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Abstract: Simultaneous localization and mapping (SLAM) represents a crucial algorithm in the
autonomous navigation of ground vehicles. Several studies were conducted to improve the SLAM
algorithm using various sensors and robot platforms. However, only a few works have focused on
applications inside low-illuminated featureless tunnel environments. In this work, we present an
improved SLAM algorithm using wheel encoder data from an autonomous ground vehicle (AGV) to
obtain robust performance in a featureless tunnel environment. The improved SLAM system uses
FAST-LIO2 LiDAR SLAM as the baseline algorithm, and the additional wheel encoder sensor data
are integrated into the baseline SLAM structure using the extended Kalman filter (EKF) algorithm.
The EKF algorithm is used after the LiDAR odometry estimation and before the mapping process of
FAST-LIO2. The prediction step uses the wheel encoder and inertial measurement unit (IMU) data,
while the correction step uses the FAST-LIO2 LiDAR state estimation. We used an AGV to conduct
experiments in flat and inclined terrain sections in a tunnel environment. The results showed that the
mapping and the localization process in the SLAM algorithm was greatly improved in a featureless
tunnel environment considering both inclined and flat terrains.

Keywords: LiDAR SLAM; wheel encoder; tunnel

1. Introduction

Mobile robots are beginning to replace human tasks such as inspections [1,2]. Detailed
inspection tasks require a significant amount of time and high costs. The accurate 3D
mapping of the environment can be conducted with the availability of high-precision
and accurate sensors such as cameras and LiDAR. These maps can help identify specific
areas that require maintenance and reduce the overall inspection time [3]. The robot must
localize itself on the map to perform 3D mapping of the environment; the corresponding
algorithm is called simultaneous localization and mapping (SLAM). Much research has
been conducted to create SLAM algorithms using various sensors or a fusion of multiple
sensors.

For autonomous ground vehicles (AGVs), cameras are one of the most widely used
sensors in the state-of-the-art SLAM algorithms. Notably, visual SLAM [4,5] algorithms
work by extracting information from the camera images. Although visual SLAM algorithms
offer good results, they are strongly dependent on the environment illumination [6,7]; they
do not perform well in low-light environments. Moreover, LiDAR sensors are also widely
used in SLAM algorithms; they are very precise and have high resolution. Additionally,
LiDAR sensors are not affected by the illumination variations, causing them to be suitable
for operation in low-light environments such as tunnels.

Feature-based LiDAR SLAM algorithms [8–11] work by extracting key features, usu-
ally planar and edge features, from the point cloud. These key features are then used to
perform LiDAR odometry and scan matching. Thus, as not all the LiDAR points are uti-
lized, the algorithm’s computational complexity is reduced. However, the preprocessing of
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the LiDAR data is first required to extract the features. Notably, direct-based LiDAR SLAM
algorithms methods [12,13] use all the LiDAR data points. Performing LiDAR odometry
and scan matching with all the LiDAR data points usually requires a large amount of com-
putational resources; to address this concern, different methods for storing and matching
the data points have been explored to reduce the computational complexity. However,
most LiDAR SLAM algorithms are of a feature-based nature. As the LiDAR data are
collected sequentially, we first need to correct the distorted points to use the data. For this,
LiDAR-only SLAM algorithms use the constant velocity model for the LiDAR to correct
the distortion. These algorithms [8,11] can perform fairly well for LiDAR with a constant
motion; however, if the motion is aggressive, their performance decreases. LiDAR-inertial
SLAM algorithms [10,13] use IMU data for LiDAR distortion correction. Moreover, some
algorithms [10,12] incorporate additional sensors such as an IMU and a GPS to reduce the
accumulated LiDAR odometry drift; other algorithms [9,10] reduce this accumulated drift
by performing “loop closure,” which recognizes the already visited place and readjusts the
obtained map.

