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Abstract: Printed circuit boards (PCBs) are an indispensable part of every electronic device used today.
With its computing power, it performs tasks in much smaller dimensions, but the process of making
and sorting PCBs can be a challenge in PCB factories. One of the main challenges in factories that use
robotic manipulators for “pick and place” tasks are object orientation because the robotic manipulator
can misread the orientation of the object and thereby grasp it incorrectly, and for this reason, object
segmentation is the ideal solution for the given problem. In this research, the performance, memory
size, and prediction of the YOLO version 5 (YOLOv5) semantic segmentation algorithm are tested
for the needs of detection, classification, and segmentation of PCB microcontrollers. YOLOv5 was
trained on 13 classes of PCB images from a publicly available dataset that was modified and consists
of 1300 images. The training was performed using different structures of YOLOv5 neural networks,
while nano, small, medium, and large neural networks were used to select the optimal network for
the given challenge. Additionally, the total dataset was cross validated using 5-fold cross validation
and evaluated using mean average precision, precision, recall, and F1-score classification metrics. The
results showed that large, computationally demanding neural networks are not required for the given
challenge, as demonstrated by the YOLOv5 small model with the obtained mAP, precision, recall,
and F1-score in the amounts of 0.994, 0.996, 0.995, and 0.996, respectively. Based on the obtained
evaluation metrics and prediction results, the obtained model can be implemented in factories for
PCB sorting applications.

Keywords: classification; detection; PCB; semantic segmentation; YOLOv5

1. Introduction

In today’s age of modern technology, all electronic devices contain at least one printed
circuit board (PCB). PCBs are a platform that, using electronic components such as semicon-
ductor chips and capacitors, enables the interconnection of electronic system components,
guarantees signal quality, timing, and many other valuable functions, and for this reason, it
can be found as a part of the following:

• Medical devices—such as computed tomography (CT) infusion pumps [1];
• Consumer electronics—many refrigerators, computers or communication devices [2,3];
• Automotive components—control systems or sensors [4–6];
• Maritime applications—in communication systems or navigation systems[7];
• Military and defense applications—instrumentation for monitoring threats, a control

system for jamming radar systems [6,8] and so on.

However, the process of producing a single PCB is quite complex and requires a large
investment in equipment, and the production process consists of more than 50 steps [9].
Apart from the complex way of making the PCB itself, there is an additional problem: the
PCB industry exposes workers to high doses of toxic metals, solvents, acids, and photolitho-
graphic chemicals. For decades, intensive chemicals and careless manufacturing processes
exposed thousands of workers to reproductive toxicants and carcinogenic chemicals. Due
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to health-related issues of the production and automation of some processes, many factories
underwent modernization [10]. Many funds were invested in the health of the workers
themselves, but also in speeding up the PCB production process. With this in mind, the
goal of this research is to produce an AI model that, based on input data (images) obtained
from a camera, can acquire output information about the location, class, and segment of the
object, in this case, PCB. At the same time, it must meet the high-performance requirements
with the aim of implementation in the robotic systems that use segmentation characteristics
to perform the task (in this matter, it is sorted depending on the PCB class). For this reason,
a recently developed YOLOv5 instance segmentation algorithm will be tested, which, in
addition to detection and classification so far, has a segmentation property that gives the
robot the ability to segment the PCB class and trace it perfectly. It is important to emphasize
that the term “instance segmentation” is used for algorithms that segment multiple classes
on one image; however, in this research, this is not the case because one PCB class is
segmented on one image, and it is better to use the term semantic segmentation instead
of instance segmentation. The influence of the network size and the level of reliability of
detection and segmentation of trained models will also be investigated for the problem of
objects with similar characteristics at a higher production speed (on the production line in
the PCB manufacturing process). Obtaining a high-quality model trained with the YOLOv5
algorithm creates an opportunity to solve the problem of uneven sorting, i.e., multiple
classes independent of the order on the production line. The robotic manipulator will
almost perfectly recognize any of the 13 classes of PCBs and, based on the recognized class,
place them in the designated section, regardless of the PCB class order on the conveyor
belt. This speeds up and improves the sorting process and the sorting problem with a very
simple implementation into the robotic system.

