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Abstract: The goal of aspect-based sentiment analysis (ABSA) is to identify the sentiment polarity
of specific aspects in a context. Recently, graph neural networks have employed dependent tree
syntactic information to assess the link between aspects and contextual words; nevertheless, most of
this research has neglected phrases that are insensitive to syntactic analysis and the effect between
various aspects in a sentence. In this paper, we propose a dual-channel edge-featured graph attention
networks model (AS-EGAT), which builds an aspect syntactic graph by enhancing the contextual
syntactic dependency representation of key aspect words and the mutual affective relationship
between various aspects in the context and builds a semantic graph through the self-attention
mechanism. We use the edge features as a significant factor to determine the weight coefficient of
the attention mechanism to efficiently mine the edge features of the graph attention networks model
(GAT). As a result, the model can connect important sentiment features of related aspects when
dealing with aspects that lack obvious sentiment expressions, pay close attention to important word
aspects when dealing with multiple-word aspects, and extract sentiment features from sentences
that are not sensitive to syntactic dependency trees by looking at semantic features. Experimental
results show that our proposed AS-EGAT model is superior to the current state-of-the-art baselines.
Compared with the baseline models of LAP14, REST15, REST16, MAMS, T-shirt, and Television
datasets, the accuracy of our AS-EGAT model increased by 0.76%, 0.29%, 0.05%, 0.15%, 0.22%,
and 0.38%, respectively. The macro-f1 score increased by 1.16%, 1.16%, 1.23%, 0.37%, 0.53%, and
1.93% respectively.

Keywords: graph attention networks; ABSA; self-attention; dependent tree; semantic features

1. Introduction

Aspect-based sentiment analysis (ABSA) is an important task in natural language
processing (NLP). ABSA is a fine-grained sentiment analysis task that is used to determine
the sentiment polarity of individual components of a text (such as positive, negative, or
neutral). As illustrated in Figure 1, the sentiment polarity of the aspect “food” is positive,
but the sentiment polarity of the aspect “services” and “environment” is negative. As a
result, as compared to traditional text sentiment analysis, ABSA can mine users’ more
delicate sentiment expressions, analyze users’ distinct sentiment viewpoints on diverse
goals, and provide decision-makers with more precise decision help.

On the ABSA task, the early is mainly based on artificial feature engineering, artificial
design, and feature selection, such as sentiment dictionary, dependency information, etc.,
using the maximum entropy, support vector machine, and other traditional classifiers for
sentiment classification. Although good performance has been achieved, the shortcomings
of poor generalization ability and high labor costs are gradually exposed.

In recent years, due to the rise of neural networks, convolutional neural network
(CNN) and recurrent neural network (RNN) have been used to solve problems in ABSA.
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For instance, FAN [1] proposed CMN; Li [2] proposed TNet; Xue [3] proposed the GCAE
model. Huang [4] proposed PF-CNN and PG-CNN. The TD-LSTM and TC-LSTM models
were proposed by Tang [5]. The GRNN model was suggested by Zhang [6]. The H-LSTM
model was proposed by Ruder [7].

Many classification tasks, including ABSA, have been completed using the pre-trained
language model BERT [8]. As an illustration, Xu [9] utilized a different corpus to post-train
BERT and showed how well it performed aspect extraction and ABSA. By creating supple-
mentary sentences, Sun [10] transformed ABSA into a sentence pair classification task.

Figure 1. Examples of ABSA tasks. Each aspect is classified into a corresponding sentiment polarity.

With the development of the attention mechanism, the attention mechanism has been
widely used in this task, as it can make the model focus on a given aspect, to make a
more accurate judgment of sentiment polarity. The ATAE-LSTM model was suggested by
Wang [11], the AB-LSTM model by Yang [12], and the BILSTM-ATT model by Liu [13]. The
AOA model was proposed by Huang [14] and the IAN model by Ma [15].

Because of their intrinsic capacity in specific aspects and semantic alignment of con-
textual words, attention mechanisms and CNN are commonly utilized in aspect sentiment
analysis. However, because these models lack the mechanism to account for relevant
syntactic constraints and distant word dependencies, they may recognize grammatically
irrelevant contextual words as signals to judgment sentiments. Zhang [16] presented the
ASGCN model to overcome this problem; Hou [17] proposed the SA-GCN model, and
Xiao [18] proposed the AEGCN model.

The syntactic structure of sentences is used by graph convolution networks (GCNs) [19]
and graph attention networks (GATs) [20] based on dependency trees. This is because
syntactic dependence can build the relationship between words in a sentence, but sentences
with poor syntactic dependence sensitivity cannot gain appropriate sentiment qualities
via the dependency tree. Furthermore, existing ABSA methods typically embed aspect
information into sentence representation to learn relevant sentiment features of specific
aspects, but this method makes obtaining valuable sentiment features for aspects lacking
obvious sentiment features difficult.