LOAM [8] extracts features from the LiDAR data and achieves accurate results
with low errors for drift when using only the LiDAR sensor. Many LiDAR SLAM al-
gorithms [9–11] employ a feature extraction method similar to that in LOAM. In [9], a
lightweight, ground-optimized LOAM (LeGO-LOAM) method was proposed that em-
ployed the LOAM algorithm, modifying and optimizing it on an AGV. The research
conducted in [10] presented a factor-based tightly coupled LiDAR-inertial odometry via
smoothing and mapping (LIO-SAM), which allowed for the addition of other sensor mea-
surements, such as an IMU to predict the LiDAR motion during the scanning process, a
GPS, and a loop closure feature for drift error elimination. Another factor-based graph
algorithm, HDL-Graph-SLAM, was presented in [12], which implemented the IMU sensor
measurements and used the normal distributions transform (NDT) [14] scan matching
algorithm instead of the traditionally used iterative closest points (ICP) [15] method. FAST-
LIO2 [13] is a tightly coupled LiDAR-inertial framework that directly uses raw points
instead of extracting the features from the dataset when updating the map using an incre-
mental kd-tree [16] structure. Wang et al. developed an F-LOAM [11] that used LOAM as
a base platform and improved it by considering the shape of the extracted features and
replacing the traditional iterative distortion compensation with a two-part noniterative
compensation method. Other works have focused on surveying LiDAR SLAM algorithms.
In [17], Akpınar et al. presented a LiDAR SLAM comparison between the feature-rich
outdoor and indoor environments. Filipenko et al. compared the performances of visual
and LiDAR SLAMs [18].

The performances of the briefly described SLAM algorithms have been tested in a
feature-rich environment. Most tests were performed outside, where the environment
is rich in distinct features. However, if we consider implementing the discussed LiDAR
SLAM algorithms in a tunnel environment, the results might not be optimal, because tunnel
environments usually lack strong features, the walls are smooth, and the LiDAR scans are
very similar. As the LiDAR moves through the tunnel, accurate scan matching becomes
difficult, leading to increasing drift errors. Additionally, the loop closure algorithm might
detect incorrect loops owing to the small distinction between the LiDAR scans. Absolute
measurement sensors such as GPS, which can help localize a robot, cannot be used because
GPS sensors do not work in a tunnel environment. Much LiDAR SLAM research has
been conducted; however, few studies have focused on LiDAR SLAM performance in a
featureless tunnel environment. This was the motivation behind the work presented in this
paper. We focused on obtaining a robust LiDAR SLAM algorithm for a featureless tunnel
environment that can, in turn, be applied in tunnel–wall inspection by employing an AGV.
The contributions of this study are summarized as follows:

• We modify a state-of-the-art LiDAR SLAM algorithm by incorporating additional
wheel encoder sensor data from an unmanned ground vehicle by employing an EKF
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to improve the localization and mapping accuracy of the SLAM framework in a dark,
featureless tunnel environment.

• We improve the LiDAR SLAM algorithm localization and mapping accuracy by
implementing additional sensor data from the ground vehicle’s wheel encoders.

• We performed extensive experiments in flat and inclined terrain sections of the tunnel
environment to evaluate the LiDAR SLAM performance.

The paper is organized as follows. Section 2 describes the related work. Section 3
presents the proposed method, followed by the experiment and results in Section 4. Finally,
the discussion and conclusions are presented in Sections 5 and 6, respectively.

2. Related Work

Before conducting the work described in this paper, we used the same robot plat-
form to compare seven state-of-the-art LiDAR SLAM algorithms in the tunnel environ-
ment [19]. The compared LiDAR SLAM algorithms were as follows: LeGO-LOAM [9],
LIO-SAM [10], F-LOAM [11], HDL-SLAM [12], FAST-LIO2 [13], SC-LeGO-LOAM [20], and
SC-LIO-SAM [21]. We considered increasing the number of features by adding artificial
landmarks to improve the performance of the LiDAR SLAM frameworks in a featureless
tunnel environment. Feature-based LiDAR SLAM algorithms usually extract two kinds of
features, namely, planar and edge. As planar features are primarily present in the tunnel
environment (edge features being scarce), we designed our artificial landmarks to have
strong edge features. The experiment results show that the addition of artificial landmarks
improves the performance of the LiDAR SLAM algorithms. However, considering the
tunnel length and the manufacturing and installation time and costs, the use of artificial
landmarks to enhance the LiDAR SLAM performance cannot be considered as an optimal
solution. For this reason, we explored the incorporation of the AGV wheel encoder data
into the SLAM framework to improve its performance.