The use of image-based machine learning (ML) methods for various tasks regarding
PCB has been the subject of much research in the past several decades. Lu et al. (2022) [11]
focused on the creation of an automated system for sorting electronic components that
were detached from PCBs. The authors applied the YOLOv3 algorithm for the classification
and localization of the PCBs. Satisfactory quality and speed for application in real-time
scenarios were achieved with the presented approach. YOLOv3 has also been applied
to the problem of defect detection by Wang et al. (2022) [12], who applied it using the
darknet backbone. The authors managed to achieve a detection success rate of 89.3% on a
relatively small sample size of 2000 images. Defect detection was also the topic of research
by Ling et al. (2022) [13], who developed a custom defect detection framework based on
a deep Siamese segmentation network. The authors achieved significant results with the
highest classification rate of 93.49% and mIoU detection precision of 82.94%. Bhattacharya
and Cloutier (2022) [14] also created a custom framework for fault detection, comparing
it to various networks, including YOLO and faster region-based convolutional neural
network, achieving mAP of 98.1%. Some of the authors focused on individual component
classification, such as Ndayishimiye et al. (2021) [15] and Yoon and Lee (2021) [16]. The
authors both applied YOLO networks—versions 3 and 2, respectively. Both papers show
satisfying results with a classification performance of mAP of 99.23% for the former and
an accuracy rate of 99.86% for the latter. From the research in the area, it is obvious that
YOLO-based detection frameworks have common use in detection/localization tasks. Still,
certain points have not been addressed in recent research. First is the instance segmentation
aspect—most of the research has focused on object detection and localization. This approach
does not provide information on the orientation of the device, which can cause issues
in instances when the detected objects need to be precisely manipulated, e.g., using an
industrial robotic manipulator for sorting [17,18]. Another aspect that is lacking in recent
research is the focus on the entire PCB classification/localization, with most of the focus
being given to the classification of individual SMD parts and/or faults. The detection of
entire PCBs can serve multiple purposes, but the main one, especially when considering
instance segmentation, is task allocation for automated sorting [19]. Yang et al. (2022) [20]
demonstrated a CNN system for fruit sorting using CNNs, which achieved a classification
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accuracy of 99.83%. Similar efforts were demonstrated by Wu et al. (2021) [21] who used
a segmentation framework based on DeepLabV3+ for hydroponic object sorting and by
Li et al. (2022) [22] for parcel sorting via CNN. Both papers demonstrate high accuracy
with 99.24% and 97.00%, respectively. Interestingly, special focus has been given to waste
management and recycling [23]. Kumar et al. (2021) [24] demonstrated an application of
the SVM classifier, achieving 96.5% accuracy on the task of COVID waste management. Ku
et al. (2021) [25] focused their research on automated grasping and sorting of construction
and demolition waste using a robotic manipulator. The research demonstrates that the
application of deep learning methods can improve the performance of such a system
by 20%. While many authors noted the issue of electronic waste management [26–28],
with some even discussing the possible application of AI [29,30], there is a lack of papers
focusing on the direct application in recent years. Finally, there is a lack of research on
the performance of the newer variants of the extremely popular YOLO algorithm, such as
version 5 [31,32], which is generally shown to introduce better performance qualitatively,
as well as speed-wise [33,34].

In addition to the experimental testing of the recently developed algorithm, the fol-
lowing hypotheses will be tested:

• Which type of YOLOv5 network model meets the given requirements for performing
the presented task?

• Does the size of the used backbone model influence the results?
• Is there a possibility of implementing the obtained model for real purposes?

This paper is divided into three sections. The first is materials and methods, in which
the used dataset will be explained in terms of the classes it consists of and the type of
dataset used. In addition, the methodology description, explanation of the structure of the
YOLOv5 algorithm, as well as the networks used to obtain the model and the associated
hyperparameters used to obtain each model will be given. In the second section, the results
obtained from this research will be presented and discussed, and the optimal model that
can be applied for industrial purposes will be defined. In the last section, the reached
conclusion will be presented. It will also be pointed out whether the proposed AI algorithm
solved the given task, and the recommendations in future works for further development
regarding this research thesis.

2. Materials and Methods

This section describes the dataset used in this research, the way of labeling images,
and the preprocessing method that was used to improve the robustness of the model itself.
Additionally, the method used for the detection and segmentation of objects, the models
used, and the configured hyperparameters together with other settings that were included
in the development of the final model are described.

2.1. Dataset Description and Preparation

The dataset used in this research consists of 13 classes of PCB microcontrollers and
is publicly available on the Kaggle repository [35]. It consists of 1300 images (from the
original 8125) that were created by applying different actions such as rotations, translations,
centering, etc. Furthermore, the resolution is not consistent and uniform; it consists of
different resolutions, and the mean resolution value is 1949 × 2126 pixels by height and
width. It is noticeable that the total dataset is reduced by 6825 images, and this is not
a coincidence. A CNN-based algorithm has been shown to easily achieve satisfactory
performance on large datasets [36]. To investigate whether the model can be trained on a
smaller set, and thereby speed up the data collection process in a possible application, a
limited dataset is used. For this reason, a condensed dataset is formed that has at least one
of the actions shown in Table 1.



Electronics 2023, 12, 667 4 of 21

Table 1. Description of the original dataset together with the associated generation actions.

