
Citation: Kóczi, D.; Németh, J.;

Sárosi, J. Two-Dimensional

Positioning with Machine Learning

in Virtual and Real Environments.

Electronics 2023, 12, 671. https://

doi.org/10.3390/electronics12030671

Academic Editor: Yue Wu

Received: 30 December 2022

Revised: 22 January 2023

Accepted: 26 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Two-Dimensional Positioning with Machine Learning in
Virtual and Real Environments
Dávid Kóczi 1,*, József Németh 2 and József Sárosi 1

1 Department of Mechatronics and Automation, Faculty of Engineering, University of Szeged,
6720 Szeged, Hungary

2 Ultinous, 1117 Budapest, Hungary
* Correspondence: koczid@mk.u-szeged.hu

Abstract: In this paper, a ball-on-plate control system driven only by a neural network agent is
presented. Apart from reinforcement learning, no other control solution or support was applied. The
implemented device, driven by two servo motors, learned by itself through thousands of iterations
how to keep the ball in the center of the resistive sensor. We compared the real-world performance of
agents trained in both a real-world and in a virtual environment. We also examined the efficacy of a
virtually pre-trained agent fine-tuned in the real environment. The obtained results were evaluated
and compared to see which approach makes a good basis for the implementation of a control task
implemented purely with a neural network.

Keywords: control; neural networks; ball and plate; deep learning; machine learning

1. Introduction

This work is looking for a solution to transfer artificial intelligence to a physical prob-
lem, namely a design and implementation of two-dimensional neural network-controlled
positioning. Balancing is one of the biggest challenges in the field of control. There are
many models, such as the inverted pendulum, which can be either double or triple, or the
ball-rail system, where the ball balances on a rail.

The ball-on-plate system is also a general example in the field of nonlinear con-
trol. Since many control methods have been implemented on such systems, this task
provides good foundations for the implementation and evaluation of purely artificial
intelligence-based controls. The system consists of a ball and a table that can be moved
in two dimensions. The ball position can be detected using a camera or some kind of
contact-based sensor. Depending on the design, the inclination of the table is usually
controlled by two or more motors. These servo motors can be used to tilt the plate along
two or more axes. The two-dimensional system can be understood as a combination of
two ball-and-beam systems; by tilting the plate, the ball can be moved and positioned on
the table. In terms of mechanical design, as Figure 1 shows, the servo motors are usually
connected to the table by two arms and cardan joints [1].

In the one design approach, two servo motors are considered as two independent
linear kinematic chains, such that the movement of one of the motors may result in a larger
displacement than the movement of the other motor [2]. In another approach, the table is
grasped like a gyroscope and the separate rings are moved by a servo drive [3].

To observe the ball position, two main approaches can be distinguished: computer-vision-based
and resistive sensor-based solutions. In the case of vision-based systems, both color and
mono color cameras can be utilized. Due to the nature of the task and the high computa-
tional demand, the image quality typically does not exceed high-definition resolution [4,5].
There are also solutions using stereo camera pairs [6]. The drawback of vision systems
is that achieving appropriate sampling frequency and accuracy requires more expensive
hardware. In contrast, resistive sensors are cheap and can provide high-resolution and

Electronics 2023, 12, 671. https://doi.org/10.3390/electronics12030671 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030671
https://doi.org/10.3390/electronics12030671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6303-5011
https://doi.org/10.3390/electronics12030671
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030671?type=check_update&version=2

Electronics 2023, 12, 671 2 of 15

high sampling rate [7]. There are also ball-on-plate system solutions in which laser distance
meters are placed parallel to the plane of the table that provide the position of the ball [8].

Electronics 2022, 11, x FOR PEER REVIEW 2 of 16

more expensive hardware. In contrast, resistive sensors are cheap and can provide high-
resolution and high sampling rate [7]. There are also ball-on-plate system solutions in
which laser distance meters are placed parallel to the plane of the table that provide the
position of the ball [8].

Figure 1. Ball-On-Plate illustration.

It is important to emphasize that although resistive sensors are excellent for this task
because of their price/value ratio, due to the analog signal processing the application of
appropriate filtering of the observed positions plays an important role in order to main-
tain the appropriate resolution and sampling rate. Both analog and digital filters can be
used to achieve the desired result [9–12]. Since the ball-on-plate system has attracted great
interest in the field of non-linear controls, many methods have been developed. PD or PID
type controls, sliding mode control, Fuzzy, Neural PID and Neural Fuzzy, as well as many
other adaptive control methods are some of the most notable examples [13–20].

In recent years, deep learning methods have shown tremendous progress and today
they are essential tools in many areas, e.g., in computer vision [21,22] and medical image
processing [23,24]. Reinforcement learning (RL) methods achieved previously unimagi-
nable success in controlling agents in high dimensional environments [25]. However, their
application in the case of real-world environments is cumbersome due to several reasons
[26]. Most importantly, the trial-and-error approach of RL methods is infeasible in many
cases (e.g., navigation of autonomous vehicles). An obvious solution to this issue can be
to virtually pre-train the RL agent before fine-tuning it in the real environment [27]. An-
other difficulty is the stochastic and noisy nature of real-world environments. Mitigating
these issues requires careful algorithm design [28] and reward engineering [29].

The aim of the current work was to implement a low-cost ball-on-plate system using
a resistive sensor, controlled by only a neural network, and to compare its performance to
that when a regular PID controller is applied instead.

2. Materials and Methods
One of the goals was to build a stable, portable system, thus the physical extent was

an important aspect. Furthermore, from the point of view of control, we preferred to use
low-voltage units that do not hinder mobility. When constructing and planning the sys-
tem, efforts were made to keep it low cost, and the availability of parts was also taken into
account. The resulting device is able to balance a steel ball placed on it close to the center
of the plate.

2.1. Physical Implementation
In terms of control, the movement in the two directions can be considered independ-

ent, so similar controllers can be applied on both axes. The main aspect during its imple-
mentation was that the position of the ball could be determined on the table, which forms

Figure 1. Ball-On-Plate illustration.

It is important to emphasize that although resistive sensors are excellent for this task
because of their price/value ratio, due to the analog signal processing the application of
appropriate filtering of the observed positions plays an important role in order to maintain
the appropriate resolution and sampling rate. Both analog and digital filters can be used to
achieve the desired result [9–12]. Since the ball-on-plate system has attracted great interest
in the field of non-linear controls, many methods have been developed. PD or PID type
controls, sliding mode control, Fuzzy, Neural PID and Neural Fuzzy, as well as many other
adaptive control methods are some of the most notable examples [13–20].

In recent years, deep learning methods have shown tremendous progress and today
they are essential tools in many areas, e.g., in computer vision [21,22] and medical image
processing [23,24]. Reinforcement learning (RL) methods achieved previously unimag-
inable success in controlling agents in high dimensional environments [25]. However,
their application in the case of real-world environments is cumbersome due to several
reasons [26]. Most importantly, the trial-and-error approach of RL methods is infeasible in
many cases (e.g., navigation of autonomous vehicles). An obvious solution to this issue
can be to virtually pre-train the RL agent before fine-tuning it in the real environment [27].
Another difficulty is the stochastic and noisy nature of real-world environments. Mitigating
these issues requires careful algorithm design [28] and reward engineering [29].

The aim of the current work was to implement a low-cost ball-on-plate system using a
resistive sensor, controlled by only a neural network, and to compare its performance to
that when a regular PID controller is applied instead.

2. Materials and Methods

One of the goals was to build a stable, portable system, thus the physical extent was
an important aspect. Furthermore, from the point of view of control, we preferred to use
low-voltage units that do not hinder mobility. When constructing and planning the system,
efforts were made to keep it low cost, and the availability of parts was also taken into
account. The resulting device is able to balance a steel ball placed on it close to the center of
the plate.