We have two issues that need to be resolved, as was previously discussed. (1) How to
extract valuable sentiment features from aspects without obvious sentiment expression;
(2) How to extract precise Sentiment features from sentences with low syntactic sensitivity.
In this paper, we provide a fresh approach to the issues raised above. For the first issue,
we create the aspect parsing graph by enhancing the context-dependent encoding of
important aspect words and utilizing the emotional reciprocity between various context-
related aspects. To solve the second issue, we create the semantic graph by applying the
self-attention mechanism to extract the semantic link between words.

Based on this, we present a dual-channel edge-featured graph attention networks
model (AS-EGAT). We improve the GAT model’s original attention mechanism by making
the edge features a significant factor in the calculation of the weight coefficients by the
attention mechanism to efficiently mine the edge features of the GAT model, which uses
aspect syntactic graphs and semantic graphs as adjacency matrices. The following is a
summary of our paper’s significant contributions:

• We create aspect syntactic graphs, which are strengthened by the mutuality of vari-
ous aspects in the context and particular aspect words, as well as semantic graphs,
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which use self-attention to determine the semantic connections between each word in
a phrase;

• We propose a dual-channel edge-featured graph attention networks model (AS-EGAT),
which learns aspect sentiment features by modeling aspect features and semantic
features in the context and fully mining the edge features;

• We conduct extensive experiments on six benchmark datasets. The experimental
results show the effectiveness of the AS-EGAT model in ABSA.

2. Related Work

Many people are now employing CNN to solve the ABSA task because it has lately
developed rapidly. A convolutional memory network (CMN) that incorporates the at-
tention mechanism and that can simultaneously capture single words and multi-word
expressions in sentences was proposed by Fan [1]. After noting the deficiencies of the atten-
tion mechanism and the reasons why CNN is poor at categorizing tasks, Li [2] proposed a
new classification model, TNet, to assist the CNN feature extractor to identify sentiment
features more precisely. This model utilized an approach strategy and scaled the convo-
lutional layer’s input by using the location correlation between words and aspect words.
The earliest research employed LSTM and attention mechanisms to predict the sentiment
polarity of sentences. According to Xue [3], this kind of model is extremely sophisticated
and requires a lot of training time. Based on this, they suggest the GCAE, a convolutional
neural network model with a gate mechanism that is more effective, whose gate units can
operate independently, and whose computation can be easily parallelized during training.
Convolutional neural network parameterized filter (PF-CNN) and parameterized gated
Convolutional Neural network (PG-CNN) were proposed by Huang [4]. They included
aspect word information into CNN by using the parameterized filter gate structure.

The majority of cutting-edge techniques in numerous ABSA problems are built on
RNNs for modeling because of their strong sequence learning capabilities. To further
develop the LSTM, Tang [5] presented the target-dependent long-term memory neural
network (TD-LSTM) and the target-association-based long-term memory neural network
(TC-LSTM). The model treats a given target as a feature for ABSA and links it to contextual
features. To capture sentence syntax and semantics as well as the interaction between
aspectual words and nearby contextual words via Bi-RNN, Zhang [6] created two gated
neural network models (GRNNs) (bidirectional RNN). By more effectively propagating
the gradient, gated neural networks have been demonstrated to lower the deviation of
standard recurrent neural networks at the end of the sequence. Ruder proposed a comment
hierarchy model (H-LSTM) [7] that uses hierarchical bidirectional long and short-term
memory neural networks to learn intra-sentence and inter-sentence relationships. The
model integrates word input into the bidirectional LSTM at the sentence level, and the
forward and backward LSTM’s final states are connected by aspect embedding and are fed
back into the bidirectional LSTM at the comment level.

The attention mechanism’s core goal is to select the information that is more critical to
the current task objective from a large amount of information and then use the attention
mechanism to obtain the description of a specific aspect category in the text, to make a more
accurate polarity judgment of sentiment, which is consistent with the goal of aspect level
sentiment classification. Wang [11] was the first to introduce an attention mechanism to this
task, proposing an attention-based LSTM model using target embedding (ATAE-LSTM),
where an attention vector is set for each target on top of an LSTM network, forcing the
model to attend to the important parts of the sentence. This method was shown to be an
effective way to strengthen the neural model to attend to the relevant parts of the sentence.
Two attention-based bidirectional LSTM were also suggested by Yang [12] to enhance
classification performance. Liu [13] expanded the attention model by differentiating be-
tween the left and right contexts of a particular target. Huang [14] proposed an attentional
overattentive neural network (AOA) that jointly learns the representation of aspects and
sentences through AOA modules and automatically focuses on the important parts of the
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sentences in a study based on LSTM with a joint approach to model aspects and sentences.
Following that, some interactive attention mechanisms were used on ABSA tasks. Ma [15]
proposed an interactive attention network (IAN) that considers both target attention and
contextual attention, employing two attention networks to detect important words from
the target description and important words from the entire context.