Microcontroller Class Number of Images Applied Dataset Generation Methods

Raspberry Pi A+

1300 images, 100 for each class

wide left rotation,
shallow left rotation,

neutral rotation,
shallow right rotation,

wide right rotation,
12 inches left of the camera position,
6 inches left of the camera position,

centered horizontally relative to the camera,
6 inches right of the camera position,
12 inches right of the camera position

Arduino Mega 2560 (Blue)

Arduino Mega 2560 (Black)

Arduino Mega 2560 (Black and Yellow)

Arduino Due

Beaglebone Black

Arduino Uno (Green)

Raspberry Pi 3 B+

Raspberry Pi 1 B+

Arduino Uno Camera Shield

Arduino Uno (Black)

Arduino Uno WiFi Shield

Arduino Leonardo

The background on which the dataset was generated is a white-to-gray gradient,
which reduces the complexity of training the AI algorithm and practically represents ideal
conditions; however, to achieve the system substandard (such as shadows, non-functional
operation of one or more reflectors, or movement of the PCB itself in a non-ideal position),
augmentations and processing methods were applied, which is described later in the paper.
To show the actions and the general appearance of the dataset, several examples of PCBs
are shown in Figure 1.

Figure 1. Display of the generated dataset and the environment during its creation.

Furthermore, it is important to note that the entire dataset was additionally modified,
i.e., it was subjected to additional processing methods. So in this case, the first action is
that absolutely all images of the new dataset are subjected to image resolution matching.
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In the new dataset, all images are reduced to 640 × 640 resolution. The first reason is
that the training process itself is performed much faster. Secondly, the dataset is quite
trivial, meaning it consists of one microcontroller and the background, and there are no
additional smaller objects that confuse the algorithm during training. The third reason is
the use of pre-trained values that will be described later in the next section [37,38]. The last
reason is to avoid distortion of the image in the case of increasing the resolution from a
smaller volume to a larger one, for example, in the case of increasing the image resolution
to 1920 × 1920, information may be lost when training the algorithm. The initial dataset is
not annotated, so to perform localization, detection, and segmentation using the YOLOv5
algorithm, polygonal annotation is required. In this research, every one of 1300 images was
annotated using Roboflow annotation software [39], and one of the annotation examples is
shown in Figure 2.

Figure 2. Labeling images for YOLOv5 semantic segmentation algorithm using Roboflow smart
polygonal tool.

The main reason for choosing Roboflow annotation software is its simplicity and
affordability in annotating images. By using the “Smart Polygon Labeling” option, a vastly
larger and more precise number of annotation points surrounding the desired object are
obtained, as seen in Figure 2.

Each point annotated using the Roboflow annotation software is written in TXT format,
which is later used to train the YOLOv5 algorithm, but it is noticeable that the record is
different than the previously defined width and height image. This is because the YOLO
algorithm uses normalized pixel values. With this step, the preparation of the new dataset
is done, the only thing left is to prepare the dataset for cross-validation (CV). As there
is currently no automatic fold creation tool, the CV was manually performed using a
five-fold CV.

The total dataset is divided into five equal parts (Fold 1–Fold 5) which makes 20%
of the data used for each fold. Five separate datasets (Split 1–Split 5) are then created,
consisting of one fold, i.e., the test set, and the other four folds that form the training set.
For example, for the first split (Split 1), Fold 1 is the test set, while the other four (Fold
2–Fold 5) are grouped and used for the training set. For the second split (Split 2), Fold 2 is
used for the test set while the other folds (Fold 1, Fold 3, Fold 4 and Fold 5) are grouped
and form the training set. By applying this procedure to the other three splits, five separate
datasets are obtained with the same amount of images (1040 for training and 260 for testing),
but with different data (images) for each split separately. By using this methodology, the
problem of overfitting is avoided, and a more precise evaluation of the AI algorithm used
is carried out.

With this step, the description and preparation of the dataset are completed. In the next
section, the YOLOv5 algorithm for semantic segmentation is additionally described, which
is used to solve the problem of detection and segmentation of PCB micro-controllers [40].
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2.2. Methodology

As presented in the Introduction of this article, there is not much literature on semantic
models used to identify specific objects. The robotic manipulator can easily perform “pick
and place” tasks, but the problem arises in cases of non-ideal objects on the conveyor belt,
excessive movement, or densely stacked, randomly distributed, reflective, shiny, and plastic-
wrapped objects [41–43]. For this reason, the development teams are trying to find a way
in which it can be detected and localized in a fast and efficient way, and then determine the
form in which the robotic manipulator can grasp the object with quality without too much
difficulty. Semantic segmentation is a newer method, also known as image segmentation,
and is part of computer vision methods in which the computer recognizes the object in the
image along with its contours. It is an upgrade to conventional object detection in which
each prediction, together with the bounding box, includes a shape with a common center,
width, and length. The usage of this method enables determining the number of objects
in the image, classification, and outline, which is the main advantage of using it. In cases
where the size of an identified object must be measured, the application of the method has
shown useful [44,45], and for that reason, it represents the most suitable solution for the
proposed problem of sorting PCBs in factories.