2.1. Physical Implementation

In terms of control, the movement in the two directions can be considered independent,
so similar controllers can be applied on both axes. The main aspect during its implemen-
tation was that the position of the ball could be determined on the table, which forms an
input for the neural network agent. The output of the agent is the degree of rotation of the
table along the two axes.

The main characteristics of the physical system:

Electronics 2023, 12, 671 3 of 15

• Maximum enclosure dimensions: H/W/W: 250/250/300 mm.
• Touch panel: 225 × 173 mm.
• Table angular adjustment accuracy: ±0.1 mm.
• Table tilting speed as axis minimum: 0.3 s/60 ◦C.
• At least 10 ◦C for angular rotation perpendicular to the X and Y axes.

Main features of the electrical system:

• Application of low voltage system (<24 V).
• Position can be determined in every 0.05 s.
• Application of two servo motors for the angular rotation of the table.

Simplifications were made on the mathematical model of the physical system, such
that the displacements of the ball in the X and Y directions on the table are considered
independent of each other, so the movement in the X and Y directions can be modeled
independently and identically. In the simplified one-dimensional model, the table is
positioned using a servo motor, such that one end of an arm is attached to the servo motor
and the other one to the table. In this model, the ball can only move along one line, therefore
the degree of freedom of the system is one [30], as illustrated in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 16

an input for the neural network agent. The output of the agent is the degree of rotation of
the table along the two axes.

The main characteristics of the physical system:
• Maximum enclosure dimensions: H/W/W: 250/250/300 mm.
• Touch panel: 225 × 173 mm.
• Table angular adjustment accuracy: ±0.1 mm.
• Table tilting speed as axis minimum: 0.3 s/60 °C.
• At least 10 °C for angular rotation perpendicular to the X and Y axes.

Main features of the electrical system:
• Application of low voltage system (<24 V).
• Position can be determined in every 0.05 s.
• Application of two servo motors for the angular rotation of the table.

Simplifications were made on the mathematical model of the physical system, such
that the displacements of the ball in the X and Y directions on the table are considered
independent of each other, so the movement in the X and Y directions can be modeled
independently and identically. In the simplified one-dimensional model, the table is po-
sitioned using a servo motor, such that one end of an arm is attached to the servo motor
and the other one to the table. In this model, the ball can only move along one line, there-
fore the degree of freedom of the system is one [30], as illustrated in Figure 2.

Figure 2. Kinematic diagram of a one-dimensional model.

The notations of the mathematical model are shown in Table 1.

Table 1. Notations.

Notation Description
m ball mass
R ball diameter
d shaft length
g gravitational acceleration
L table length
h ball position
aX Ball acceleration X component
aY Ball acceleration Y component

α–alpha table tilt angle-X
β–beta table tilt angle-Y
Θ–theta tilt angle of servo motor

Figure 2. Kinematic diagram of a one-dimensional model.

The notations of the mathematical model are shown in Table 1.

Table 1. Notations.

Notation Description

m ball mass
R ball diameter
d shaft length
g gravitational acceleration
L table length
h ball position

aX Ball acceleration X component
aY Ball acceleration Y component

α–alpha table tilt angle-X
β–beta table tilt angle-Y

Θ–theta tilt angle of servo motor

If the position of the servo motor changes, it results in an angular rotation of the table.
To model the system, the following simplifications were made [31]:

• The connection between the ball and the table is continuous and non-slip.
• The ball is completely homogeneous and regular.
• Vibrations resulting from movement can be neglected.

Electronics 2023, 12, 671 4 of 15

The mathematical model of the system can be given using a simple equation of motion,
which has a constant form frictionless incline.

aX = g× sinα (1)

aY = g× sinβ (2)

During the design of the system (see Figure 3), its dimensions and components have
been chosen so that they do not affect portability. Additionally, it had to be able to withstand
the forces caused by the large number of trials required by the neural network learning
agent. The device is based on a 300 × 250 × 5 (Material designation: AlMgSi 1) aluminum
plate, which provides sufficient stability and is easier to work with than, for example,
stainless steel. The main shaft, which is made of turned stainless steel (Material quality:
KO33) with an outer diameter of 20 mm and an internal thread at both ends, is connected
to the base with an M10 screw at the bottom, and at the top with an M5 screw to the cardan
joint. The DL3017 type servo motors manufactured by SRT are able to move the table with
sufficient speed and precision. In terms of its operating range, it can produce an angular
rotation between −90 and 90 ◦C, which far exceeds our requirements. Its adjustment speed
is 0.15 s/60 ◦C, which also meets expectations.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 16

If the position of the servo motor changes, it results in an angular rotation of the table.
To model the system, the following simplifications were made [31]:

• The connection between the ball and the table is continuous and non-slip.
• The ball is completely homogeneous and regular.
• Vibrations resulting from movement can be neglected.

The mathematical model of the system can be given using a simple equation of mo-
tion, which has a constant form frictionless incline. 𝑎 = 𝑔 𝑠𝑖𝑛𝛼 (1)𝑎 = 𝑔 𝑠𝑖𝑛𝛽 (2)

During the design of the system (see Figure 3), its dimensions and components have
been chosen so that they do not affect portability. Additionally, it had to be able to with-
stand the forces caused by the large number of trials required by the neural network learn-
ing agent. The device is based on a 300 × 250 × 5 (Material designation: AlMgSi 1) alumi-
num plate, which provides sufficient stability and is easier to work with than, for example,
stainless steel. The main shaft, which is made of turned stainless steel (Material quality:
KO33) with an outer diameter of 20 mm and an internal thread at both ends, is connected
to the base with an M10 screw at the bottom, and at the top with an M5 screw to the cardan
joint. The DL3017 type servo motors manufactured by SRT are able to move the table with
sufficient speed and precision. In terms of its operating range, it can produce an angular
rotation between −90 and 90 °C, which far exceeds our requirements. Its adjustment speed
is 0.15 s/60 °C, which also meets expectations.

Figure 3. Ball-on-plate system dimensions [mm].

As Figure 4 shows, the basis of the system is one Raspberry Pi 3B+, supported by one
servo HAT and an Arduino nano board for analog signal processing.

Figure 3. Ball-on-plate system dimensions [mm].

As Figure 4 shows, the basis of the system is one Raspberry Pi 3B+, supported by one
servo HAT and an Arduino nano board for analog signal processing.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 16

Figure 4. Ball-on-plate system dimensions.

The electrical connection is shown in Figure 4 and Table 2. The core of the system is
a Raspberry Pi 3B+ minicomputer with a 1.4 GHz processor and 1 GB of DDR2 RAM,
power supply 5VDC. Although it does not have a video card, it has HDMI output and 4
USB ports. Computing capacity of Raspberry Pi is 6,2 GFLOPS, the computing demand of
the neural network (with layers of size 8, 256, 128, and 25 neurons, see Section 2.2 for more
details) is: 𝑖 = 𝑛 + 𝑛 + 𝑛 ∗ 𝑛 + 𝑛 + 𝑛 ∗ 2 (3)𝑖 = 8 + 256 + 256 + 128 + 128 + 25 ∗ 2 = 76032 (4)

𝑖 = 6.2 ∗ 1076032 = 81544.61 (5)

where 𝑖 is the Flops demand of neural network, and 𝑖 is the number of neu-
ral network executions possible within one second. Since the neural network agent is ex-
ecuted only once in every 0.05 s, the required number of operations is 20. The Raspberry
Pi 3B+ has enough computational capacity.

Table 2. Electrical components.