When the LiDAR SLAM algorithm runs using an AGV platform, it becomes useful
if the wheel encoder information can be incorporated into the algorithm to help reduce
the drift errors. Depending on the robot platform, the wheel encoder data can be available
at different rates. Yun Su et al. developed GR-LOAM [22], which is a LiDAR SLAM
algorithm optimized for ground vehicles that incorporates wheel encoder sensor data that
are published at a rate of 100 Hz. The fast data publishing rate of the wheel odometry
allows it to be used for the pre-integration step to correct the LiDAR distortion during the
LiDAR scan. GR-LOAM uses a wheel encoder and IMU-fused odometry model for LiDAR
pose estimation, where the weight of each sensor is adjusted dynamically. The features
are extracted from the LiDAR data, and the robot pose is estimated. The ground point
constraint is used to further optimize the pose estimates. The two-wheel kinematic model
is employed to obtain the wheel odometry. The intrinsic parameters of the wheel odometry
model are experimentally calculated.

EKF-LOAM [23] is another work that incorporates wheel odometry information, which
employs LeGO-LOAM as the base algorithm and improves its odometry estimation by
fusing LiDAR, IMU, and wheel encoder data into an EKF. As the wheel encoder information
is obtained at a lower rate of 20 Hz, only IMU information is used for the pre-integration
process. LiDAR odometry is estimated after the features are extracted from the LiDAR
information. Usually, in the LiDAR SLAM pipeline, the LiDAR odometry information is
sent to the optimization part of the algorithm for the mapping and pose estimation pro-
cesses. However, in EKF-LOAM, the LiDAR odometry information is sent to an extended
Kalman filter that fuses it with IMU and encoder data; the skid steering kinematic model is
employed to obtain the wheel odometry information [24].

Both GR-LOAM and EKF-LOAM algorithms incorporate wheel encoder data into
the SLAM framework but they do it differently. GR-LOAM uses it in the pre-integration
step, while EKF-LOAM uses it after the LiDAR odometry is obtained. Considering our
preliminary LiDAR comparison work and the featureless tunnel environment, we selected
a direct-based LiDAR SLAM algorithm as the base algorithm. Selecting a feature-based
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LiDAR SLAM as the base algorithm is not a favorable option owing to the lack of edge
features in the tunnel environment. After conducting the preliminary LiDAR SLAM
comparison work, we selected FAST-LIO2 as our base algorithm. FAST-LIO2 is a tightly
coupled LiDAR-inertial direct-based method that achieves better results compared to the
feature-based methods in the featureless tunnel environment. As we used a fast-rate,
accurate IMU sensor in our experiment, the pre-integration step of FAST-LIO2 does not
produce large errors. Instead, the LiDAR odometry estimation produces large errors
due to the presence of low features in the tunnel environment. Therefore, we proposed
incorporating the wheel encoder data into the FAST-LIO2-based algorithm. The proposed
method has several differences from the related works [22,23]. Although LeGO-LOAM is a
lightweight, optimized LiDAR SLAM for the AGV, it performs state estimation using the
extracted planar and edge features. The tunnel environment lacks edge features due to the
long, continuous smooth walls. As a result, the state estimation of LeGO-LOAM in tunnel
environment has large errors. In contrast, FAST-LIO2 is a more suitable base algorithm
because it directly uses the LiDAR raw data without any need for extracting the features.
Similar to LeGO-LOAM, FAST-LIO2 is a computationally inexpensive algorithm, causing
it to be suitable for usage on single-board computers. Additionally, by using the wheel
encoder data from AGV, we plan to improve the performance of the FAST-LIO2 on the
inclined terrain section of the tunnel environment because FAST-LIO2 outputs high error
results in our preliminary experiment on the inclined terrain [19].

3. Proposed Method

This section starts by describing the original FAST-LIO2 framework overview, pro-
ceeding further with the motion model definition and EKF equations. Finally, the algorithm
flow overview of the improved FAST-LIO2 LiDAR SLAM is presented.

3.1. FAST-LIO2 Overview

FAST-LIO2 [13] is a tightly coupled direct-based LiDAR-inertial SLAM algorithm.
Unlike feature-based LiDAR SLAM algorithms, which extract edge and planar features
from the LiDAR data, FAST-LIO2 directly uses the LiDAR point-cloud data. This facilitates
less computational power requirements and time consumption owing to the exclusion
of the LiDAR data preprocessing step. However, the direct use of raw data causes the
scan matching process to be computationally heavy. To solve this issue, Wei Xu et al.
created a new lightweight Kalman gain calculation formula that allows for performing
a scan matching function using the raw LiDAR points directly while consuming low
computational power. Additionally, an incremental k-d tree structure is employed to
perform the mapping process. Moreover, the use of two parallel nodes allows for the
incremental updates and dynamic rebalancing of the k-d tree structure to simultaneously
occur. Figure 1 shows a simplified system overview diagram.