Figure 3 shows the structure of the YOLOv5 network, which is composed of three parts:
backbone, neck, and head (output result). The backbone is located right after the input
image, and it serves in feature extraction. After that, the data are processed with the neck
of the CNN, which performs resolution feature aggregation. Finally, the final predictions
based on the resolution of the object are generated in the head [46,47]. In the backbone
part, the input image with a resolution of 640 × 640 × 3 passes through the focus layer (the
layer used for the transformation from space to depth). After the initial transformation,
with the help of the slice operator, the image is converted to a size of 320 × 320 × 12 and
becomes a map of features. By passing through the convolution operator of 32 convolution
kernels, it finally becomes a 320 × 320 × 32 feature map. The convolutional module CBL
represents the sum of the convolutional kernel that convolutes with the input layer, which
produces a tensor of outputs (Conv2D), batch normalization process (BatchNormal), and
LeakyRELU activation function [48]. BottleneckCSP is used to extract features from a
feature map. Compared to other large-scale CNNs, the BottleneckCSP structure can reduce
the duplication of information gradients in the optimization part of the neural network
process. That represents one of the key parts of the entire YOLOv5 network structure
because its parameters occupy the largest part of the parameter amount of the entire
network [49]. When changing the width and depth of the BottleneckCSP part of the network,
the basic idea of this research also emerges, namely, four YOLOv5 models: small network
(YOLOv5s), medium-sized network (YOLOv5m), large network (YOLOv5l) and very large
network (YOLOv5x) [31,48]. The SPP module serves to increase the receptive field of
the network and acquires additional network features of different scales. Additionally,
YOLOv5 contains a bottom-up pyramid construction based on the feature pyramid network
(FPN) structure [31,50], which is visible in Figure 3. The FPN layer plays a very important
role because it transmits semantic features from top to bottom, and the feature pyramid
itself contributes to the robustness of the extracted bottom-up positioning features. The
feature is a combined aggregation from different layers of extracted features to further
improve the performance of the network and thus the ability to detect targets at different
scales. This is visible near the end of the image where the classification results and object
coordinates are displayed.

As previously defined and explained, the influence of the size of the network has
a large role in the outcome of the results, thus opening up the possibility of testing the
given theory to solve the initially defined challenge. Therefore, in the continuation of
this research, the influence of YOLO5s, YOLO5n, YOLO5m, and YOLO5l on the results of
detection, classification, and segmentation of PCB micro-controllers is examined.
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Figure 3. The YOLOv5 network framework.

Configuration of the YOLOv5 Semantic Segmentation Algorithm

The training specifications of the YOLOv5 semantic segmentation algorithm used in
this research can be seen in Table 2.

Table 2. YOLOv5 training parameters used in this research.

Weights Network
Model Hyperparameters Epochs Batch Size Image Size Patience Intersection over

Union Threshold

yolov5n-seg yolov5n-seg lr0: 0.01
lrf: 0.01

momentum: 0.937
weight_decay: 0.0005

1000 30 640 × 640 100 0.6
yolov5s-seg yolov5s-seg

yolov5m-seg yolov5m-seg

yolov5l-seg yolov5l-seg

In Section 2.1, the method of performing CV is described in terms of training the
YOLOv5 algorithm. For each fold, the corresponding pair of weights and a network
model with common hyperparameters, number of epochs, batch size, image size, and early
stopping (patience) were developed. The intersection over union threshold (IoUt) is a
parameter that shows the percentage of overlap between the predicted bounding box and
the ground truth bounding box. In this research, its value was set to 0.6, i.e., 60%. This
means that all predicted bounding boxes containing at least 60% of the initially labeled
image are accepted as true positive predictions. In this way, 20 different models were
developed with different subsets of data. The network model is the difference between
the width and depth of the network structure described in the previous section, and their
difference is visible in Table 3.

Table 3. Network structure specifications for different YOLOv5 models.

YOLOv5n YOLOv5s YOLOv5m YOLOv5l

depth_multiplier 0.33 0.33 0.67 1.0

width_multiplier 0.25 0.5 0.75 1.0

From Table 3, the depth multiplier corresponds to what ‘depth’ the model will reach;
in other words, it ultimately adds more layers to the neural network itself, while the width
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corresponds to the number of filters in the layers, which results in more channels on the
output layers. Weights are the selection of pre-trained values that are used for faster
training compared to the “starch” approach. Each model is trained for 1000 epochs with
early stopping if the results do not improve after 100 epochs at a resolution of 640 × 640.
The batch size is the number of possible samples that are simultaneously processed before
the model is updated, and it was set to 30 batches. In the hyperparameters column, four
hyperparameters are defined as lr0, which indicates the initial learning rate, lrf, which
represents the final OneCycleLR learning rate, and momentum is the accumulation of
movement, i.e., how much of the previous value affects the further change of weight values.
Weight decay is a regularization process that allows the ML algorithm to reduce model
complexity and prevent potential overfitting.