Number Description
1 Raspberry Pi 3B+
2 Adafruit 16C PWM HAT
3 Arduino UNO Rev3
4 DL3017 LV Digital Servo
5 10.4″ Resistive touch panel (4 wire)
6 Power supply: 5 V DC 3.0 A
7 Power supply: 5 V DC 2.1 A

Since Raspberry Pi’s clock signal generation does not allow for accurate and precise
PWM signal generation, when setting the servo motor via the GPIO (General Purpose
Input Output) outputs, “spikes” in the signal may occasionally be experienced, which
greatly reduces the control accuracy. Therefore, a separate servo controller is required.
For this purpose, the Raspberry HAT (Hardware Attached on Top) connector is used, to
which an “Adafruit 16-Channel PWM/Servo” servo controller is connected. The servo
controller can handle 16 servo motors and has a corresponding Python 3.8 software li-
brary, which can be used to control the servo motors.

To determine the position of the ball, a 10.4″ 4-wire resistive touch panel was in-
stalled, with an insulating/spacer layer between two pairs of conducting layers. The two

Figure 4. Ball-on-plate system dimensions.

The electrical connection is shown in Figure 4 and Table 2. The core of the system is a
Raspberry Pi 3B+ minicomputer with a 1.4 GHz processor and 1 GB of DDR2 RAM, power

Electronics 2023, 12, 671 5 of 15

supply 5VDC. Although it does not have a video card, it has HDMI output and 4 USB ports.
Computing capacity of Raspberry Pi is 6,2 GFLOPS, the computing demand of the neural
network (with layers of size 8, 256, 128, and 25 neurons, see Section 2.2 for more details) is:

iDQN = (nin + nh1 + nh1 ∗ nh2 + nh2 + nhout) ∗ 2 (3)

iDQN = (8 + 256 + 256 + 128 + 128 + 25) ∗ 2 = 76032 (4)

iraspberry =
6.2 ∗ 109

76032
= 81544.61 (5)

where iDQN is the Flops demand of neural network, and iraspberry is the number of neural
network executions possible within one second. Since the neural network agent is executed
only once in every 0.05 s, the required number of operations is 20. The Raspberry Pi 3B+
has enough computational capacity.

Table 2. Electrical components.

Number Description

1 Raspberry Pi 3B+
2 Adafruit 16C PWM HAT
3 Arduino UNO Rev3
4 DL3017 LV Digital Servo
5 10.4′′ Resistive touch panel (4 wire)
6 Power supply: 5 V DC 3.0 A
7 Power supply: 5 V DC 2.1 A

Since Raspberry Pi’s clock signal generation does not allow for accurate and precise
PWM signal generation, when setting the servo motor via the GPIO (General Purpose Input
Output) outputs, “spikes” in the signal may occasionally be experienced, which greatly
reduces the control accuracy. Therefore, a separate servo controller is required. For this
purpose, the Raspberry HAT (Hardware Attached on Top) connector is used, to which an
“Adafruit 16-Channel PWM/Servo” servo controller is connected. The servo controller can
handle 16 servo motors and has a corresponding Python 3.8 software library, which can be
used to control the servo motors.

To determine the position of the ball, a 10.4′′ 4-wire resistive touch panel was installed,
with an insulating/spacer layer between two pairs of conducting layers. The two pairs of
conducting layers are charge carriers, the charge of which changes when pressed together,
so it is possible to determine the position of the ball. Since the signal processing is performed
in an analog way, the position tracking is fast enough for the task.

Figure 5 shows the connection of the four-wire touch panel. Each layer can be con-
sidered as a connection of two potentiometers, which can be read in such a way that by
connecting a voltage to one leg of the panel, we can estimate the X and Y coordinates from
the degree of voltage change on the corresponding leg [32].

The analog inputs of Arduino are 4 wires, each for one connection. It uses connections
A1 and A3 as outputs, and connections A0 and A2 as inputs. Thus, when the position
of the ball changes on the table, the resistance of the panel changes in proportion with it,
this way modifying the output voltage. The panel acts as a voltage divider. To read the
position, we fitted the coordinate system according to Figure 6 to obtain the coordinates in
the Arduino program. The entire range is divided into 256 units in both the X and Y axes,
and then the obtained value is shifted by 128, such that the center of the coordinate system
is in the geometric center of the panel [33].

X =

(
xread

1024/256

)
− 128 (6)

Electronics 2023, 12, 671 6 of 15

Y =

(
yread

1024/256

)
− 128 (7)

Electronics 2022, 11, x FOR PEER REVIEW 6 of 16

pairs of conducting layers are charge carriers, the charge of which changes when pressed
together, so it is possible to determine the position of the ball. Since the signal processing
is performed in an analog way, the position tracking is fast enough for the task.

Figure 5 shows the connection of the four-wire touch panel. Each layer can be con-
sidered as a connection of two potentiometers, which can be read in such a way that by
connecting a voltage to one leg of the panel, we can estimate the X and Y coordinates from
the degree of voltage change on the corresponding leg [32].

Figure 5. Resistive touch-screen wiring diagram.

The analog inputs of Arduino are 4 wires, each for one connection. It uses connections
A1 and A3 as outputs, and connections A0 and A2 as inputs. Thus, when the position of
the ball changes on the table, the resistance of the panel changes in proportion with it, this
way modifying the output voltage. The panel acts as a voltage divider. To read the posi-
tion, we fitted the coordinate system according to Figure 6 to obtain the coordinates in the
Arduino program. The entire range is divided into 256 units in both the X and Y axes, and
then the obtained value is shifted by 128, such that the center of the coordinate system is
in the geometric center of the panel [33]. 𝑋 = 𝑥1024/256 − 128 (6)𝑌 = 𝑦1024/256 − 128 (7)

The outer 5 mm of the panel is not taken into account when scanning, as the scanned
values are uncertain there. The scanned values are then transmitted to the Raspberry via
a serial communication port in text format. The Arduino sends the position data with a
frequency of 200 Hz.

The inaccuracy of the scan is greatly influenced by the position of the ball on the table,
the error rate on the outer edge of the panel is larger, according to the coordinate system
it can be up to 30–50 mm. The degree of error at the center can be set between ±5 mm. This
requires the application of a filter in the main program.

Figure 5. Resistive touch-screen wiring diagram.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 16

Figure 6. Resistive touch-screen coordinate system.

The RL agent is trained through a large number of trials. To prevent the ball from
falling during the training, we applied a barrier on the sides of the plate, as shown in
Figure 7. The ball diameter is R = 33.33 mm and the mass of the ball is m = 151 g.

Figure 7. Physical implementation.

The entire program has been written in Python, except the reading of the raw signal
of the resistive panel that is written in the Arduino environment. The RL agent was im-
plemented in the PyTorch deep-learning framework. The software also implements a vir-
tual environment which can be used in-place of the real environment.

Filtering was applied on the ball position raw measurements to cope with noisy in-
puts and also to obtain speed estimates which served as additional input to the neural
network agent. Two types of filters, Kálmán filter and a simple linear regression-based
filter were tested, we obtained better results with the latter one. In case of linear regres-
sion, we considered position measurements of the last 0.2 s (~40 measurements with po-
sition measurement frequency of 200 Hz). After fitting, outlier measurements (with devi-
ation greater than two times of the average deviation) were ignored, and a new line was
fitted on the remaining points. The effect of this filtering approach is demonstrated in
Figure 8.

Figure 6. Resistive touch-screen coordinate system.

The outer 5 mm of the panel is not taken into account when scanning, as the scanned
values are uncertain there. The scanned values are then transmitted to the Raspberry via
a serial communication port in text format. The Arduino sends the position data with a
frequency of 200 Hz.

The inaccuracy of the scan is greatly influenced by the position of the ball on the table,
the error rate on the outer edge of the panel is larger, according to the coordinate system it
can be up to 30–50 mm. The degree of error at the center can be set between ±5 mm. This
requires the application of a filter in the main program.

The RL agent is trained through a large number of trials. To prevent the ball from
falling during the training, we applied a barrier on the sides of the plate, as shown in
Figure 7. The ball diameter is R = 33.33 mm and the mass of the ball is m = 151 g.