Figure 1. Simplified system overview of the original FAST-LIO2 SLAM algorithm.
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The FAST-LIO2 algorithm performs accurate mapping and localization processes
while using low computational power. In [13], Wei Xu et al. conducted a comparison of
the average processing time per laser scan among several state-of-the-art LiDAR SLAM
algorithms on different datasets. The results show that FAST-LIO2 spends less processing
time per laser scan compared to other SLAM frameworks. This and the ability to use the
raw LiDAR points directly cause FAST-LIO2 to be a suitable SLAM for use in a featureless
tunnel environment by employing an onboard computer with limited resources on a ground
vehicle.

3.2. Motion Model

We use a four-wheeled ground vehicle in our experiments. The vehicle employs a
skid steering motion model, as shown in Figure 2a. Considering the robot’s constraints,
let v and ω, the linear and angular velocity vectors in the robot frame, respectively, be
defined as v =

(
vx 0 0

)T and ω =
(
0 0 ω

)T . Let ωFL, ωBL, ωFR, and ωBR be the
angular velocities of the front-left, back-left, front-right, and back-right wheels, respectively.
Moreover, let vFL, vBL, vFR, and vBR be the linear velocities of the front-left, back-left,
front-right, and back-right wheels, respectively. During our experiment, the robot follows
a rectangular trajectory path on the ground. The robot performs a straight motion and it
rotates at the corners of the trajectory while being stationary. Considering this motion, we
simplify our motion model to the two-wheel differential drive motion model represented
in Figure 2b.

Figure 2. Motion model: (a) skid steering, and (b) two-wheel differential drive.

Let vL and vR be the sum of linear velocities of the wheels from the left and right side,
respectively. Then, we have the following relation:(

vR
vL

)
= r
(

ωR
ωL

)
= 0.5r

(
ωFR + ωBR
ωFL + ωBL

)
, (1)

where ωL and ωR are the sum of angular velocities of the wheels on the left and right side,
respectively. Expressing the robot’s linear and angular velocity in terms of the wheel’s
linear velocity, we have (

v
ω

)
=

(
0.5(vR + vL)

(1/b)(vR − vL)

)
. (2)

Writing Equation (2) in terms of the robot wheel’s angular velocity, we have(
v
ω

)
= 0.5r

(
0.5(ωFR + ωBR + ωFL + ωBL)

(1/b)(ωFR + ωBR −ωFL −ωBL)

)
, (3)
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where r is the radius of the wheel and b is the distance between the right and left wheels.
Let vG be the vector of the robot’s velocity in the global coordinate frame. Considering

the nonholonomic constraints, the rotation of the robot around the roll axis does not affect
its motion; therefore, we consider the rotation matrix around the roll axis, Rx, to be the
identity matrix. Thus, using the information from the motion model described in the
previous section, we have the global velocity vector equal to

vG = Rx · Ry · Rz ·

vx
0
0

 =

vx cos(θ) cos(ψ)
vx cos(θ) sin(ψ)
−vx sin(θ)

. (4)

3.3. EKF

We employ an extended Kalman filter (EKF) algorithm to incorporate the wheel
encoder data into the SLAM odometry estimation structure. The EKF is a widely used
algorithm for combining multiple sensor measurements. It comprises three stages: the
prediction step, Kalman gain calculation, and the correction step. The FAST-LIO2 SLAM
framework estimates the odometry at the same frequency as the LiDAR sensor (i.e., 10 Hz).
Our robot platform provides angular velocity and linear velocity of the robot at a frequency
of 50 Hz. As the robot velocity information is provided at a much higher frequency, it
is used in the prediction step. Moreover, the LiDAR odometry estimated by the SLAM
algorithm is used in the correction step. As the robot moves with a relatively constant speed
during the experiment run, we consider the motion with zero acceleration for estimating
the robot displacement during the prediction step. We define the robot state with six
components. Let s =

(
xG yG zG φG θG ψG

)T , where xG, yG, and zG are the global
position coordinates and φG, θG, and ψG are the orientation roll, pitch, and yaw angles of
the robot, respectively. We define the robot state update in Equation (5), where4s is the
state change in the time4t between two consecutive robot states:

st+1 = st +4st. (5)