Otherwise, the use of augmentation methods in practice is welcome. These were not
originally mentioned for a unique reason because YOLOv5 has an integrated albumentation
library [51], which is integrated into the algorithm itself. Accordingly, additional actions
were applied to the dataset during training, shown in Table 4. Additionally, it is important
to emphasize that the YOLOv5 algorithm implements the augmentation of images in the
training process. This means that based on the data (images) found in the training set,
augmentation is performed on them, while the test set remains untouched, provided that
the data division was initially performed, which was done and described in Section 2.1.
This approach avoids the problem of “data leaking”, i.e., repetitions of identical data in the
train and test sets.

Table 4. Metrics and processes applied to the dataset.

Method Applied Value

1 hue augmentation (fraction) 0.015

2 saturation augmentation (fraction) 0.7

3 value augmentation (fraction) 0.4

4 rotation ±0.15

5 translation ± 0.1

6 scale ±0.5

7 flip left-right (probability) 0.5

8 mosaic (probability) 1.0

9 blur with a probability of applying the transform 0.5, with maximum Gaussian kernel size of 3 and 7

10 median blur parameters were set up identically as blur

11
contrast limited adaptive histogram equalization (CLAHE) with the probability of 0.01 262 and upper threshold

value for contrast limiting from 1 to 4.0 and tile grid size 8 × 8.

A short description of individual methods is as follows: hue augmentation is used
to randomly change the colors of the input image channels, so the result is the ability of
the model to consider alternative color schemes and scenes on input images. Saturation
augmentation increases the saturation of an image and it has similar characteristics as
hue augmentation, except that it adjusts how vivid the image is. Value augmentation is
the fraction of augmented images while augmenting the dataset for hue and saturation
augmentation. Rotation is the augmentation method that rotates the image to a certain
degree. Similar to rotation, translation translates images in different directions. The scale
parameter is used to scale the image by a certain percentage. Flip serves to reverse the
image with the option defined in a certain percentage. Mosaic is a quality option that
serves to train a neural network that works in a way similar to tiling, by four source images
and combining them into one. Blur and median blur are similar techniques, which are
used to cause the blurring effect to accomplish that the image is not ideal. CLAHE is a
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variant of adaptive histogram equalization (AHE), which takes care of over-amplification
of the contrast.

Accordingly, the entire work methodology can be reduced to one graphic representa-
tion, which is shown in Figure 4.

By dividing the data into five folds, we obtain five different subsets of data that were
pre-processed using resize. Afterward, each fold is trained four times using one of the
offered models together with the corresponding pre-trained weights. During training, the
dataset is additionally subjected to the augmentation described in this section. Finally, at
the end of the training, each model is exposed to evaluation methods and the results are
attached, and the best, meaning the model which showed the best performance based on
the evaluation metrics is selected. In the next section, the results of each fold are presented,
and the individual metrics used to evaluate the performance of the model are described.

Figure 4. Abbreviated work methodology.

3. Results and Discussion

In this section, an overview of the results obtained from this research is given. Each
model will be described with evaluation metrics that will also be described in this section.
In the end, the results obtained from this research will be discussed, and the advantages
and disadvantages of each network structure for the given challenge will be pointed out.

3.1. Verification of the Network Model

To evaluate the performance of the model, one of the key factors is the selection of
evaluation metrics. So, in this subsection, the following metrics will be defined: mean
average precision (mAP), precision, recall, and F1-score.

The mAP is used as a measure of computer vision model performance. The final result
is equal to the mean value of the average precision metrics of all individual model classes.
Its value ranges from 0 to 1, i.e., from 0% to 100%. The mathematical formula that describes
the mAP [52,53] calculation can be shown as

mAP =
1
n

k=n

∑
k=1

APk. (1)

In Equation (1), APk stands for the average precision of the individual class, while n is
the total number of the classes. The sum of all mean precision values for each class divided
by the total number of classes results in the final mAP value. The precision metric, as the
name suggests, determines the precision with which the model determines the class of the
object and is calculated using a mathematical expression [54]:

precision =
TP

TP + FP
. (2)
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In Equation (2), TP refers to true positive prediction, while FP is false positive predic-
tion. TP and FP are the numbers of correct positive and false positive predictions. More
precisely, the number of TP divided by the sum of TP and FP represents the precision of the
model expressed in the range from 0 to 1. Recall shows how many times the model found a
positive case while training the algorithm, and can be calculated using

recall =
TP

TP + FN
. (3)

Using Equation (3), it is possible to calculate the recall metric for a particular model.
The only difference from Equation (2) is that false negative (FN) is used in the denominator
instead of FP, and the final result is also on a scale from 0 to 1. The last in the series is the
F1-score metric, which is the ratio of the harmonic mean of precision and recall from a
given classifier. The mathematical description of F1-score is given by Equation (4), where
the final result is the ratio of the product recall and precision divided by their sum and
finally twice multiplied:

F1-score = 2 × recall × precision
recall + precision

, (4)

To evaluate the performance of the model network, the mean value (X̄) of each metric
is shown using the following equation [55]:

X̄ =
1
n

i=n

∑
i=1

X, (5)

Equation (5) is identical to the mathematical formula defined for mAP. The only
difference is that X̄ is used as a universal variable for all individual metrics, i.e., precision,
recall, mAP, and F1-score. The variable X indicates a value of a specific variable, while n is
the number of used samples.