The entire program has been written in Python, except the reading of the raw signal
of the resistive panel that is written in the Arduino environment. The RL agent was
implemented in the PyTorch deep-learning framework. The software also implements a
virtual environment which can be used in-place of the real environment.

Filtering was applied on the ball position raw measurements to cope with noisy
inputs and also to obtain speed estimates which served as additional input to the neural
network agent. Two types of filters, Kálmán filter and a simple linear regression-based
filter were tested, we obtained better results with the latter one. In case of linear regression,
we considered position measurements of the last 0.2 s (~40 measurements with position

Electronics 2023, 12, 671 7 of 15

measurement frequency of 200 Hz). After fitting, outlier measurements (with deviation
greater than two times of the average deviation) were ignored, and a new line was fitted on
the remaining points. The effect of this filtering approach is demonstrated in Figure 8.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 16

Figure 6. Resistive touch-screen coordinate system.

The RL agent is trained through a large number of trials. To prevent the ball from
falling during the training, we applied a barrier on the sides of the plate, as shown in
Figure 7. The ball diameter is R = 33.33 mm and the mass of the ball is m = 151 g.

Figure 7. Physical implementation.

The entire program has been written in Python, except the reading of the raw signal
of the resistive panel that is written in the Arduino environment. The RL agent was im-
plemented in the PyTorch deep-learning framework. The software also implements a vir-
tual environment which can be used in-place of the real environment.

Filtering was applied on the ball position raw measurements to cope with noisy in-
puts and also to obtain speed estimates which served as additional input to the neural
network agent. Two types of filters, Kálmán filter and a simple linear regression-based
filter were tested, we obtained better results with the latter one. In case of linear regres-
sion, we considered position measurements of the last 0.2 s (~40 measurements with po-
sition measurement frequency of 200 Hz). After fitting, outlier measurements (with devi-
ation greater than two times of the average deviation) were ignored, and a new line was
fitted on the remaining points. The effect of this filtering approach is demonstrated in
Figure 8.

Figure 7. Physical implementation.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 16

Figure 8. Example filtering result.

2.2. Control with Reinforcement Learning
Our goal was to examine the efficacy of reinforcement learning in controlling a real-

world ball-on-plate balancing system. Reinforcement learning algorithms can be applied
in environments in which an appropriate reward function can be defined. The rewards
provide feedback to the agent on the goodness of its actions. In most cases, however, the
reward is sparse and delayed, so effectiveness of a given action cannot be determined
based only on the reward received right after performing an action. For example, in our
case, it is difficult to determine how a slight modification of the inclination of the plate
affects the future position of the ball. To cope with such sparse and delayed feedback,
reinforcement learning algorithms seek to learn to maximize the expected cumulative fu-
ture rewards.

To apply RL, first the action space had to be specified. The maximal angle of inclina-
tion of the plate was restricted to ±4 degrees in both directions. As the chosen learning
algorithm is designed to output discrete actions, we divided the continuous ±4 degrees
range into 40 units. At each time-step, the agent was allowed to modify the inclination by
−2, −1, 0, +1, or +2 units, in both directions. Thus, the size of the action space was 5 × 5 =
25. Therefore, one output action of the agent can modify the inclination by 0, or 4 ∗ =0.1, or 4 ∗ = 0.2 degrees in both directions.

The software interface of the servo motors allows the motor position to be specified
in degrees. The relation between motor positions and plate inclination is considered lin-
ear, the ±4 degrees plate inclination range in the two directions corresponded to motor
position ranges ±9.17 degrees and ±17.19 degrees.

The update frequency of the system was 20 Hz, allowing the agent to update the state
of the environment in every 0.05 s. We found that this setting allows the agent to perform
both coarse interventions to drive the ball towards the center of the plate, and fine motions
to keep the ball close to the center.

To make the balancing problem learnable for reinforcement learning algorithms, the
reward function had to be defined. Although our only goal was to keep the ball close to
the center of the plate, we found that defining the reward to simply be inversely propor-
tional to the distance of the ball to the center is insufficient. The agent can achieve a rela-
tively high cumulative reward by moving the ball back and forth between two opposite
sides or opposite corners of the plate (note that for training, we applied rails on the edges
of the plate to prevent the ball from falling). While this simple policy is suboptimal, it
provides a high total reward and we found that the agent is not able to move towards the
optimal solution.

Therefore, we complemented the reward function with a term that penalizes the
speed of the ball (determined using the filter applied on the position measurements) and
with another term that rewards the agent when the ball is located inside the central 25%

Figure 8. Example filtering result.

2.2. Control with Reinforcement Learning

Our goal was to examine the efficacy of reinforcement learning in controlling a
real-world ball-on-plate balancing system. Reinforcement learning algorithms can be
applied in environments in which an appropriate reward function can be defined. The re-
wards provide feedback to the agent on the goodness of its actions. In most cases, however,
the reward is sparse and delayed, so effectiveness of a given action cannot be determined
based only on the reward received right after performing an action. For example, in our
case, it is difficult to determine how a slight modification of the inclination of the plate
affects the future position of the ball. To cope with such sparse and delayed feedback,
reinforcement learning algorithms seek to learn to maximize the expected cumulative
future rewards.

To apply RL, first the action space had to be specified. The maximal angle of inclination
of the plate was restricted to±4 degrees in both directions. As the chosen learning algorithm
is designed to output discrete actions, we divided the continuous ±4 degrees range into
40 units. At each time-step, the agent was allowed to modify the inclination by −2, −1,

Electronics 2023, 12, 671 8 of 15

0, +1, or +2 units, in both directions. Thus, the size of the action space was 5 × 5 = 25.
Therefore, one output action of the agent can modify the inclination by 0, or 4 ∗ 1

40 = 0.1, or
4 ∗ 2

40 = 0.2 degrees in both directions.
The software interface of the servo motors allows the motor position to be specified in

degrees. The relation between motor positions and plate inclination is considered linear,
the±4 degrees plate inclination range in the two directions corresponded to motor position
ranges ±9.17 degrees and ±17.19 degrees.

The update frequency of the system was 20 Hz, allowing the agent to update the state
of the environment in every 0.05 s. We found that this setting allows the agent to perform
both coarse interventions to drive the ball towards the center of the plate, and fine motions
to keep the ball close to the center.

To make the balancing problem learnable for reinforcement learning algorithms, the
reward function had to be defined. Although our only goal was to keep the ball close to the
center of the plate, we found that defining the reward to simply be inversely proportional
to the distance of the ball to the center is insufficient. The agent can achieve a relatively
high cumulative reward by moving the ball back and forth between two opposite sides or
opposite corners of the plate (note that for training, we applied rails on the edges of the plate
to prevent the ball from falling). While this simple policy is suboptimal, it provides a high
total reward and we found that the agent is not able to move towards the optimal solution.

Therefore, we complemented the reward function with a term that penalizes the speed
of the ball (determined using the filter applied on the position measurements) and with
another term that rewards the agent when the ball is located inside the central 25% of
the area. More specifically, let denote (x, y) the 2-dimensional relative position of the ball,
i.e., both x and y take values from [−1, 1]. We also consider the 2D speed of the ball

(
vx, vy

)
,

determined using filtering. The overall reward function can then be defined as:

R =
⌊

K−
(

x2 + y2
)
−
(

vx
2 + vy

2
)
c

0
(8)

where we set penalty K = 10 when |x| < 0.5 or |y| < 0.5, and K = 0, otherwise, while
bac0 = max{a, 0}.

For the learning agent, the Deep Q-Network (DQN) [21] algorithm was chosen. It is
implemented as a neural network which receives the state of the environment as input and
outputs the so-called Q-values of the possible actions. The action corresponding to the
maximal Q-value is chosen. Q-learning seeks a policy that maximizes the expected value of
the total reward received in all the successive steps. The Q-value for a given state-action
pair is defined by the following recursive function:

Q(s, a) = R(s, a) + γ ∗maxaQ
(
s′a
)
, (9)

where s and a denote the current state and action, respectively, and s′ is the resulting state
in the next time-step, while R(s, a) is the reward function.