Let the state change be4s =
(
4xG 4yG 4zG 4φG 4θG 4ψG

)T . Our IMU
sensor publishes accurate orientation values at a fast rate. We simplify our state update and
use the orientation values of roll, pitch, and yaw directly from the sensor. By considering
the robot velocity in the global frame defined in Equation (4), the state update then becomes

st+1 =



xG,t
yG,t
zG,t

φG,t+1
θG,t+1
ψG,t+1

+



vx cos(θG,t+1) cos(ψG,t+1)
vx cos(θG,t+1) sin(ψG,t+1)

−vx sin(θG,t+1)
0
0
0

 · 4t. (6)

Only the position updates incrementally. The orientation values are collected at each
timestamp from the sensor. Let ŝ be the EKF prediction step state and P be the prediction
step covariance matrix. The prediction step can then be defined as follows:

ŝ = st+1 =



xG,t + vx,t+1 cos(θG,t+1) cos(ψG,t+1)4 t
yG,t + vx,t+1 cos(θG,t+1) sin(ψG,t+1)4 t

zG,t − vx,t+1 sin(θG,t+1)4 t
φG,t+1
θG,t+1
ψG,t+1

 (7)

P̂ = F · P0 · FT + Q, (8)
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where F is the Jacobian matrix of the predicted state ŝ and P0 and Q are covariance matrices;
these matrices are defined as follows:

P0 =



σ2
p,x 0 0 0 0 0
0 σ2

p,y 0 0 0 0
0 0 σ2

p,z 0 0 0
0 0 0 σ2

p,φ 0 0
0 0 0 0 σ2

p,θ 0
0 0 0 0 0 σ2

p,ψ


(9)

Q =



σ2
q,x 0 0 0 0 0
0 σ2

q,y 0 0 0 0
0 0 σ2

q,z 0 0 0
0 0 0 σ2

q,φ 0 0
0 0 0 0 σ2

q,θ 0
0 0 0 0 0 σ2

q,ψ


(10)

F = J(ŝ) =



1 0 0 0 −vx sin(θG) cos(ψG)4 t −vx cos(θG) sin(ψG)4 t
0 1 0 0 −vx sin(θG) sin(ψG)4 t vx cos(θG) cos(ψG)4 t
0 0 1 0 −vx cos(θG)4 t 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, (11)

with the covariance values being σ2
p,x = σ2

p,y = σ2
p,z = 0.1, σ2

p,φ = σ2
p,θ = σ2

p,ψ = 0.01, σ2
q,x =

σ2
q,y = σ2

q,z = 0.01, and σ2
q,φ = σ2

q,θ = σ2
q,ψ = 0.001. Let sL =

(
xL yL zL φL θL ψL

)T

be the measurement robot state that is provided by the FAST-LIO2 LiDAR odometry. The
Kalman gain is defined as follows:

K = P̂ · HT(H · P̂ · HT + E)−1, (12)

where H is the Jacobian of the measurement state and E is the measurement covariance
matrix; these matrices are defined as follows:

H = J(sL) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (13)

E =



σ2
e,x 0 0 0 0 0
0 σ2

e,y 0 0 0 0
0 0 σ2

e,z 0 0 0
0 0 0 σ2

e,φ 0 0
0 0 0 0 σ2

e,θ 0
0 0 0 0 0 σ2

e,ψ


, (14)

with the covariance values being σ2
e,x = σ2

e,y = σ2
e,z = 1 and σ2

e,φ = σ2
e,θ = σ2

e,ψ = 5. As the
Jacobian of the measurement state is the identity matrix, the Kalman gain and correction
step are as follows:

K = P̂ · (P̂ + E)−1 (15)
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s = ŝ + K · (sL − ŝ) (16)

P = P̂− P̂ · K, (17)

where s and P are the updated robot state and covariance matrix, respectively. As the
prediction and correction steps run at 50 and 10 Hz, respectively, five prediction steps
occur before the correction step happens. Notably, the covariance matrices values were
experimentally tuned to obtain the best results.

3.4. Wheel Encoder Aided FAST-LIO2

As per the results of the previous experiments conducted in the featureless tunnel,
FAST-LIO2 does not always output accurate results. To improve its performance in the
tunnel environment, we propose incorporating the additional ground vehicle’s encoder
data into the SLAM odometry estimation process by using the motion model and EKF
algorithm described in the Sections 3.2 and 3.3, respectively. Figure 3 depicts the new
SLAM system overview.

Figure 3. Overview of the modified FAST-LIO2 SLAM algorithm.