The last in the series of selected metrics is the standard deviation (σ), which represents
the average amount of variability in the dataset used. The result σ tells how much each
score lies from the mean value. The given metric is shown as

σ =

√
∑(X − µ)2

N
, (6)

where:

• X each considered value;
• µ mean value of the considered population;
• N is the number of values in the considered population.

The definition of all the individual metrics is an introduction to the evaluation of the
individual obtained model. The only thing left is to present the obtained results, which is
done in the following subsections.

3.1.1. Results for YOLOv5n Model

Table 5 shows the training results of the YOLOv5n semantic segmentation algorithm
for localization detection and segmentation of PCBs. For each fold, i.e., each subset of data,
performance metrics were calculated for the semantic part, i.e., the segmented mask (M) of
the tile itself and the usual bounding box (B). It can be seen that the second fold converged
the fastest in as many as 360 epochs, with mAP in the amount of 0.992 and precision and
recall for B in the amounts of 0.993 and 0.995. As for the metrics related to M, the results
were identical. The best result was given by the model created by the first fold with mAP
in the amount of 0.994 for B and 0.995 for M, while precision and recall for both cases were
0.997 and 0.996. The final result of the YOLOv5n model was 0.987 in favor of mAP (B) and
0.992 for (M), while their σ was 0.0019 and 0.0025 for the corresponding case.
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Table 5. Results for YOLOv5n model.

Fold Early
Stopping at

Precision
(B) Recall (B) mAP (B) Precision

(M)
Recall

(M) mAP (M) F1-Score
(B)

F1-Score
(M)

1 949 0.997 0.996 0.994 0.997 0.996 0.995 0.997 0.997

2 360 0.993 0.995 0.992 0.993 0.995 0.992 0.994 0.994

3 630 0.997 0.994 0.991 0.997 0.994 0.991 0.995 0.995

4 368 0.996 1 0.993 0.996 1 0.993 0.998 0.998

5 503 0.996 0.996 0.990 0.996 0.996 0.990 0.996 0.996

X̄ 0.995 0.996 0.987 0.995 0.996 0.992 0.995 0.995

σ ±0.002 ±0.002 ±0.010 ±0.002 ±0.002 ±0.001 ±0.001 ±0.001

3.1.2. Results for YOLOv5s Model

The results for YOLOv5s have similar values as for the previous case and are presented
in Table 6. The fastest converging model was related to the third subset of data, i.e., the
third fold. The change in metric values after 273 epochs was not significant. The model
achieved results of precision, recall, and mAP related to B in the amounts of 0.996, 0.996,
and 0.99, while for B it achieved practically identical results. F1-score was 0.996 in both
cases. The best result was given by the first fold with mAP in the amount of 0.995, precision
0.996, and recall 0.996 for M, respectively, and 0.994, 0.996 and 0.996 for B. X̄ of mAP for B
and M were 0.992 and 0.991 with σ of 0.001 and 0.002.

Table 6. Results for YOLOv5s model.

Fold Early
Stopping at

Precision
(B) Recall (B) mAP (B) Precision

(M)
Recall

(M) mAP (M) F1-Score
(B)

F1-Score
(M)

1 964 0.996 0.996 0.994 0.996 0.996 0.995 0.996 0.996

2 297 0.993 0.995 0.990 0.993 0.995 0.989 0.994 0.994

3 273 0.996 0.996 0.990 0.996 0.996 0.990 0.996 0.996

4 540 0.996 1 0.994 0.996 1 0.994 0.998 0.998

5 424 0.996 0.996 0.991 0.996 0.996 0.990 0.996 0.996

X̄ 0.997 0.996 0.992 0.996 0.996 0.991 0.996 0.996

σ ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

3.1.3. Results for YOLOv5m Model

The medium model YOLOv5m had similar results as the previous two cases, but there
is a non-convergence of the results. In Table 7 in the first fold, unlike the previous two cases,
there is no early termination of training, i.e., did not obtain a qualitative solution for the
given problem. At the same time, in 1000 epochs, the model achieved precision, recall, and
mAP in the amounts of 0.997, 0.998, and 0.995 for B, respectively, 0.997, 0.998, and 0.995, i.e.,
identical results, for M. F1-score was 0.997 for both cases. It is important to emphasize the
training process was not completed because it needed more epochs to converge, but at 1000
epochs, it achieved the best results compared to the other four folds, as shown in Table 7.
Furthermore, the X̄ of precision, recall, mAP, and F1-score for B were 0.991, 0.993, 0.991,
and 0.992 for M, respectively, and 0.991, 0.993, 0.992, and 0.992 for B. The variation of σ was
not significant and was in a range from 0.00213 to 0.01041 for the corresponding metric.
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Table 7. Results for YOLOv5 medium model.