In DQN, Q(s, a) is approximated by a neural network Qθ(s, a) with parameter vector
θ. It is trained to minimize the following objective function (loss function):

Es,a,r,s′
[
Qθ(s, a)−

(
r + γ ∗maxaQθ

(
s′, a

))]2 (10)

where the expectation is taken over state transitions (s, a, r, s′) collected from the environ-
ment through trials, see Figure 9.

We used a simple feedforward neural network with two hidden layers with 256 and
128 neurons, each neuron is followed by SiLU activation [34]. The eight neurons of the input
layer received the two-dimensional position and speed of the ball, the current horizontal
and vertical angle of inclination of the plate, and the previous action (horizontal and
vertical modification of the inclination, in units). The network outputs the Q-values for the
25 possible actions.

Electronics 2023, 12, 671 9 of 15

To train the agent, we collected experiences by running trials of length 6 s (120 time-steps).
After each trial, the neural network was updated by 64 training iterations using experiences
collected in the last 50 trials. An Adam optimizer with a learning rate of 0.0001 and batch
size of 64 was used. The discount factor “γ” in Equation (10) was set to 0.9, while we applied
the “ε”-greedy strategy to explore the state–action space, “ε” decreased exponentially with
power 0.9995 from 1.0 to 0.1. The pseudo-code of the learning method can be found in
Algorithm 1. There was no predetermined maximum number of training steps, instead
the training finished when the reward (averaged over the latest 100 episodes) stopped
increasing. The received rewards and the value of the loss function in Equation (10) during
training in the real environment can be seen in Figure 10. The increasing loss is not
uncommon in RL as the Q-function in Equation (9) changes during training; because of that,
the improving agent receives higher rewards. Therefore, it also increases the quadratic loss
in Equation (10). Note, however, that when the reward peaks, the loss starts to decrease
indicating that the agent is able to approximate the Q-function.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 16

of the area. More specifically, let denote (x, y) the 2-dimensional relative position of the
ball, i.e., both x and y take values from [−1, 1]. We also consider the 2D speed of the ball 𝑣 , 𝑣 , determined using filtering. The overall reward function can then be defined as: 𝑅 = 𝐾 − 𝑥 + 𝑦 − 𝑣 + 𝑣 (8)

where we set penalty 𝐾 = 10 when |𝑥| < 0.5 or |𝑦| < 0.5, and 𝐾 = 0, otherwise, while ⌊𝑎⌋ = max 𝑎, 0 .
For the learning agent, the Deep Q-Network (DQN) [21] algorithm was chosen. It is

implemented as a neural network which receives the state of the environment as input
and outputs the so-called Q-values of the possible actions. The action corresponding to
the maximal Q-value is chosen. Q-learning seeks a policy that maximizes the expected
value of the total reward received in all the successive steps. The Q-value for a given state-
action pair is defined by the following recursive function: 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ∗ 𝑚𝑎𝑥 𝑄 𝑠 𝑎 , (9)

where s and a denote the current state and action, respectively, and s’ is the resulting state
in the next time-step, while 𝑅 𝑠, 𝑎 is the reward function.

In DQN, 𝑄 𝑠, 𝑎 is approximated by a neural network 𝑄 𝑠, 𝑎 with parameter vec-
tor 𝜃. It is trained to minimize the following objective function (loss function): 𝐸 , , , 𝑄 𝑠, 𝑎 − 𝑟 + 𝛾 ∗ 𝑚𝑎𝑥 𝑄 𝑠 , 𝑎 (10)

where the expectation is taken over state transitions (s, a, r, s’) collected from the environ-
ment through trials, see Figure 9.

Figure 9. State-transition experiences are collected during trials (left). These experiences are then
used to train the agent (right).

We used a simple feedforward neural network with two hidden layers with 256 and
128 neurons, each neuron is followed by SiLU activation [34]. The eight neurons of the
input layer received the two-dimensional position and speed of the ball, the current hori-
zontal and vertical angle of inclination of the plate, and the previous action (horizontal
and vertical modification of the inclination, in units). The network outputs the Q-values
for the 25 possible actions.

To train the agent, we collected experiences by running trials of length 6 s (120 time-
steps). After each trial, the neural network was updated by 64 training iterations using
experiences collected in the last 50 trials. An Adam optimizer with a learning rate of 0.0001
and batch size of 64 was used. The discount factor “γ” in Equation (10) was set to 0.9,
while we applied the “ε”-greedy strategy to explore the state–action space, “ε” decreased
exponentially with power 0.9995 from 1.0 to 0.1. The pseudo-code of the learning method
can be found in Algorithm 1. There was no predetermined maximum number of training
steps, instead the training finished when the reward (averaged over the latest 100

Figure 9. State-transition experiences are collected during trials (left). These experiences are then
used to train the agent (right).

Electronics 2022, 11, x FOR PEER REVIEW 10 of 16

episodes) stopped increasing. The received rewards and the value of the loss function in
Equation (10) during training in the real environment can be seen in Figure 10. The in-
creasing loss is not uncommon in RL as the Q-function in Equation (9) changes during
training; because of that, the improving agent receives higher rewards. Therefore, it also
increases the quadratic loss in Equation (10). Note, however, that when the reward peaks,
the loss starts to decrease indicating that the agent is able to approximate the Q-function.

We followed this learning method in both virtual and real-world environments. To
fine-tune a virtually pre-trained agent in the real-world environment, we decreased epsi-
lon from 0.3 to 0.1.

Figure 10. Training in a real environment. Average rewards collected in each trial are shown.
Through experience, we found that an average reward of ~7 meant that the agent was able to keep
the ball close to the center.

Algorithm 1: Deep Q-Learning
1: Inputs: Episode length T, number of training iterations N, mini-batch size S, experi-
ence replay dataset size M, initial 𝜀, decay factor k, discount factor 𝛾
2: Output: Trained neural network 𝑄
3: Initialize neural network 𝑄 and experience replay dataset D
4: Repeat
5: # Trial phase
6: Observe environment state 𝑠
7: For t=1..T do
8: With probability 𝜀 perform a random action 𝑎
9: otherwise perform 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄 𝑠 , 𝑎
10: Observe reward 𝑟 and next environment state 𝑠
11: Store transition 𝑠 , 𝑎 , 𝑟, 𝑠 in D
12: Keep in D only transitions of the last M episodes
13: # Training phase
14: For N iterations do
15: Sample a random transition mini-batch 𝐵 = 𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑖 = 1. . 𝑆 from D
16: Compute loss according to Equation (10) using discount factor 𝛾
17: Perform an optimization step using Adam optimizer 18: 𝜀 ← k𝜀
19: Until the averaged reward stops increasing

3. Results

Figure 10. Training in a real environment. Average rewards collected in each trial are shown. Through
experience, we found that an average reward of ~7 meant that the agent was able to keep the ball
close to the center.

We followed this learning method in both virtual and real-world environments. To
fine-tune a virtually pre-trained agent in the real-world environment, we decreased epsilon
from 0.3 to 0.1.

Electronics 2023, 12, 671 10 of 15

Algorithm 1: Deep Q-Learning

1: Inputs: Episode length T, number of training iterations N, mini-batch size S, experience replay
dataset size M, initial ε, decay factor k, discount factor γ
2: Output: Trained neural network Qθ

3: Initialize neural network Qθ and experience replay dataset D
4: Repeat
5: # Trial phase
6: Observe environment state s1
7: For t = 1..T do
8: With probability ε perform a random action at
9: otherwise perform at = argmaxaQθ(st, a)
10: Observe reward r and next environment state st+1
11: Store transition (st, at, r, st+1) in D
12: Keep in D only transitions of the last M episodes
13: # Training phase
14: For N iterations do
15: Sample a random transition mini-batch B =

{(
si, ai, ri, s′i

)
, i = 1..S

}
from D

16: Compute loss according to Equation (10) using discount factor γ
17: Perform an optimization step using Adam optimizer
18: ε← kε
19: Until the averaged reward stops increasing

3. Results

DQN agents were trained in both the virtual and the real environments. As a third
experiment, the former one was fine-tuned in the real environment. As the virtual environ-
ment mimics the dimensions and parameters of the real one, the results can be compared.
Figure 10 shows that in the real environment around 3000 training iterations were required.