The original FAST-LIO2 algorithm starts with the IMU measurements by performing
forward and backward propagation steps to correct the LiDAR distortion motion. The state
estimation is then obtained using the iterated Kalman filter on the manifold [25] technique
until convergence is achieved. Our developed EKF algorithm is then applied to further
improve the state estimation. The wheel encoder and IMU data are used for the EKF
prediction step that runs at 50 Hz. The IMU data are used for the orientation estimation,
while the IMU and wheel encoder data are used for the displacement estimation. The EKF
correction step running at 10 Hz uses the estimated state from the original SLAM structure
as the measurement state input. After the state is updated, the new odometry information
is sent to the mapping process. Thus, in summary, our EKF algorithm improves the LiDAR
position and orientation estimation during the LiDAR scan, thereby improving the scan
matching and mapping process in the featureless tunnel environment.

4. Experiment and Results

This section starts with a description of the setup used for the experiments con-
ducted in the featureless tunnel environment and error metrics used for the performance
evaluation. It is then followed by the experimental results obtained. As we conducted
experiments in the flat (horizontal) and inclined terrain sections of the tunnel, we present
their results separately.
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4.1. Experiment Setup

For our experiments in the tunnel environment, we utilized a four-wheeled skid
steering AGV. Figure 4 shows the vehicle’s configuration. The robot provides odometry
data from wheel encoders at a frequency of 50 Hz; it is additionally equipped with 3D
LiDAR and IMU sensors running at 10 and 300 Hz, respectively. The ground vehicle runs
with a maximum speed of 1.5 m/s and has a maximum payload of 50 kg. Being powered
by a 24 V 30 Ah battery, it can run for 4 h. Additionally, an onboard Jetson single-board
computer is installed on the vehicle, which communicates using the controller area network
interface.

Figure 4. AGV configuration.

The robot, which is installed on the ground using ropes, is manually operated during
the experiments to follow a preset trajectory. The robot follows the trajectory such that the
LiDAR-sensor center always remains above the trajectory. The onboard computer is used
to collect the sensor data that are later used for the performance evaluation. Ubuntu 18.04
with ROS Melodic runs on the onboard computer. The LiDAR sensor, with a horizontal
field of view (FOV) of 360◦ and vertical FOV of 30◦, communicates with the computer using
the Ethernet interface. The LiDAR accuracy is up to a few centimeters; the measurement
range reaches up to 100 m. The IMU establishes a connection with the onboard computer
using the USB connector. It outputs accurate data, with a 2-cm positional, a 0.2◦ heading
accuracy, and a variable sampling rate of up to 1 kHz. The LiDAR sensor is fixed on top of the
robot’s center of rotation, while the IMU sensor is placed under the LiDAR sensor so that the
vertical fixed frame axes of both sensors coincide. The fixed frame coordinates of the LiDAR
and IMU sensors also coincide; thus, in the tested SLAM algorithm (FAST-LIO2 in our case)
configuration settings, the LiDAR–IMU extrinsic matrix is set to the identity matrix.

To evaluate the performances of the original and modified FAST-LIO2 algorithms, the
experiment is performed in a nuclear facility underground the featureless tunnel flat and
inclined terrain sections shown in Figure 5a and Figure 5b, respectively. On the ground, a
rectangular trajectory with a size of 35.0 · 4.5 m is set. The ground vehicle is then manually
operated to follow this set trajectory. In both the terrain sections of the tunnel, we considered
the same trajectory sizes and same experiment runs. We performed two types of experiment
runs. The first one consists of following the rectangular trajectory and completing one loop
by returning to the initial position. For the second type, we perform two loops of the same
trajectory before returning to the initial position. At the trajectory corners, the robot is turning
while not performing any forward or backward motion. During the experiment runs, we
recorded a dataset from three sensors, namely, LiDAR, IMU, and wheel encoders. In each of
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the tunnel sections, we conducted four different experiment runs and two different runs for
the one- and two-loop trajectory paths, respectively.

Figure 5. Experiment setup in the tunnel environment: (a) flat (horizontal) terrain section and
(b) inclined terrain section.

