 0.31204878 0.334976

Median 0.83 0.84 0.48 0.35 0.303 0.331

The above box-plot clearly explains the results of all the algorithms used in our experi-
ment i.e., ANN filter, classifiers, and feature selection technique through F1 measure. The
figure illustrates the mean values of F1-measure conducted for the experiment using algo-
rithms. From the experiment, we measure the F1 to predict the performance of algorithms.
The error bar shows the linearity between the results.

5. Research Validation

In this section, we describe the validity of our research through statistical tests i.e.,
Cohen’s D, Glass’s Delta and Hedges’ G, and Wilcoxon test. Let us review the results
in detail.

Electronics 2023, 12, 514 17 of 20

5.1. Cohen’s D

Cohen’s d is calculated for the individual T test samples by measuring the mean
variance of two sets and then dividing the estimate by the combined standard deviation.

Cohen’s d = (M2 − M1)/SDpooled (3)

where:
SDpooled = µ ((SD12 + SD22)/2) (4)

5.2. Glass’s Delta and Hedges’ G

Cohen’s d is an effective of effective size if two classes have similar standard deviations
and are of the equal size. Glass’s delta, which utilizes only the control group’s standard
deviation, is an additional indicator when each group has a different standard deviation.
Hedges’ g, which gives a weighted estimate of the effect size by the relative size of each
study, is an alternative having dissimilar sample sizes.

5.3. Wilcoxon Test

The following null and alternative hypotheses need to be tested:

H0. Median (Difference) ≤ 0.

H1. Median (Difference) > 0.

Observe that the sample size n = 41 > 30 is large enough to use normal approximation,
so a z-statistic will be used. The significance level, based on the information provided is
alpha = 0.05, and the critical value for a right-tailed test is Zc = 1.64. The rejection region for
this right-tailed test is R = {z:z > 1.64} R = z:z > 1.64. The z-statistic is computed as follows

z = T − n (n + 1)/4nn + 12n + 1/(24) (5)

The given table shows the test results using Cohen’s d, Glass’s delta, and Hedge’s
g results.

The given table shows the test results using Wilcoxon signed rank test results.

5.4. Analysis of Validation Test

The results of validation test shown in Table 7 using Cohen’s d, Glass’s delta, and
Hedges’ g test for the research experiment to validate the experiment conducted for the
experiment. For multi-class KNN filter (all, ckloc, IG) base paper, we have z-value =
(−5.501, −5.579, −5.579), Cohen’s d = (2.537, 3.180, 2.846), p-value = (1.00, 1.00, 1.00), which
are greater than α = 0.05. For the ANN filter (all, ckloc, IG) base paper, we get p-value (1.00,
1.00, 0.627), Cohen’s d = (2.232, 2.111, 0.064), and z-value (−5.579, −5.216, −0.324). For
the validation test results of search-based optimizer RFE (all, ckloc, IG) we have p-value =
(0.00261, 0.00564, 0.00013), Cohen’s d = (3.432, 2.868, 0.586), and z value = (−5.566, −5.566,
−2.287). The validation results of our classifier (all, ckloc, IG) base paper, we get p-value =
(1.00, 1.00, 0.992), Cohen’s d = (4.874, 5.302, 0.811), and z-value is (−5.579, −5.579, −3.155).
It is concluded that it rejects the null H0 hypothesis. There is also insufficient evidence to
say that the population mean of variations is greater than zero at the significance level of
alpha = 0. 05α = 0.05. For validation test of our paper, we carry out the Wilcoxon signed
rank test for filters, optimizer, and classifiers. We get the p-value for KNN vs. ANN filter
(all, ckloc) to be (0.00364, 0.00217), p-value for RFE vs. GA (all, ckloc, IG) to be (0.00261,
0.00564, 0.00013), and p-value for classifiers vs. NB (ckloc, IG) to be (0.00024, 0.00128). It
is concluded that it rejects the null H0 hypothesis which validates our results (referred to
Tables 7 and 8).

Electronics 2023, 12, 514 18 of 20

Table 7. Cohen’s d, Glass’s delta, and Hedges’ g results.