In the real environment, the learning takes about 6 h as one trial iteration takes 6 s.
Contrary to this, in the virtual environment the training takes a few minutes and only
around 1700 iterations are required. After virtual training, it required only 300 iterations in
the real environment to fine-tune the agent. It means that the training time takes less than
1 h, in this case.

We tested both a virtually trained and a real-world-trained agent in the real environ-
ment. In both cases, the system managed to keep the ball on the table, but their accuracy
and settling time is different. As Figure 11 shows, running the agent trained in the real
environment, the system is able to keep the ball close to the center position.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 16

DQN agents were trained in both the virtual and the real environments. As a third
experiment, the former one was fine-tuned in the real environment. As the virtual envi-
ronment mimics the dimensions and parameters of the real one, the results can be com-
pared. Figure 10 shows that in the real environment around 3000 training iterations were
required.

In the real environment, the learning takes about 6 h as one trial iteration takes 6 s.
Contrary to this, in the virtual environment the training takes a few minutes and only
around 1700 iterations are required. After virtual training, it required only 300 iterations
in the real environment to fine-tune the agent. It means that the training time takes less
than 1 h, in this case.

We tested both a virtually trained and a real-world-trained agent in the real environ-
ment. In both cases, the system managed to keep the ball on the table, but their accuracy
and settling time is different. As Figure 11 shows, running the agent trained in the real
environment, the system is able to keep the ball close to the center position.

(a) (b)

Figure 11. (a) Example run: X and Y positions in the real environment using an agent trained in
the real environment; (b) position accuracy in 2 dimensions.

For testing and evaluating the agents, we run 200 episodes of 6 s. In the case of the
agent trained in the real environment, the average position error was X = 2.1 mm, Y = 2.0
mm. The average settling time was 3.4 s. The average ball speed on the table was v = 0.27
m/s.

When the agent was trained only in the virtual environment, as Figure 12 shows, in
the real environment it was able to keep the ball on the plate; however, it drove and kept
the ball far from the center, around the position Y = 4 cm, X = 6 cm. This inaccuracy was
consistent through the test runs and can be attributed to the slight differences between the
virtual and real environments, as well as to the uncertainty of the control and position
measurement in the real environment.

Figure 11. (a) Example run: X and Y positions in the real environment using an agent trained in the
real environment; (b) position accuracy in 2 dimensions.

Electronics 2023, 12, 671 11 of 15

For testing and evaluating the agents, we run 200 episodes of 6 s. In the case of
the agent trained in the real environment, the average position error was X = 2.1 mm,
Y = 2.0 mm. The average settling time was 3.4 s. The average ball speed on the table was
v = 0.27 m/s.

When the agent was trained only in the virtual environment, as Figure 12 shows, in
the real environment it was able to keep the ball on the plate; however, it drove and kept
the ball far from the center, around the position Y = 4 cm, X = 6 cm. This inaccuracy was
consistent through the test runs and can be attributed to the slight differences between
the virtual and real environments, as well as to the uncertainty of the control and position
measurement in the real environment.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 16

(a) (b)

Figure 12. (a) Example run: X and Y positions in the real environment using a virtually trained
agent. (b) Positions in 2 dimensions.

After running 6 s long trials 200 times, the average position error was X = 45 mm, Y
= 61 mm. The average settling time was 5.6 s, but never reached the center position. The
average ball speed on the table is v = 0.3 m/s.

Figure 13 shows an example result, with the virtually trained agent after fine-tuning
in the real environment. It shows that fine-tuning corrected the displacement error (Figure
12) of the virtually trained environment.

(a) (b)

Figure 13. (a) Example run: X and Y positions in the real environment using a pre-trained and
fine-tuned agent; (b) positions in 2 dimensions.

During 200 test episodes the average position error was X = 3.1 mm, Y = 5.7 mm. The
average settling time was 2.8 s. The average ball speed on the table was v = 0.36 m/s.

Two separate PID controllers were applied individually to each axis, as Figure 14
shows. In this case, each axis works like a ball-and-beam system, PIDx is dedicated to the
X axis, while PIDy is dedicated to the Y axis. After experimental fine tuning, the following
parameters provided the best result: X and Y axes proportional gain Kpx = 0.75, Kpy = 0.8,
X and Y axes integral gain Kix = 0.9, Kiy = 0.8 and X and Y derivative gain Kdx = 0.8, Kdy
= 0.75. For more details on PID controllers refer to [16].

Figure 12. (a) Example run: X and Y positions in the real environment using a virtually trained agent.
(b) Positions in 2 dimensions.

After running 6 s long trials 200 times, the average position error was X = 45 mm,
Y = 61 mm. The average settling time was 5.6 s, but never reached the center position. The
average ball speed on the table is v = 0.3 m/s.

Figure 13 shows an example result, with the virtually trained agent after fine-tuning in
the real environment. It shows that fine-tuning corrected the displacement error (Figure 12)
of the virtually trained environment.

During 200 test episodes the average position error was X = 3.1 mm, Y = 5.7 mm. The
average settling time was 2.8 s. The average ball speed on the table was v = 0.36 m/s.

Two separate PID controllers were applied individually to each axis, as Figure 14
shows. In this case, each axis works like a ball-and-beam system, PIDx is dedicated to the
X axis, while PIDy is dedicated to the Y axis. After experimental fine tuning, the following
parameters provided the best result: X and Y axes proportional gain Kpx = 0.75, Kpy = 0.8,
X and Y axes integral gain Kix = 0.9, Kiy = 0.8 and X and Y derivative gain Kdx = 0.8,
Kdy = 0.75. For more details on PID controllers refer to [16].

For comparison with the DQN methods, the general precision of the positionings
and the ball speeds are similar with both methods, while the PID controller average
settling time is two times faster. Figure 15 shows an example run using PID control on
the system. We note that deviation of the centered plate from horizontal can also affect
the accuracy of the PID controller. On the contrary, RL methods can easily adapt to such
positioning inaccuracies.

During 100 test iterations with the PID controller the average position error was
X = 2.1 mm, and Y = 2.2 mm. The average settling time was 1.3 s. The average ball speed
on the table was v = 0.26 m/s.

Electronics 2023, 12, 671 12 of 15

Electronics 2022, 11, x FOR PEER REVIEW 12 of 16

(a) (b)

Figure 12. (a) Example run: X and Y positions in the real environment using a virtually trained
agent. (b) Positions in 2 dimensions.

After running 6 s long trials 200 times, the average position error was X = 45 mm, Y
= 61 mm. The average settling time was 5.6 s, but never reached the center position. The
average ball speed on the table is v = 0.3 m/s.

Figure 13 shows an example result, with the virtually trained agent after fine-tuning
in the real environment. It shows that fine-tuning corrected the displacement error (Figure
12) of the virtually trained environment.

(a) (b)

Figure 13. (a) Example run: X and Y positions in the real environment using a pre-trained and
fine-tuned agent; (b) positions in 2 dimensions.

During 200 test episodes the average position error was X = 3.1 mm, Y = 5.7 mm. The
average settling time was 2.8 s. The average ball speed on the table was v = 0.36 m/s.