Because of their intrinsic capacity to match aspect-specific and contextual word mean-
ings, attentional mechanisms and convolutional neural networks are commonly employed
for ABSA tasks. However, because such models lack ways to account for important syntac-
tic restrictions and remote word dependencies, they may identify grammar-independent
contextual words as cues for determining aspectual sentiment wrongly. To solve this issue,
Zhang [16] suggested an aspect-specific sentiment classification framework (ASGCN) built
on the dependency tree of sentences employing syntactic information and word depen-
dencies. Hou [17] stated that GCN models based only on dependency trees are prone
to parsing mistakes, thus they combined a self-attentive sequence model with the GCN
model to create a novel GCN model based on selective attention (SA-GCN). According to
Xiao [18], most techniques cannot adequately capture context semantic information and
lack tools to explain important syntactic restrictions and distant lexical dependencies. An
attentional coding-based graph convolutional network model (AEGCN) was proposed
to address these issues. Zhang and Sun [21] proposed employing graph convolutional
networks (GCN) to learn node representations from dependency trees and utilize them
in conjunction with other characteristics to classify sentiment. Huang and Carley [22]
employed graph attention networks (GAT) to intentionally build word dependencies for
similar goals.

The aforementioned GAT-based model does not, however, extract the semantic features
and does not take into account the specific aspects and the sentiment relationships between
the aspects while creating the adjacency matrix. We suggest a strategy that combines aspect
and semantic features with edge feature GAT based on the benefits of GAT in the ABSA
challenge. To improve GAT’s capacity to precisely capture semantic relationships, we
introduce an edge feature.

3. Related Methods

Figure 2 illustrates the architecture of the proposed AS-EGAT model, which primarily
consists of two elements: (1) The edge feature graph attention network based on aspect
syntactic analysis seeks to reinforce the syntactic graph through the context of particular
aspect words and the interrelation of different aspects in the context to extract the senti-
ment features of aspects; (2) The edge feature graph attention network based on semantic
features seeks to capture the semantic relationship between words in sentences through
self-attention. To produce the sentiment properties of a specific aspect, the feature represen-
tations captured by the two components are then merged. We begin by supposing that a
sentence has n words, two aspects, i.e.,

s =
{

w1, w2, . . . , a11, a12, . . . , a1p, . . . , a21, a22, . . . , a2p, . . . , wn
}

(1)

where wi represents the i-th contextual word, and aij denotes the j-th word of aspect i.
Every instance has a sentence, one or more aspects, and one or more words for each aspect.

First, we use the pre-trained BERT to initialize the word vector; each word embedding
is a distributed representation of a word in the sentence; for a sentence with n words, we
can obtain the corresponding embedding matrix X = {x1, x2, . . . , xn} where xi ∈ Rm is the
word embedding of wi and m is the dimension of the word vector.
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Figure 2. The architecture of the proposed AS-EGAT model.

3.1. Aspect Syntactic Graph

To emphasize specific aspects from the context and capture aspect-focused weight
maps for that sentence, we calculate the relative position weights of each word and construct
a weight map depending on the specific aspect.

Wi,j =



1 i f Wi ∈ {as
i } and Wj ∈ {as

i }
1

(|j− ps|+1)
i f Wi ∈ {as

i }

1
(|i− ps|+1)

i f Wj ∈ {as
i }

0 otherwise

(2)

We merge aspect-focused aspect graphs with syntactic analysis dependency trees to
produce aspect-focused syntactic dependency adjacency matrices to improve the syntactic
reliance of context words and gain relationships between aspects and context words.

Gi,j =

{
1 + Wi,j i f i = j or Wi, Wj in the dependency tree o f the sentence

0 otherwise
(3)

Affective expressions in the sentences may not be readily apparent in some aspects,
however. In other words, because these aspects’ sentiment dependencies are in some ways
coupled to other aspects, aspect-focused syntactic analysis graphs may not be sufficient to
discover accurate sentiment connections. To make use of the connections between different
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aspects in a sentence, we therefore enhance the aspect syntactic graph by including the
relative graphs of other aspects in the aspect-focused adjacency matrix.

Aasp = G +
1
l ∑

a∈{ao
i }

α ∗ Ga (4)

α =
1

(|po − ps|+ 1)
(5)

where po of each a ∈
{

ao
i
}

stands for the initial position of another aspect, and ao
i is a word

set of other aspects of length l. We create the directionless adjacency matrix, or Aasp
i,j = Aasp

j,i ,
to enhance the dependency information of the input sentences.