Fold Early
Stopping at

Precision
(B) Recall (B) mAP (B) Precision

(M)
Recall

(M) mAP (M) F1-Score
(B)

F1-Score
(M)

1 1000 0.997 0.998 0.995 0.997 0.998 0.995 0.997 0.997

2 331 0.973 0.988 0.989 0.973 0.988 0.991 0.980 0.980

3 490 0.993 0.984 0.990 0.993 0.984 0.991 0.989 0.989

4 583 0.996 1 0.994 0.996 1 0.993 0.998 0.998

5 506 0.996 0.996 0.990 0.996 0.996 0.989 0.996 0.996

X̄ 0.991 0.993 0.991 0.991 0.993 0.992 0.992 0.992

σ ±0.010 ±0.006 ±0.002 ±0.010 ±0.006 ±0.002 ±0.007 ±0.007

3.1.4. Results for YOLOv5l Model

The last YOLOv5 semantic segmentation network model used in this research is
YOLOv5l and its results are attached in Table 8. As in the previous case with YOLOv5m,
the first fold did not converge, i.e., it was necessary to provide more epochs to achieve the
possibility of converging results. The first fold was trained for 1000 epochs, and achieved
results for precision, recall, mAP, and F1-score in the amounts of 0.997, 0.997, 0.995, and
0.997 for B, while for M, it achieved 0.997, 0.997, 0.995 and 0.997. The model trained on the
fourth fold in 339 epochs converged the fastest with precision, recall, and mAP amounts
of 0.994, 0.993, and 0.993 for B, while M achieved results in the amount of 0.99459, 0.993,
and 0.993.

Table 8. Results for YOLOv5l model.

Fold Early
Stopping at

Precision
(B) Recall (B) mAP (B) Precision

(M)
Recall

(M) mAP (M) F1-Score
(B)

F1-Score
(M)

1 1000 0.997 0.997 0.995 0.997 0.997 0.995 0.997 0.997

2 440 0.992 0.995 0.990 0.992 0.995 0.988 0.994 0.994

3 411 0.928 0.931 0.987 0.928 0.931 0.988 0.929 0.929

4 339 0.994 0.993 0.993 0.994 0.993 0.993 0.993 0.993

5 547 0.996 0.996 0.989 0.996 0.996 0.990 0.996 0.996

X̄ 0.981 0.982 0.991 0.981 0.982 0.991 0.981 0.981

σ ±0.030 ±0.029 ±0.002 ±0.030 ±0.028 ±0.002 ±0.029 ±0.029

3.2. Discussion

To clarify the final results of the research, the final results of the particular neural
network model used will be additionally graphically presented.

A summary of all obtained mean values of individual metrics can be seen from the
bar plot shown in Figure 5. The metric values of each model are defined with the YOLOv5
associated network. The term mean stands for X̄ and std for σ, which were previously
explained. Each model achieved results in the amount of 0.9 for X̄, precision, recall, mAP,
and F1-score, respectively. Although YOLOv5n had high performance, looking at the global
level (concerning mAP(B) metric) , it was the worst. Additionally, the σ level has acceptably
low bounds as shown in Figure 6.

The most metric deviations were in the case of the YOLOv5l model, which is visible in
the bar plot of the large std. However, mostly the large model is used for detection and
segmentation with smaller objects, such as small microchips and USB slot connectors. In
this case, smaller models, such as nano and small, showed amazing performance, which
shows that even smaller models that are quite faster and require less working memory
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can perform the same, if not better, task, which greatly changes the nature of selecting
models for training detection and segmentation of this type. All of the stated claims can
be shown with examples of labeled and predicted classes that are shown in Appendix A,
where Figures A1 and A3 represent real classes of PCBs, while Figures A2 and A4 are
predicted classes.

Figure 5. Mean values of individual metrics for each YOLOv5 model.

In addition to the obtained metrics, the issue of integrating the obtained model into real
situations is raised, and thus the size of the model itself and the necessary computational
properties needed for detection and segmentation can be additionally described. Based
on the mAP metric for M, the four best models that achieved the highest results were
selected, and their memory size and the number of layers with the corresponding number
of parameters were compared.