Two separate PID controllers were applied individually to each axis, as Figure 14
shows. In this case, each axis works like a ball-and-beam system, PIDx is dedicated to the
X axis, while PIDy is dedicated to the Y axis. After experimental fine tuning, the following
parameters provided the best result: X and Y axes proportional gain Kpx = 0.75, Kpy = 0.8,
X and Y axes integral gain Kix = 0.9, Kiy = 0.8 and X and Y derivative gain Kdx = 0.8, Kdy
= 0.75. For more details on PID controllers refer to [16].

Figure 13. (a) Example run: X and Y positions in the real environment using a pre-trained and
fine-tuned agent; (b) positions in 2 dimensions.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 16

Figure 14. PID control system design.

For comparison with the DQN methods, the general precision of the positionings and
the ball speeds are similar with both methods, while the PID controller average settling
time is two times faster. Figure 15 shows an example run using PID control on the system.
We note that deviation of the centered plate from horizontal can also affect the accuracy
of the PID controller. On the contrary, RL methods can easily adapt to such positioning
inaccuracies.

(a) (b)

Figure 15. (a) Example run: X and Y positions in the real environment using PID control; (b) Posi-
tions in 2 dimensions.

During 100 test iterations with the PID controller the average position error was X =
2.1 mm, and Y = 2.2 mm. The average settling time was 1.3 s. The average ball speed on
the table was v = 0.26 m/s.

Table 3 summarizes and compares the results achieved using the three neural net-
work agents and the PID controller.

Figure 14. PID control system design.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 16

Figure 14. PID control system design.

For comparison with the DQN methods, the general precision of the positionings and
the ball speeds are similar with both methods, while the PID controller average settling
time is two times faster. Figure 15 shows an example run using PID control on the system.
We note that deviation of the centered plate from horizontal can also affect the accuracy
of the PID controller. On the contrary, RL methods can easily adapt to such positioning
inaccuracies.

(a) (b)

Figure 15. (a) Example run: X and Y positions in the real environment using PID control; (b) Posi-
tions in 2 dimensions.

During 100 test iterations with the PID controller the average position error was X =
2.1 mm, and Y = 2.2 mm. The average settling time was 1.3 s. The average ball speed on
the table was v = 0.26 m/s.

Table 3 summarizes and compares the results achieved using the three neural net-
work agents and the PID controller.

Figure 15. (a) Example run: X and Y positions in the real environment using PID control; (b) Positions
in 2 dimensions.

Electronics 2023, 12, 671 13 of 15

Table 3 summarizes and compares the results achieved using the three neural network
agents and the PID controller.

Table 3. Comparison of different training methods and PID.

Name Real Trained Virtually Trained Virtually Trained after Fine-Tuning PID

Average Position error X [mm] 2.1 45 3.1 2.1
Average Position error Y [mm] 2 61 5.7 2.2

Average Settling time [s] 3.4 5.6 2.8 1.3
Average Ball speed [m/s] 0.27 0.3 0.36 0.26

4. Discussion

The presented experiments show the difference between the three training methods.
Training in the real environment is slow but provides more precise control. The positioning
of a virtually trained agent is inaccurate in the real environment, probably due to differences
between the two environments. Fine tuning the virtually trained agent can correct this
inaccuracy and provide acceptable behavior, while requiring much less training time
compared to when the agent is trained purely in the real environment.

The experiments show that applying a neural network to this task cannot compete in
some respects, as better control time and settling accuracy can be achieved, for example,
with a traditional PID. What can be said in favor of the use of the neural network is that it
can potentially also be trained for tasks that traditional controllers cannot handle or would
only be able to do with difficulty, such as balancing a body with an irregular geometry. It
would also be worth trying to train the neural network to achieve other goals, e.g., to reach
the highest possible speed with the ball (while avoiding falling) or to stop the ball placed
on it on the table in the shortest possible time. We leave these directions for future research.

It turned out that it is very important to define the training objective of the neural
network well, because an incorrectly chosen reward function can result in very slow
learning and suboptimal policies that differ from the expected behavior.

In terms of control, it would be worthwhile to try mixed control methods that also use
a neural network, as literature shows, the precision of the regulation and the setting time
could be significantly reduced as a result.

Finally, we proved that a control implemented purely with RL works, it can be useful
in places where the mathematical model is partially or fully unknown, but the learning
process can be defined and supervised.

5. Conclusions

The result presented in this paper shows that controlling a non-linear real-world
system only using reinforcement learning is possible.

The Raspberry Pi 3B+ card computer has enough computing capacity to run the neural
network model that is capable of learning the task. To observe the ball position, the resistive
touch panel is a good price/value sensor, although effective signal processing is important.
Nevertheless, it was shown that an RL-based control can be realized in such a low-cost
environment. From the mechanical implementation point of view, the real challenge was to
build up the system without significant assembling inaccuracies.

Experiments showed that both real-world-trained and virtually trained RL agent can
handle the task in the real environment, although the latter required fine-tuning in the real
environment to correct displacements. Quantitative evaluation of the tests showed the
differences between the methods. While training in a virtual environment is much faster,
training in a real environment produced more accurate results.

In these experiments, the RL agent was found to be inferior to a PID controller in
terms of settling time. However, RL could possibly also be trained for tasks that traditional
controllers cannot handle or would only be able to do with difficulty. This can be a topic
for future research.

Electronics 2023, 12, 671 14 of 15

Author Contributions: Conceptualization, D.K., J.N. and J.S.; writing—review and editing, D.K., J.N.
and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shorya, A.; Bernard, N.; Boklud, A.; Master, D.; Ueda, K. Mechatronic design of a ball-on-plate balancing system. Mechatronics

2022, 12, 217–218.
2. Zeeshan, A.; Nauman, A.; Jawad Khan, M. Design, Control and Implementation of a BaIlon Plate Balancing System. In

Proceedings of the 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan,
9–12 January 2012; pp. 22–26. [CrossRef]

3. Debono, A.; Bugeja, M. Application of Sliding Mode Control to the Ball and Plate Problem. In Proceedings of the 2015 12th
International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21–23 July 2015;
pp. 412–419.

4. Bdoor, S.R.; Ismail, O.; Roman, M.R.; Hendawi, Y. Design and implementation of a vision-based control for a ball and plate
system. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing
(ICIEAM), Chelyabinsk, Russia, 19–20 May 2016; pp. 1–4. [CrossRef]

5. Castro, R.D.; Flores, V.J.; Salton, A.T.; Pereira, L.F.A. A Comparative Analysis of Repetitive and Resonant Controllers to a
Servo-Vision Ball and Plate System. IFAC Proc. Vol. 2014, 47, 1120–1125. [CrossRef]

6. Wettstein, N. Balancing a Ball on a Plate Using Stereo Vision. Master’s Thesis, Institute for Dynamic Systems and Control Swiss
Federal Institute of Technology (ETH), Zurich, Switzerland, 2013; pp. 2–10.

7. Bang, H.; Lee, Y.S. Implementation of a Ball and Plate Control System Using Sliding Mode Control. IEEE Access 2018, 6,
32401–32408. [CrossRef]

8. Borelli, F. Ball and Plate. Constrained Optim. Control Linear Hybrid Syst. 2003, 290, 177–183.
9. Kopichev, M.M.; Puov, V.A.; Pashenko, N.A. Ball on the plate balancing control system. In IOP Conference Series: Materials Science

and Engineering, Proceedings of the 2nd International Conference on Aeronautical, Aerospace and Mechanical Engineering Prague, Czech
Republic, 26–28 July 2019; IOP Publishing: Bristol, UK, 2019; Volume 638, p. 012004. [CrossRef]

10. Zhou, A.; Leuken, R.; Arriens, H.J. Modeling A Configurable Resistive Touch Screen System Using SystemC and SystemC-AMS.
In Proceedings of the 20th Annual Workshop on Circuits, Systems and Signal Processing-ProRISC, Veldhoven, The Netherlands,
26–27 November 2009; pp. 393–398.