3.2. Semantic Graph

The self-attentive process produces an attention matrix as an adjacency matrix. On the
one hand, self-attention, which is more flexible than the synchronous strategy structure,
can capture semantically relevant sentences for each word in the sentence. The semantic
graph, on the other hand, may be applied to the sentiment that is insensitive to syntactic
information.

The attention score of each pair of elements was determined in parallel by Self-
Attention [23]. The self-attention layer in our proposed AS-EGAT model is used to compute
the attention score matrix Asem ∈ Rn×n. Then we take the attention scoring matrix Asem as
the semantic module’s adjacency matrix, namely Asem

i,j = Asem
j,i , which can be stated as:

Asem = so f tmax

(
QWQ ×

(
KWK)T

√
d

)
(6)

The weight matrices WQ and WK can be learned, whereas the matrices Q and K
originate from the output of the BERT layer. The input node feature’s dimension is d, as
well. To determine a sentence’s attention score matrix in our model, we solely employ a
self-attention head.

3.3. Edge-Featured Graph Attention Networks

We improve the GAT model’s original attention mechanism by making the edge
features a significant factor in the calculation of the weight coefficients by the attention
mechanism to efficiently mine the edge features of the GAT model, which uses aspect
syntactic graphs and semantic graphs as adjacency matrices.

~hi
′
= σ

(
1
k

k

∑
k=1

∑
j∈Ni

αk
i,jW

k~hj

)
(7)

αi,j =
exp
(

LeakyReLU
(
~aT
[
W~hi‖W~hj‖W ~Ai,j

]))
∑k∈Ni

exp
(

LeakyReLU
(
~aT
[
W~hi‖W~hj‖W ~Ai,j

])) (8)

where~aT ∈ R2F′ is the feedforward neural network parameter, LeakyReLU(·) is the activa-
tion function of the feedforward neural network, ‖ is the concatenation of two features, ~Ai,j
is the matching adjacency matrix, and this formula may compute the correlation degree
with the neighboring nodes. The number of heads in the attention span of multiple heads is
represented by the parameter K, adding and averaging yields the updated characteristic ~hi

′
.
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3.4. Training

The initial node of the aspect parsing EGAT layer is formed from the Bi-LSTM layer’s
hidden representation, which embeds words as input:

H = {h1, h2, . . . , hn} = Bi− LSTM(x) (9)

The aspect parsing EGAT layer’s final representation is hasp. hasp provides the initial
node for the EGAT layer based on the semantic feature, while hsem provides the final repre-
sentation for the EGAT layer based on the semantic feature. To extract the relationship be-
tween aspect syntactic and semantic information, we merge these two final representations.

h̃ = hasp + λhsem (10)

where λ is the coefficient of semantic features. We employ aspect-specific masking to cover
non-aspect representations, highlighting the important aspects of aspect words:

H̃mask =
{

0, . . . , h̃τ , . . . , h̃τ+k−1, . . . , 0
}

(11)

where h̃t is the representation of the t-th word that AS-EGAT learned, τ is the index at
which a certain aspect first appears, and k is the length of that aspect. We then use a
retrieving-based attention method, inspired by Zhang [16], to extract significant sentiment
features from contextual representations of particular aspects:

ξt =
n

∑
i=1

hc
t

T h̃i =
τ+k−1

∑
i=τ

hc
t

T h̃i (12)

ηt =
exp(ξt)

∑n
i=1 exp(ξt)

(13)

As a result, the following is the final representation of the input for specific aspects:

y = so f tmax(Wor + bo) (14)

r =
n

∑
i=1

ηihc
i (15)

where so f tmax(·) is the so f tmax function to obtain the output distribution of the classifier.
Minimizing the cross entropy loss between the predicted distribution and the ground

real distribution is the definition of the classifier training objective:

L = −
S

∑
i=1

C

∑
j=1

ŷj
i · log

(
yj

i

)
+ γ‖Θ‖2 (16)

where C is the classification number and S is the training scale. The actual sentiment
distribution is ŷ. The regularization term L2 weight is γ. All trainable parameters are
represented by Θ.

4. Experiment
4.1. Dataset and Experimental Setup

In the ABSA, since the LAP14, REST15, REST16, and MAMS datasets are the most
commonly used and popular benchmark datasets and have abundant sources, we chose
them to test the universality of our model. The LAP14, REST15, and REST16 datasets are the
laptop and restaurant review datasets commonly used in the SemEval 2014 (Laptop 14) [24],
SemEval 2015 (Restaurant 15) [25], and SemEval 2016 (Restaurant 16) [26] tasks. The MAMS
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datasets [27] are multiple aspects. To further demonstrate the validity of our proposed
model, we use the dataset provided by Mukherjee [28], which uses similar guidelines to
label two new datasets from the field of e-commerce, namely T-shirts and Television [28].
Each sample consists of a comment sentence, an aspect (single or multiple words), and a
corresponding aspect of emotional polarity (positive or neutral, or negative). The statistics
information of these six datasets is shown in Table 1.