Figure 6. The standard deviation of individual metrics for each YOLOv5 model.
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Regarding the selection of the best model shown in Table 9 for YOlOv5n, the first
fold was selected for YOLOv5n, while for YOLOv5s, YOLOv5m, and YOLOv5l, the fourth
models were selected. The YOLOv5n and YOLOv5s networks both have 165 layers, the
more significant difference is in the number of parameters used to compute the results.
The exported YOLOv5n model using the open neural network exchange (ONNX) format
is slightly more than 4 megabytes (MB), the YOLOv5s model is about 23 MB, while the
YOLOv5m and YOLOv5l are quite a bit larger, i.e., 85 and 186 MBs, which was expected
based on their structure. Besides the memory and computational requirements, one of the
most important features of the YOLOv5 algorithm is the inference speed in which YOLOv5
excels for each NN model. The inference time is calculated on the validation set (data that
were not in the test set) and the mean value was taken for all five splits under the conditions
that the IoU threshold was set to 0.6, while the confidence threshold was set to 0.9. As
shown in Table 9 YOLOv5 has the lowest inference time using the YOLOv5s model. The
YOLOv5n model is slower by 1 ms than the YOLOv5s model, while YOLOv5m is slower
by 5 ms and YOLOv5l by as much as 9 ms. Regardless of the time difference, each model is
within acceptable limits in terms of inference speed, which further confirms the possibility
of applying the YOLOv5 algorithm AI for a given challenge. Based on the results given,
which excel in every respect, the question of potential integration of the model arises, with
the winner being the YOLOv5n and YOLOv5s models, which are significantly ahead of the
other models with their memory size, metrics and inference speed . YOLOv5s model with
relatively high mAP performance and small σ is robust and almost perfectly recognizes all
13 classes of PCBs, and this trained model can be implemented in robotic systems for “pick
and place” purposes, for example, on the production line in PCB sorting factories.

Table 9. Final concluding discussion and selection of a model for implementation.

YOLOv5 Model Memory Size in
Kilobytes [KB]

Number of
Layers

Number of
Parameters

Mean Inference
Speed in

Milliseconds [ms]

YOLOv5n 4079 165 1,895,986 12.575

YOLOv5 29,481 165 7,430,786 11.175

YOLOv5m 85,242 220 21,700,850 16.225

YOLOv5l 186,171 275 47,533,602 20.651

4. Conclusions

This research presented the model size influence of YOLOv5 NN for the problem of
semantic segmentation. Different hyperparameters were tested, and the results show that
different hyperparameters influence different-sized model performance results. YOLOv5l is
the most commonly used NN, but smaller networks demonstrate satisfactory performance
as well, with up to six times smaller memory demand in the case of YOLOv5s, allowing for
wider application on edge devices. The achieved results make it possible to address the
initially posed hypotheses:

• YOLOv5 is capable of producing high-performance models for detection, localization,
and segmentation, no matter the model size (YOLOv5n, YOLOv5s, YOLOv5m or
YOLOv5l), with YOLOv5s providing results with the lowest σ;

• For the conditions present in the conducted research, the backbone of the model had
no influence;

• YOLOv5 shows satisfactory classification performance, with F1 scores above 0.99,
indicating possible use for sorting in production environments.

The conducted research was carried out on complete and undamaged PCB microcon-
trollers, and YOLOv5 satisfied the given requirements and enabled possible implementation
in real situations. Several limitations of the paper should be addressed in future work. Due
to the ideal conditions in which the dataset images were collected, it is important to note
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that the application in a real environment may result in poorer performance. It is necessary
to expand the dataset with images that are turned upside down, which are much more
complex compared to the dataset used in this research. Additionally, it is recommended to
test and, if necessary, retrain the YOLOv5 model on examples of multiple PCBs located in a
single frame. To fully verify the performance of the model it should be integrated into an
environment with a robotic manipulator to confirm and demonstrate that the developed
model can perform well in a realistic environment.
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AHE Adaptive Histogram Equalization
CLAHE Contrast Limited Adaptive Histogram Equalization
CT Computed Tomography
CV Cross Validation
FN False Negative
FP False Positive
FPN Feature Pyramid Network
IoU Intersection Over Union
IoUt Intersection Over Union Threshold
mAP Mean Average Precision
ML Machine Learning
ONNX Open Neural Network Exchange
PCB Printed Circuit Board
TP True Positive
TN True Negative
YOLOv5 You-Only-Look-Once version 5
YOLOv5n You-Only-Look-Once version 5—nano
YOLOv5s You-Only-Look-Once version 5—small
YOLOv5m You-Only-Look-Once version 5—medium
YOLOv5l You-Only-Look-Once version 5—large

Appendix A

In this part of the Appendix section, a presentation of the real class of PCBs (ground
truth) is given, and a predicted class using the YOLOv5 model is shown.

https://www.kaggle.com/datasets/frettapper/micropcb-images
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Figure A1. First validation of data marked with labels.
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Figure A2. Intended classes of the first validation.
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Figure A3. Second validation of data marked with labels.
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Figure A4. Intended classes of the second validation.
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