Algorithm Cohen’s d Glass’s Delta Hedges’ g

KNN (all) 2.537 2.195 2.537
KNN (ckloc) 3.180 2.725 3.180

KNN (IG) 2.846 2.391 2.846
ANN filter (all) 2.232 7.037 2.232

ANN filter (ckloc) 2.111 3.605 2.111
ANN filter (IG) 0.064 0.056 0.064

RFE (all) 3.432 7.751 3.432
RFE (ckloc) 2.868 4.567 2.868

RFE (IG) 0.586 0.531 0.586
Classifier (all) 4.874 5.254 4.874

Classifier (ckloc) 5.302 5.148 5.302
Classifier (IG) 0.811 0.634 0.811

Table 8. Wilcoxon signed rank test results.

Algorithm p-Value (Wilcoxon Test)

KNN vs. ANN filter-all 0.00364
KNN vs. ANN filter-ckloc 0.00217

RFE vs. GA-all 0.00261
RFE vs. GA-ckloc 0.00564

RFE vs. GA-IG 0.00013
Classifier vs. NB-ckloc 0.00024

Classifier vs. NB-IG 0.00128

6. Threats to Validity

Throughout an empirical study, one should be responsive of the possible threats to the
legitimacy of the obtained results and findings that are derived from the experiment. The
possible threats to the validity recognized for this research are evaluated in two categories,
namely: construct, external and conclusion validity.

6.1. Construct Validity

In this experiment, SCM, OO, and LOC are the only metrics used from the datasets.
These measures were commonly used in previous studies. Although these metrics can
achieve good performance, but the usefulness of this metrics has been widely criticized.
There are still some errors that might exist in non-defective labels as not all the defects
were detected. This could be a potential threat to preparation and assessment of defect
prediction models. Moreover, we have not checked for different values of iterations in
ANN filter. We only chose specific elements for large datasets. Based on 1000 iterations,
one might notice performance changes in terms of prediction.

6.2. External Validity

Our experiment is restricted to the evidence and background studies, therefore, spe-
cific findings from research are difficult to draw. All the projects that lead to our research
are written in JAVA and that would certainly affect the generalization of our results. Al-
though many studies have used subsets of our used databases as the foundation for their
results, there is no guarantee that conclusions drawn from those ventures will be general-
ized. Mainly the applicability of the findings to industrial and closed source applications
could be specific as there are typically more strict levels of code quality involved with
such initiatives.

Electronics 2023, 12, 514 19 of 20

6.3. Conclusion Validity

Wilcoxon signed rank test need more post hoc examination to classify the localities
of variations observed in multiple groups. We carry out Wilcoxon experiments in pairs
to find possible differences of comparisons for different versions and other CPDPs. Ad-
ditionally, Cohen’s d for similar studies was used as effect size to measure the extent of
the discrepancies. Another challenge is the lack of test of assessment. Certain studies
may consider different steps to test the methodology and some of the findings and results
might alter as a result. While our method works well for a large portion of the datasets
(as opposed to CPDP base papers), it is not necessarily better for all of them, and further
investigation is needed.

7. Conclusions

As per our research analysis, the optimizer and classifier are dependent upon the
nature of the classes of data i.e., multi or binary. The base paper treated the cross-project
defect repository of Tera PROMISE as binary class data whereas through EDA, it is revealed
that data are multi-class in nature. There was variation in the features selected in our
experiment through info-gain and selected in base paper. We then applied the same filter
using multi-class data and obtained significant results. However, ANN filter still has more
significant results as compared with the KNN filter. We then used RFE as a search-based
optimizer and get better results than the given base paper. We used a classifier for our multi
class dataset and our results improved by 30% as compared with base paper. The results
are significantly improved by 40% to 60% using filters and we analyzed those results are
also improved using multi-class. Our proposed method outperforms for the base paper of
CPDP using multi-class. It seems that using ckloc features the results are high as compared
with IG and all features. There is huge variation in results using IG features therefore, it is
not recommended for future studies. We can use ckloc features for further investigation
to improve the quality and performance of data collection in preparation. The success of
our selection method will be affected by the amount of training sets for candidates. We
intend to examine further possible determinants for effective cross-project detection of
defects and to establish more reliable and accurate methods for selecting data for testing. In
future, we can predict as categorical class for the base paper of CPDP, which is ultimately
advantageous to predict defects on early basis. The cost and resources will be less using
this approach and training sets will be available for further analysis.