In our experiment, each word was initialized into a 768-dimensional word vector
using the BERT preprocessing model, and the γ of the L2 regularization coefficient was
set to 10−5. With a learning rate of 10−3, Adam was employed as an optimizer to train the
model. The scale of batch training was 16. We use a uniform distribution to initialize all of
the W and b at random.

Table 1. The statistical information of all the datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

LAP14 994 341 464 169 870 128
REST15 1178 439 50 35 382 328
REST16 1620 597 88 38 709 190
MAMS 3380 400 5042 607 2764 329
T-shirt 1122 270 50 16 699 186

Television 2540 618 287 67 919 257

4.2. Comparative Model

We compared the proposed model (AS-EGAT) with the following models:

• TD-LSTM [5]: develops two target-dependent long short-term memory (LSTM)
models, where target information is automatically taken into account.

• ATAE-LSTM [11]: proposes an Attention-based Long Short-Term Memory Network
for aspect-level sentiment classification. The attention mechanism can concentrate on
different parts of a sentence when different aspects are taken as input.

• MemNet [29]: introduces a deep memory network for aspect level sentiment classifi-
cation. This approach explicitly captures the importance of each context word.

• IAN [15]: proposes the interactive attention networks (IAN) to interactively learn
attentions in the contexts and targets, and generate the representations for targets and
contexts separately.

• RAM [30]: adopts a multiple-attention mechanism to capture sentiment features
separated by a long distance, so that it is more robust against irrelevant information.

• GCAE [3]: proposes a model based on convolutional neural networks and gating
mechanisms, which is more accurate and efficient.

• MGAN [31]: proposes a fine-grained attention mechanism, which can capture the
word-level interaction between aspect and context. It then leverages the fine-grained
and coarse-grained attention mechanisms to compose the MGAN framework.

• AOA [14]: models aspects and sentences jointly and explicitly captures the interaction
between aspects and context sentences.

• TNet-LF [2]: proposes a component to generate target-specific representations of
words in the sentence, meanwhile incorporating a mechanism for preserving the
original contextual information from the RNN layer.

• ASGCN-DT [16] and ASGCN-DG [16]: propose to build a Graph Convolutional Net-
work (GCN) over the dependency tree of a sentence to exploit syntactical information
and word dependencies.

• BERT [8]: designed to pre-train deep bidirectional representations from unlabeled text
by jointly conditioning on both left and right context in all layers.
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• CapsNet+BERT [27]: presents a new large-scale Multi-Aspect Multi-Sentiment (MAMS)
dataset, in which each sentence contains at least two different aspects with different
sentiment polarities.

• GIN+BERT [32]: adopts two attention-based networks to learn the contextual sen-
timent for the entity and attribute independently and interactively. Further, based
on the interactive attentions learned from entities and attributes, the coordinative
gate units are exploited to reconcile and purify the sentiment features for the aspect
sentiment prediction.

• MIMLLN+BERT [33]: proposes a Multi-Instance Multi-Label Learning Network for
Aspect-Category sentiment analysis (AC-MIMLLN), which treats sentences as bags,
words as instances, and the words indicating an aspect category as the key instances
of the aspect category.

• SGGCN+BERT [34]: proposes a mechanism to obtain the importance scores for each
word in the sentences based on the dependency trees that are then injected into the
model to improve the representation vectors for ABSA.

• DGEDT+BERT [35]: proposes a dependency graph enhanced dual-transformer net-
work (named DGEDT) by jointly considering the flat representations learned from
Transformer and graph-based representations learned from the corresponding depen-
dency graph in an iterative interaction manner.

• R-GAT+BERT [36]: defines a unified aspect-oriented dependency tree structure rooted
at a target aspect by reshaping and pruning an ordinary dependency parse tree.

• DeBERTa [37]: presents a new pre-trained language model, DeBERTaV3, which im-
proves the original DeBERTa model by replacing mask language modeling (MLM)
with replaced token detection (RTD), a more sample-efficient pre-training task.

• T-GCN+BERT [38]: proposes an approach to explicitly utilize dependency types for
ABSA with type-aware graph convolutional networks (T-GCN), where attention is
used in T-GCN to distinguish different edges (relations) in the graph, and attentive
layer ensemble is proposed to comprehensively learn from different layers of T-GCN.

• DualGCN+BERT [39]: proposes a dual graph convolutional networks (DualGCN)
model that considers the complementarity of syntax structures and semantic correla-
tions simultaneously.