11. Lin, C.-L.; Chang, Y.-M.; Hung, C.-C.; Tu, C.-D.; Chuang, C.-Y. Position Estimation and Smooth Tracking With a Fuzzy-Logic-Based
Adaptive Strong Tracking Kalman Filter for Capacitive Touch Panels. IEEE Trans. Ind. Electron. 2015, 62, 5097–5108. [CrossRef]

12. Xiyang, L.; Feng, S.; Xianmei, C.; Jinrong, L.; Yaochi, Z. Research Technologies of Projected Capacitive Touch Screen. In
Proceedings of the 5th International Conference on Computer Sciences and Automation Engineering, Sanya, Hainan, China,
14–15 November 2015; pp. 63–69.

13. Galvan-Colmenares, S.; Moreno-Armendáriz, M.A.; Rubio, J.J.; Ortíz-Rodriguez, F.; Yu, W.; Aguilar-Ibáñez, C.F. Dual PD Control
Regulation with Nonlinear Compensation for a Ball and Plate System. Math. Probl. Eng. 2014, 2014, 894209. [CrossRef]

14. Mochizuki, S.; Ichihara, H. I-PD controller design based on generalized KYP lemma for ball and plate system. In Proceedings of
the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 2855–2860. [CrossRef]

15. Colmenares, S.G.; Moreno-Armendáriz, M.A.; Yu, W.; Rodriguez, F.O. Modeling and nonlinear PD regulation for ball and plate
system. In Proceedings of the World Automation Congress, Puerto Vallarta, Mexico, 24–28 June 2012; pp. 1–6.

16. Jadlovská, A.; Jajčišin, Š. Modelling and pid control design of nonlinear educational model ball & plate. In Proceedings of the
17th International Conference on Process Control 2009, Štrbské Pleso, Slovakia, 9–12 June 2009; pp. 475–483.

17. Lo, J.H.; Wang, P.K.; Huang, H.P. Reinforcement Learning and Fuzzy PID Control for Ball-on-plate Systems. In Proceedings of the
International Automatic Control Conference (CACS), Kaohsiung, Taiwan, 3–6 November 2022; pp. 1–6. [CrossRef]

18. Hadoune, O.; Benouaret, M. Fuzzy-PID tracking control of a ball and plate system using a 6 Degrees-of-Freedom parallel robot.
In Proceedings of the 19th International Multi-Conference on Systems, Signals & Devices (SSD), Sétif, Algeria, 6–10 May 2022;
pp. 1906–1912. [CrossRef]

19. Li, J.-F.; Xiang, F.H. RBF Network Adaptive Sliding Mode Control of Ball and Plate System Based on Reaching Law. Arab. J.
Sci. Eng. 2021, 47, 9393–9404. [CrossRef]

20. Kan, D.; Xing, B.; Xie, W. A minimum phase output based tracking control of ball and plate systems. Int. J. Dyn. Control. 2022, 10,
462–472. [CrossRef]

http://doi.org/10.1109/IBCAST.2012.6177520
http://doi.org/10.1109/ICIEAM.2016.7910965
http://doi.org/10.3182/20140824-6-ZA-1003.01074
http://doi.org/10.1109/ACCESS.2018.2838544
http://doi.org/10.1088/1757-899X/638/1/012004
http://doi.org/10.1109/TIE.2015.2396874
http://doi.org/10.1155/2014/894209
http://doi.org/10.23919/ECC.2013.6669269
http://doi.org/10.1109/CACS55319.2022.9969795
http://doi.org/10.1109/SSD54932.2022.9955768
http://doi.org/10.1007/s13369-021-06195-1
http://doi.org/10.1007/s40435-021-00824-1

Electronics 2023, 12, 671 15 of 15

21. Zheng, Q.; Yang, M.; Yang, J.; Zhang, Q.; Zhang, X. Improvement of Generalization Ability of Deep CNN via Implicit Regulariza-
tion in Two-Stage Training Process. IEEE Access 2018, 6, 15844–15869. [CrossRef]

22. Jin, B.; Cruz, L.; Gonçalves, N. Pseudo RGB-D Face Recognition. IEEE Sens. J. 2022, 22, 21780–21794. [CrossRef]
23. Yao, T.; Qu, C.; Liu, Q.; Deng, R.; Tian, Y.; Xu, J.; Jha, A.; Bao, S.; Zhao, M.; Fogo, A.B.; et al. Compound Figure Separation of

Biomedical Images with Side Loss. In Deep Generative Models, and Data Augmentation, Labelling, and Imperfections, Proceedings of the
First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France,
1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; Volume 13003, pp. 173–183.

24. Zhao, M.; Liu, Q.; Jha, A.; Deng, R.; Yao, T.; Mahadevan-Jansen, A.; Tyska, M.J.; Millis, B.A.; Huo, Y. VoxelEmbed: 3D Instance
Segmentation and Tracking with Voxel Embedding based Deep Learning. In Machine Learning in Medical Imaging, Proceedings of
the 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, 27 September 2021; Springer:
Berlin/Heidelberg, Germany, 2021; Volume 12966, pp. 437–446.

25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

26. Dulac-Arnold, G.; Levine, N.; Mankowitz, D.J.; Li, J.; Paduraru, C.; Gowal, S.; Hester, T. Challenges of real-world reinforcement
learning: Definitions, benchmarks and analysis. Mach. Learn. 2021, 110, 2419–2468. [CrossRef]

27. Pan, X.; You, Y.; Wang, Z.; Lu, C. Virtual to Real Reinforcement Learning for Autonomous Driving. In Proceedings of the BMVC
2017, London, UK, 4–7 September 2017.

28. Hasselt, H. Double Q-learning. Adv. Neural Inf. Process. Syst. 2011, 23, 2613–2622.
29. Dewey, D. Reinforcement Learning and the Reward Engineering Principle. In Proceedings of the AAAI Spring Symposia,

Palo Alto, CA, USA, 24–26 March 2014.
30. Ball & Beam: Simulink Modeling. Available online: https://ctms.engin.umich.edu/CTMS/index.php?example=BallBeam&

section=SimulinkModeling (accessed on 18 November 2022).
31. Nokhbeh, M.; Khashabi, D. Modelling and Control of Ball-Plate System. Final Project Report; Amirkabir University of Technology:

Tehran, Iran, 2011; pp. 1–15.
32. 4-Wire and 8-Wire Resistive Touch-Screen Controller Using the MSP430. Available online: http://dangerousprototypes.com/

blog/2012/01/07/4-wire-and-8-wire-resistive-touch-screen-controller-using-the-msp430/ (accessed on 18 November 2022).
33. Kóczi, D. Neurális Hálóval Vezérelt Kétdimenziós Pozícionáló Megtervezése és Kivitelezése. Master’s Thesis, University of

Szeged, Szeged, Hungary, 2019.
34. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement

learning. Neural Netw. 2018, 107, 3–11. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2018.2810849
http://doi.org/10.1109/JSEN.2022.3197235
http://doi.org/10.1038/nature14236
http://doi.org/10.1007/s10994-021-05961-4
https://ctms.engin.umich.edu/CTMS/index.php?example=BallBeam§ion=SimulinkModeling
https://ctms.engin.umich.edu/CTMS/index.php?example=BallBeam§ion=SimulinkModeling
http://dangerousprototypes.com/blog/2012/01/07/4-wire-and-8-wire-resistive-touch-screen-controller-using-the-msp430/
http://dangerousprototypes.com/blog/2012/01/07/4-wire-and-8-wire-resistive-touch-screen-controller-using-the-msp430/
http://doi.org/10.1016/j.neunet.2017.12.012
http://www.ncbi.nlm.nih.gov/pubmed/29395652

	Introduction
	Materials and Methods
	Physical Implementation
	Control with Reinforcement Learning

	Results
	Discussion
	Conclusions
	References