Author Contributions: Conceptualization, R.b.F., S.S., M.S. and H.T.R.; Methodology, R.b.F. and S.S.;
Software, R.b.F. and S.S.; Validation, H.T.R.; Formal analysis, R.b.F.; Investigation, M.S.; Resources,
H.T.R.; Data curation, S.S.; Writing—original draft, R.b.F., S.S. and M.S.; Writing—review & editing,
R.b.F., S.S., M.S. and H.T.R.; Visualization, R.b.F., S.S., M.S. and H.T.R.; Supervision, H.T.R.; Funding
acquisition, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to King Saud University, Saudi Arabia, for funding
this work through Researchers Supporting Project number (RSPD2023R704), King Saud University,
Riyadh, Saudi Arabia.

Data Availability Statement: Data sharing is not applicable—no new data are generated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Herbold, S.; Trautsch, A.; Grabowski, J. Global vs. local models for cross project defect prediction: A replication study. Empir.

Softw. Eng. 2017, 22, 1866–1902. [CrossRef]
2. Zimmermann, T.; Nagappan, N.; Gall, H.; Giger, E.; Murphy, B. Cross project defect prediction: A large scale experiment on data

vs. domain vs. process. In Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Amsterdam, The Netherlands, 24–28 August 2009; pp. 91–100.
[CrossRef]

3. Basili, R.V.; Briand, L.; Melo, L.W. A validation of object-oriented design metrics as quality indicators. IEEE Trans. Softw. Eng.
1996, 22, 751–761. [CrossRef]

http://doi.org/10.1007/s10664-016-9468-y
http://doi.org/10.1145/1595696.1595713
http://doi.org/10.1109/32.544352

Electronics 2023, 12, 514 20 of 20

4. Yu, Q.; Qian, J.; Jiang, S.; Wu, Z.; Zhang, G. An Empirical Study on the Effectiveness of Feature Selection for Cross Project Defect
Prediction. IEEE Access 2019, 7, 35710–35718. [CrossRef]

5. Moser, R.; Pedrycz, W.; Succi, G. A Comparative analysis of the efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th International Conference on Software Engineering, Leipzig, Germany, 10–18 May 2008; pp.
181–190. [CrossRef]

6. Ostrand, T.J.; Weyuker, E.J.; Bell, R.M. Predicting the location and number of faults in large software systems. IEEE Trans. Softw.
Eng. 2005, 31, 340–355. [CrossRef]

7. Hosseini, S.; Turhan, B.; Mäntylä, M. A benchmark study on the effectiveness of search-based data selection and feature selection
for cross project defect prediction. Inf. Softw. Technol. 2018, 95, 296–312. [CrossRef]

8. Ryu, D.; Jang, J.I.; Baik, J. A transfer cost-sensitive boosting approach for cross-project defect prediction. Softw. Qual. J. 2017, 25,
235–272. [CrossRef]

9. Shukla, S.; Radhakrishnan, T.; Muthukumaran, K.; Neti, L.B.M. Multi-objective cross-version defect prediction. Soft Comput. 2018,
22, 1959–1980. [CrossRef]

10. Zhang, F.; Zheng, Q.; Zou, Y.; Hassan, A.E. Cross-project defect prediction using a connectivity-based unsupervised classifier. In
Proceedings of the IEEE/ACM 38th International Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22 May 2016;
pp. 309–320. [CrossRef]

11. Turabieh, H.; Mafarja, M.; Li, X. Iterated feature selection algorithms with layered recurrent neural network for software fault
prediction. Expert Syst. Appl. 2019, 122, 27–42. [CrossRef]

12. Cheikhi, L.; Abran, A. Promise and ISBSG Software Engineering Data Repositories: A Survey. In Proceedings of the 2013 Joint
Conference of the 23rd International Workshop on Software Measurement and the 8th International Conference on Software
Process and Product Measurement, Ankara, Turkey, 23–26 October 2013; pp. 17–24. [CrossRef]

13. Zhang, F.; Keivanloo, I.; Zou, Y. Data Transformation in Cross-project Defect Prediction. Empir. Softw. Eng. 2018, 22, 3186–3218.
[CrossRef]

14. Wu, F. Empirical validation of object-oriented metrics on NASA for fault prediction. Commun. Comput. Inf. Sci. 2011, 201, 168–175.
[CrossRef]

15. Turhan, B.; Menzies, T.; Bener, A.B.; Stefano, J.D. On the relative value of cross-company and within-company data for defect
prediction. Empir. Softw. Eng. 2009, 14, 540–578. [CrossRef]