• GL-GCN [40]: proposes a novel aspect-based sentiment classification approach, i.e.,
Global and Local Dependency Guided Graph Convolutional Networks (GL-GCN).

• SenticGCN+BERT [41]: proposes a graph convolutional network based on SenticNet
to leverage the effective dependencies of the sentence according to the specific aspect,
called Sentic GCN.

• SEDC-GCN [42]: proposes a novel GCN based model, named the Structure-Enhanced
Dual-Channel Graph Convolutional Network (SEDC-GCN).

• HGCN [43]: proposes a hybrid graph convolutional network (HGCN) to synthesize
information from constituency tree and dependency tree, exploring the potential of
linking two syntax parsing methods to enrich the representation.

• AEN+BERT [44]: proposes an Attentional Encoder Network (AEN) which eschews
recurrence and employs attention based encoders for the modeling between context
and target.

• STGNN-GRU [45]: proposes a graph Fourier transform based network with features
created in the spectral domain. Fourier transform is used to switch to the frequency
(spectral) domain where new features are created.

• LGCF-CDM [46] and LGCF-CDW [46]: propose a multilingual learning model based
on the interactive learning of local and global context focus, namely LGCF. This model
can effectively learn the correlation between local context and target aspects and the
correlation between global context and target aspects simultaneously.
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4.3. Evaluation Metric

In order to evaluate the performance of the model, Accuracy (Acc.) and Macro-F1 score
(F1) is selected as the main evaluation metric. Accuracy can intuitively see the percentage
of predicted correct results in the total sample. However, for the data with an unbalanced
proportion of positive and negative samples, the category with a large proportion will
affect the accuracy. The F1 score is the harmonic average of Recall and Precision, which is a
comprehensive evaluation metric.

4.4. Experimental Results

Table 2 shows an overview of the experimental results for LAP14, REST15, REST16,
and MAMS datasets using Acc. and F1 metrics. The experimental results show that
our proposed AS-EGAT model is superior to the current state-of-the-art baselines. More
specifically, Acc./F1 scores in our AS-EGAT model improved to 0.76%/1.16%, 0.29%/1.16%,
0.05%/1.23%, and 0.15%/0.37% compared to baseline models for LAP14, REST15, REST16,
and MAMS.

Table 3 shows an overview of the results of experiments on the T-shirt and Tele-
vision datasets using Acc. and F1 metrics. Acc./F1 scores improved by 0.22%/0.53%
and 0.38%/1.93% in our AS-EGAT model compared with baseline models for T-shirt
and Television.

This verifies the validity of AS-EGAT in ABSA. It is also worth noting that the per-
formance of AS-EGAT is significantly better than that of previous models based on the
graph convolution network and graph attention network, which fundamentally verifies
the validity of the new solution of graph construction used in this work.

Table 2. Performance comparison on different models on LAP14, REST15, REST16, and MAMS
datasets. The best performance is bold-typed.

Model
LAP14 REST15 REST16 MAMS

Acc. F1 Acc. F1 Acc. F1 Acc. F1

TD-LSTM (2016a) [5] 71.83 68.43 76.39 58.70 82.16 54.21 74.59 –
ATAE-LSTM (2016b) [11] 68.88 63.93 78.48 60.53 83.77 61.71 77.05 –

MenNet (2016b) [29] 70.64 65.17 77.31 58.28 85.44 65.99 64.56 –
IAN (2017) [15] 72.05 67.38 78.54 52.65 84.74 55.21 76.60 –
RAM (2017) [30] 74.49 71.35 79.98 60.57 83.88 62.14 – –
GCAE (2018) [3] 71.98 68.71 77.56 56.03 83.70 62.69 77.59 –

MGAN (2018) [31] 75.39 72.47 79.36 57.26 87.06 62.29 – –
AOA (2018) [14] 72.62 67.52 78.17 57.02 87.50 66.21 77.26 –

TNet-LF (2018) [2] 74.61 70.14 78.47 59.47 89.07 70.43 – –
ASGCN-DT (2019) [16] 74.14 69.24 79.34 60.78 88.69 66.64 – –
ASGCN-DG (2019) [16] 75.55 71.05 79.89 61.89 88.99 67.48 – –

BERT (2019) [8] 77.59 73.28 83.48 66.18 90.10 74.16 80.62 80.77
CapsNet+BERT (2019) [27] – – 81.89 61.85 86.50 62.12 82.97 –