4.2. Error Metrics

We employ the absolute trajectory error (ATE) and relative trajectory error (RTE)
methods to evaluate the LiDAR SLAM algorithm performance. These error metrics are
widely used for the trajectory evaluation of SLAM algorithms. Zhang et al. explain
how to obtain these errors in detail in [26]. For obtaining ATE and RTE, we used the
same methodology as described in [26]. ATE is obtained by calculating the root mean
squared error (RMSE) of all trajectory points after aligning the estimated and ground truth
trajectories. During our experiment, we follow a rectangular trajectory; therefore, the
aligning process becomes simple. Thus, the equation for computing ATE becomes

ATE =

√
1
m

Σm
j=1(T̂j − Tj)2, (18)

where T̂j and Tj represent all the ground truth and estimated trajectory points, respectively.
When calculating RTE, we do not use the whole trajectory path but only a part of it.

First, we select a number of sub-trajectories of length d from the whole path. After aligning
the first point of the estimated trajectory with the ground truth, we then compute the end
pose RMSE. Next, we repeat the same procedure but for different sub-trajectory lengths.
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All the errors are collected, and the result is visualized using a boxplot. If n is the number
of selected sub-trajectories with the length d, then RTE is represented as follows:

RTEi =

√
1
m

Σm
j=1(Ŝj − Sj)2 (19)

RTE =
(

RTE1 RTE2 · · · RTEn
)
, (20)

where i ∈
(
1 2 · · · n

)
and Ŝj and Sj represent all the ground truth and estimated sub-

trajectory points, respectively. ATE is a single value error metric, while RTE is a collection
of multiple values that provide a better understanding of how the error is changing in
different parts of the estimated trajectory.

4.3. Flat Section Results

This section presents the results obtained from the experiment in the flat terrain section
of the tunnel. Figure 6 depicts the estimated single-loop trajectories from the original and
modified FAST-LIO2, where trajectories a–d and e–f represent the single-loop and double-
loop experiment runs, respectively. Table 1 presents the ATE results; Figure 7 depicts the
RTE results as quartiles. The RTE shown in Figure 7a corresponds with the path displayed
in Figure 6a and so on.

Table 1. ATE (in meters) for one- and two-loop paths in the flat section in the tunnel environment.
L1–L4 represent the ATE for the one-loop paths, while L5.1–L6.2 represent that for the first and
second loops of the two-loop paths.

SLAM Algorithm L1 L2 L3 L4 L5.1 L5.2 L6.1 L6.2

FAST-LIO2 11.92 12.11 1.19 12.21 11.62 23.81 1.13 0.97

Proposed Method 1.32 1.23 1.11 1.17 1.18 0.93 1.09 1.02

As shown in Figure 6, in the single-loop runs for three out of four cases, the original
FAST-LIO2 has similar path outputs, with the exception of the path in Figure 6c, where the
estimated path is close to the ground truth. We can obtain completely different results in
some cases despite conducting the experiments in the same environment and following the
same trajectory. The same situation is manifested for the double-loop paths. In contrast,
our modified FAST-LIO2 algorithm estimates the trajectory that is close to the ground truth
in all the cases. As per the ATE results presented in Table 1, our modified FAST-LIO2 has
reduced the errors significantly compared to the original algorithm; however, we cannot
deduce much information from the ATE results, unlike the RTE results. Each estimated
trajectory path has the RTE represented as four quartiles, signifying the trajectory error at
a specific trajectory path and noted by the distance traveled by the robot platform. Thus,
we can find the parts of the trajectory that display the highest and lowest errors. Three out
of the four trajectories estimated by the original FAST-LIO2 for single-loop runs display
similar RTE results. Specifically, we notice that the trajectory error is lower for the first
half of the run, where the estimated path is close to the ground truth; when the robot is
returning, the error is increased.

4.4. Inclined Section Results

This section presents the results obtained from the experiments conducted in the
inclined terrain section of the tunnel, where the elevation information is also included in
the estimated trajectories. Table 2 presents the ATE results for the inclined terrain section.
Figure 8a–d and Figure 8e,f show the generated 3D paths for the single- and double-loop
runs, respectively. Figure 9 shows the RTE values as quartiles. Similarly, the RTE results in
Figure 9a correspond to the obtained path in Figure 8a and so on.
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Figure 6. Estimated trajectory path comparison between the original and improved FAST-LIO2 in a
flat terrain section of the tunnel environment: (a–d) single-loop runs, and (e,f) double-loop runs.