16. Gong, L.; Jiang, S.; Bo, L.; Jiang, L.; Qian, J. A Novel Class-Imbalance Learning Approach for Both Within-Project and Cross
Project Defect Prediction. IEEE Trans. Reliab. 2020, 69, 40–54. [CrossRef]

17. Li, Y.; Huang, Z.; Wang, Y.; Fang, B. Evaluating data filter on cross-project defect prediction: Comparison and improvements.
IEEE Access 2017, 5, 25646–25656. [CrossRef]

18. Laradji, I.H.; Alshayeb, M.; Ghouti, L. Software defect prediction using ensemble learning on selected features. Inf. Softw. Technol.
2015, 58, 388–402. [CrossRef]

19. Hammouri, A.; Hammad, M.; Alnabhan, M.; Alsarayrah, F. Software Bug Prediction using machine learning approach. Int. J. Adv.
Comput. Sci. Appl. 2018, 9, 78–83. [CrossRef]

20. Chen, X.; Shen, Y.; Cui, Z.; Ju, X. Applying Feature Selection to Software Defect Prediction Using Multi-Objective Optimization.
In Proceedings of the IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017;
Volume 2, pp. 54–59. [CrossRef]

21. Mohammadi, S.; Mirvaziri, H.; Ghazizadeh-Ahsaee, M.; Karimipourb, H. Cyber intrusion detection by combined feature selection
algorithm. J. Inf. Secur. Appl. 2019, 44, 80–88. [CrossRef]

22. Goel, L.; Sharma, M.; Khatri, S.; Damodaran, D. Prediction of Cross Project Defects using Ensemble based Multinomial Classifier.
EAI Endorsed Trans. Scalable Inf. Syst. 2019, 7, e5. [CrossRef]

23. Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional
classification data. Comput. Stat. Data Anal. 2020, 143, 106839. [CrossRef]

24. Jalil, A.; Faiz, R.B.; Alyahya, S.; Maddeh, M. Impact of Optimal Feature Selection Using Hybrid Method for a Multiclass Problem
in Cross Project Defect Prediction. Appl. Sci. 2022, 12, 12167. [CrossRef]

25. He, Z.; Shu, F.; Yang, Y.; Li, M.; Wang, Q. An investigation on the feasibility of cross-project defect prediction. Autom. Softw. Eng.
2012, 19, 167–199. [CrossRef]

26. Giray, G.; Bennin, K.E.; Köksal, Ö.; Babur, Ö.; Tekinerdogan, B. On the use of deep learning in software defect prediction. J. Syst.
Softw. 2023, 195, 111537. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2019.2895614
http://doi.org/10.1145/1368088.1368114
http://doi.org/10.1109/TSE.2005.49
http://doi.org/10.1016/j.infsof.2017.06.004
http://doi.org/10.1007/s11219-015-9287-1
http://doi.org/10.1007/s00500-016-2456-8
http://doi.org/10.1145/2884781.2884839
http://doi.org/10.1016/j.eswa.2018.12.033
http://doi.org/10.1109/IWSM-Mensura.2013.13
http://doi.org/10.1007/s10664-017-9516-2
http://doi.org/10.1007/978-3-642-22418-8_25
http://doi.org/10.1007/s10664-008-9103-7
http://doi.org/10.1109/TR.2019.2895462
http://doi.org/10.1109/ACCESS.2017.2771460
http://doi.org/10.1016/j.infsof.2014.07.005
http://doi.org/10.14569/IJACSA.2018.090212
http://doi.org/10.1109/COMPSAC.2017.65
http://doi.org/10.1016/j.jisa.2018.11.007
http://doi.org/10.4108/eai.13-7-2018.159974
http://doi.org/10.1016/j.csda.2019.106839
http://doi.org/10.3390/app122312167
http://doi.org/10.1007/s10515-011-0090-3
http://doi.org/10.1016/j.jss.2022.111537

	Introduction
	Literature Review
	Gap Analysis
	Research Questions

	Research Methodology
	Data Collection
	Research Method
	Research Design

	Proposed Methodology
	Promise Repository
	Exploratory Data Analysis
	Data Preprocessing
	Feature Ranking
	Feature Selection
	Search Based Optimizer

	Research Validation
	Cohen’s D
	Glass’s Delta and Hedges’ G
	Wilcoxon Test
	Analysis of Validation Test

	Threats to Validity
	Construct Validity
	External Validity
	Conclusion Validity

	Conclusions
	References