GIN+BERT (2020) [32] – – 83.96 66.03 89.47 74.87 – –
MIMLLN+BERT (2020) [33] – – 82.76 65.10 88.12 73.05 – –
SGGCN+BERT (2020) [34] – – 82.72 65.86 90.52 74.53 – –
DGEDT+BERT (2020) [35] 79.80 75.60 79.89 61.89 88.99 67.48 – –
R-GAT+BERT (2020) [36] 79.73 75.50 – – 91.87 75.54 81.75 80.87

DeBERTa (2021) [37] – – – – – – 83.06 82.52
T-GCN+BERT (2021) [38] – – 85.26 71.69 92.32 77.29 83.68 83.07

DualGCN+BERT (2021) [39] 79.51 – 83.78 – 91.43 – – –
GL-GCN (2021) [40] 76.91 72.76 80.81 64.99 88.47 69.64 – –

SenticGCN+BERT (2022) [41] 78.21 74.07 85.32 71.28 91.97 79.56 – –
SEDC-GCN (2022) [42] 77.74 74.68 81.73 66.23 90.75 73.84 – –

HGCN (2022) [43] 78.82 – 80.81 – 88.92 – – –

AS-EGAT+BERT (ours) 80.56 76.76 85.61 72.85 92.37 80.79 83.83 83.44
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Table 3. Performance comparison on different models on T-shirt and Television datasets. The best
performance is bold-typed.

Model
T-Shirt Television

Acc. F1 Acc. F1

BERT-SPC (2019) [8] 93.13 73.86 89.96 74.68
BERT-AEN (2019) [8] 88.69 72.25 87.09 67.92

ASGCN-DT (2019) [16] 92.01 71.86 84.96 69.15
ASGCN-DG (2019) [16] 91.59 73.09 85.27 69.40

ASGCN+BERT (2019) [16] 92.22 77.24 88.99 74.42
AEN+BERT (2019) [44] 88.69 72.25 87.09 67.92

STGNN-GRU (2022) [45] – – 89.73 75.73
LGCF-CDM (2022) [46] 93.22 76.73 – –
LGCF-CDW (2022) [46] 93.64 77.23 – –

AS-EGAT+BERT (ours) 93.86 77.76 90.34 76.61

4.5. Ablation Study

To confirm the viability of our suggested strategy, we also carried out ablation tests
to examine the effects of different modules in the AS-EGAT model. Table 4 presents the
outcomes. It can be shown that (1) eliminating the “aspect syntactic features” module
lowers the model’s performance, proving that adding the “aspect syntactic features” in-
formation to the model improves aspect-oriented sentiment analysis; (2) the module’s
unsatisfactory performance on all datasets when “semantic characteristics” are removed is
evidence that rich grammatical knowledge can decrease dependency parsing errors; (3) the
“edge feature” module can improve the correlation of edges with a strong correlation, as
shown by the fact that removing it causes the model’s performance to decline; (4) the model
effect becomes worse when the “aspect syntactic features and side features” module is
removed, demonstrating the module’s influence on the model; (5) the performance of the
model becomes unsatisfactory when the “semantic feature and edge feature” module is
removed, demonstrating the module’s significance to the model. Our AS-EGAT model
delivers the finest performance overall.

Table 4. Experimental results of the ablation study.

Model
LAP14 REST15 REST16 MAMS

Acc. F1 Acc. F1 Acc. F1 Acc. F1

AS-EGAT+BERT w/o A 80.25 76.02 85.24 71.02 91.56 80.41 83.01 82.38
AS-EGAT+BERT w/o S 79.47 76.15 84.87 69.05 91.56 73.52 83.46 83.05
AS-EGAT+BERT w/o E 78.06 73.83 85.16 71.04 91.23 74.77 83.53 82.92

AS-EGAT+BERT w/o A+E 79.15 75.01 85.06 65.81 90.91 76.73 83.68 83.04
AS-EGAT+BERT w/o S+E 79.47 76.42 85.06 71.15 90.91 73.38 83.76 83.39

AS-EGAT+BERT 80.56 76.76 85.61 72.85 92.37 80.79 83.83 83.44

4.6. Influence of the Coefficient of Semantic

We conducted trials with various λ values to further examine the impact of the
semantic module in the AS-EGAT model, and the outcomes are displayed in Figure 3. It
can be seen that the datasets perform best when the λ value reaches 1.0. The curve swings
significantly whether λ is less than or more than 1.0, indicating that the best semantic
information may be recovered when λ is equal to 1.0.
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Figure 3. Impact of semantic coefficients. Accuracy and Macro-F1 score based on different values of
λ is reported.

4.7. Analysis of Different Sentiment Polarity

Figure 4 shows the performance of the AS-EGAT model in different sentimental polar-
ities. In the five datasets of LAP14, REST15, REST16, T-shirt, and Television, “positive” has
the best performance, while “neutral” has the worst performance. The results were similar
for the three sentimental polarities in the “MAMS” dataset. This phenomenon is related to
the distribution of sentimental polarity in the dataset. The number of “neutral” training
data in the “MAMS” dataset is higher than the other two sentimental polarities, while for
the other five datasets, the number of “neutral” training data is the least. Furthermore,
the model struggles to capture emotional information in “neutral” sentences, resulting in
low performance.