When comparing the generated paths in the inclined section with those in the flat
section, we can observe that the performance of the original FAST-LIO2 is much worse
in the inclined section (no generated path is close to the ground truth). The estimated
trajectory is relatively good only in the y global direction. In contrast, our modified FAST-
LIO2 algorithm generates paths that are close to the ground truth in all six experiment
runs. Moreover, the elevation information of the trajectory is estimated well. Compared
to the ATE results, the RTE results show a better understanding of the trajectory error
throughout the whole paths. Specifically, from the estimated trajectories in Figure 8d,e we
can see that the original FAST-LIO2 algorithm outputs a lower trajectory error in the latter
part of the trajectory run compared to that of the other part.
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Figure 7. RTE results of the original and improved FAST-LIO2 in the flat terrain section of the tunnel
environment: (a–d) single-loop runs, and (e,f) double-loop runs.

Table 2. ATE (in meters) for one- and two-loop paths in the inclined section in the tunnel environment.
L1–L4 represent the ATE for the one-loop paths, while L5.1–L6.2 represent that for the first and
second loops of the two-loop paths.

SLAM Algorithm L1 L2 L3 L4 L5.1 L5.2 L6.1 L6.2

FAST-LIO2 12.43 15.42 11.94 11.24 12.06 19.54 11.63 17.06

Proposed Method 1.11 1.22 1.25 1.85 1.19 1.30 1.13 1.25
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Figure 8. Estimated trajectory path comparison between the original and improved FAST-LIO2 in the
inclined terrain section of the tunnel environment: (a–d) single-loop runs, and (e,f) double-loop runs.
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Figure 9. RTE results of the original and improved FAST-LIO2 in the inclined terrain section of the
tunnel environment: (a–d) single-loop runs, and (e,f) double-loop runs.

5. Discussion

The results obtained in this paper showed that the modified FAST-LIO2 estimates
better trajectory and has reduced ATE and RTE results compared to the original FAST-LIO2
algorithm in flat and inclined terrain sections of the tunnel environment. Despite having
multiple similar trajectory runs, we observe that the output of the performance of the
original FAST-LIO2 differs in some cases. In the flat section of the single-loop trajectory
runs, one result has better trajectory estimation compared to the remaining three. We
suspect that more features were present during the third single-loop run; thus, the scan
matching process has better results. The increased number of features may be due to the
presence of workers at the experiment site during the experiment run. When we look
at the remaining trajectories estimated by the single-loop runs, they have the same RTE
results for the second part of the loop. As stated earlier, the increase in the trajectory error
in the second part of the loop may be due to the reduced feature points at the end of the
trajectory compared to the beginning. Another reason for having different results may be
due to the decreased repeatability performance of the FAST-LIO2 algorithm in a featureless
environment. The modified FAST-LIO2 algorithm solves these issues, even in the case of
a faulty scan matching process, due to reliable state prediction from the wheel encoders.
These results are possible when the AGV moves at a constant speed. Our EKF prediction
equations consider motion with zero acceleration. Similar results may not be obtained if
we conduct experiments with aggressive AGV motion.

The results for the original FAST-LIO2 in the inclined terrain section of the tunnel
are worse compared to those in the flat terrain section. Similar to the flat section experi-
ments, we can observe that the repeatability of the SLAM results is not constant in similar
experiment runs. We suspect a drop in the original FAST-LIO2 performance in the inclined
section of the tunnel owing to a lesser feature presence compared to that in the flat section.
Moreover, we observe that the original FAST-LIO2 incorrectly estimates the elevation infor-
mation. Similar to the experiments in the flat section, our modified FAST-LIO2 algorithm
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shows improved results due to the reliable displacement and orientation predictions from
the wheel encoder and IMU data, respectively.

As the results in the flat and inclined terrain sections of the tunnel differ, using the
same EKF parameter values for all the experiments does not always produce the best
results. Depending on the original FAST-LIO2 algorithm performance, we adjust the
covariance matrix values to improve the trajectory errors. In future work, we plan to
employ adaptable covariance matrices that use the optimal values based on the feature
richness of the environment.

6. Conclusions

This paper presented a modified state-of-the-art LiDAR SLAM algorithm that incorpo-
rates wheel encoder data from an AGV by employing an EKF. A direct-based LiDAR SLAM
algorithm (namely, FAST-LIO2) was chosen as the base SLAM algorithm. We conducted
experiments in flat and inclined terrain sections of a featureless tunnel environment. The
experiment results show an improved localization and mapping for both tunnel sections.
In future work, we consider employing an adaptable covariance matrix in the extended
Kalman filter structure based on the number of distinct features present in the environment.
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