4.8. Single and Multiple Aspects Analysis

In order to further analyze the effects of the AS-EGAT model in single and multiple
aspects, we divided the test set into single and multiple aspects according to the number of
aspects in the sentence for experiments, and the results are shown in Figure 5. According
to the experimental results, it can be found that in LAP14, REST15, and MAMS datasets,
single and multiple aspects accuracy rates are basically the same, while in REST16, T-shirt,
and Television datasets, multiple aspects accuracy rates are slightly higher than single
aspects accuracy rates. From this, we can see that the AS-EGAT model is more effective in
multiple aspects.
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Figure 4. Experimental results of different sentiment polarity.
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Figure 5. Experimental results of single and multiple aspects.

4.9. Visualization

We exhibit two visual attention weight graphs in Figure 6 to demonstrate how the
AS-EGAT model improves the performance of aspect sentiment analysis. As shown in
Figure 6a, the weight value of the relevant terms in the modules of ‘aspect syntactic analy-
sis’, ‘semantic analysis’, and ‘edge feature’ is less than that of AS-EGAT. As a result, the
AS-EGAT proposed can pay more attention to important aspect aspects in order to extract
the sentiment characteristics of specific aspects. The multi-faceted examples in Figure 6b
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show how different aspects of the same sentence receive varied weights of attention, demon-
strating the efficiency of our model in extracting sentiment features from diverse aspects of
the text.
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Figure 6. The attention visualizations.

5. Conclusions

In this paper, we explore a new ABSA solution for constructing aspect syntactic
analysis graphs and semantic dependency graphs. On this basis, an attention network
(AS-EGAT) model based on aspect syntactic and semantic features is proposed to extract
aspect-based sentiment features from the aspect and semantic perspectives. Therefore,
the proposed AS-EGAT model can pay significant attention to keywords when processing
multiple words, connect valuable sentiment features of related aspects when considering
aspects without obvious sentiment expression, and obtain corresponding sentiment features
by extracting semantic features for sentences insensitive to the syntactic dependency tree.
Experimental results on six datasets show that the proposed AS-EGAT can outperform
existing graph-based models and BERT-based models.

Notably, the main contribution of this paper is to increase sentence structure informa-
tion by constructing syntactic analysis graphs and semantic dependency graphs, a general
strategy that can be easily applied to these BERT and graph-based neural network methods.
From the experimental data, we can find that the model has poor performance for sentences
with “neutral” sentiment polarity. For this purpose, in future work, we will construct new
graphs to capture the sentiment information of sentences with “neutral” sentiment polarity
and continue investigating its validity in these BERT-based frameworks.
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2019; Tetko, I.V., Kůrková, V., Karpov, P., Theis, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 93–103.

45. Chakraborty, A. Aspect Based Sentiment Analysis Using Spectral Temporal Graph Neural Network. arXiv 2022, arXiv:2202.06776.
46. He, J.; Wumaier, A.; Kadeer, Z.; Sun, W.; Xin, X.; Zheng, L. A Local and Global Context Focus Multilingual Learning Model for

Aspect-Based Sentiment Analysis. IEEE Access 2022, 10, 84135–84146. [CrossRef]

http://dx.doi.org/10.18653/v1/S16-1002
http://dx.doi.org/10.18653/v1/D19-1654
http://dx.doi.org/10.18653/v1/D17-1047
http://dx.doi.org/10.18653/v1/D18-1380
http://dx.doi.org/10.18653/v1/2020.acl-main.588
http://dx.doi.org/10.18653/v1/2021.naacl-main.231
http://dx.doi.org/10.18653/v1/2021.acl-long.494
http://dx.doi.org/10.1016/j.eswa.2021.115712
http://dx.doi.org/10.1016/j.knosys.2021.107643
http://dx.doi.org/10.1007/s10844-022-00729-1
http://dx.doi.org/10.1016/j.neucom.2022.10.071
http://dx.doi.org/10.1109/ACCESS.2022.3197218


Electronics 2023, 12, 624 17 of 17

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Related Methods
	Aspect Syntactic Graph
	Semantic Graph
	Edge-Featured Graph Attention Networks 
	Training

	Experiment
	Dataset and Experimental Setup
	Comparative Model
	Evaluation Metric
	Experimental Results
	Ablation Study
	Influence of the Coefficient of Semantic
	Analysis of Different Sentiment Polarity
	Single and Multiple Aspects Analysis
	Visualization

	Conclusions
	References

