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Abstract: Quantum mechanics studies nature and its behavior at the scale of atoms and subatomic
particles. By applying quantum mechanics, a lot of problems can be solved in a more convenient
way thanks to its special quantum properties, such as superposition and entanglement. In the
current noisy intermediate-scale quantum era, quantum mechanics finds its use in various fields of
life. Following this trend, researchers seek to augment machine learning in a quantum way. The
generative adversarial network (GAN), an important machine learning invention that excellently
solves generative tasks, has also been extended with quantum versions. Since the first publication
of a quantum GAN (QuGAN) in 2018, many QuGAN proposals have been suggested. A QuGAN
may have a fully quantum or a hybrid quantum–classical architecture, which may need additional
data processing in the quantum–classical interface. Similarly to classical GANs, QuGANs are trained
using a loss function in the form of max likelihood, Wasserstein distance, or total variation. The
gradients of the loss function can be calculated by applying the parameter-shift method or a linear
combination of unitaries in order to update the parameters of the networks. In this paper, we review
recent advances in quantum GANs. We discuss the structures, optimization, and network evaluation
strategies of QuGANs. Different variants of quantum GANs are presented in detail.

Keywords: quantum machine learning; generative adversarial networks; quantum GAN; hybrid
quantum–classical system

1. Introduction

Machine learning (ML) [1] has been a hot topic for researchers for a long time. Early
ML works, such as artificial neurons [2], the perceptron [3], support-vector machines [4],
recurrent neural networks [5], and convolutional neural networks [6] were developed
and applied in all parts of the human society, such as education [7–9], agriculture [10,11],
finance [12,13], and health care [14–16]. One of the important goals of ML is generative
tasks, where ML programs have to generate new data based on some existing data. Through
excellent empirical results, generative adversarial networks (GANs) [17] have been found a
brilliant candidate to fulfill this task. In a GAN, a generator and a discriminator play an
adversarial game against each other. The generator tries to generate new data that resemble
some real data in order to fool the discriminator, while the discriminator aims to distinguish
the generated data from the real data.

There has been a sharp increase in the number of GAN variants in the past few
years [18]. Since their invention, GANs have been widely used in both semi-supervised and
unsupervised learning. However, this type of network bears some issues, such as training
instability, mode collapse, and non-convergence [19]. Researchers have been trying their
best to improve the efficiencies of the networks, to overcome their shortcomings, and to
expand their applications.

In recent years, quantum computing [20] has emerged and drawn a lot of attention
from researchers. This new paradigm of computing can accomplish difficult tasks that
traditional computing cannot solve. With the development of near-term quantum de-
vices, quantum computing can make use of special properties, including superposition
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and entanglement, to even perform those tasks exponentially faster [21]. For example,
quantum computers can search an unsorted dataset of N entries in time O(

√
N), whereas

it takes time O(N) for classical computers to do the same task [22]. Thus, researchers
seek to combine quantum computing with machine learning to develop quantum ML.
The quantum counterparts of ML models, such as quantum reinforcement learning [23],
quantum support vector machines [24], and quantum variational autoencoders [25], were
in turn invented.

The generative tasks of ML are getting more and more complicated. Therefore, quan-
tum GANs (QuGANs) were also developed. Basically, QuGANs may have different
architectures with various components, in either classical or quantum forms. Instead of
neural networks, the quantum parts of a QuGAN consist of variational quantum circuits
which also depend on a set of parameters [26]. A certain loss or cost function can be formed,
and its gradients with respect to the parameters are calculated for updating the parameters
themselves. When an optimal status is reached, the network is able to generate a specific
type of data that mimics the true data. The performance of the network can be evaluated
using some metrics measuring the distances between these generated data and the real
data [27–30].

To the best of our knowledge, there has been only one survey about QuGAN [31],
which generally discusses the structures, the loss functions, the applications, and the chal-
lenges of GANs and QuGANs. Recently, there have been many new QuGAN methods
proposing new structures, objective functions, gradient calculation, optimization, and eval-
uation strategies. In this paper, we deeply analyze quantum GANs in a systematic way.
Variants of QuGAN are discussed in detail.

The structure of the survey is as follows. Firstly, we review some background related
to quantum GANs in Section 2. The structures of quantum GANs are discussed in Section 3.
Section 4 describes some optimization techniques of QuGAN, including loss function
choices, gradient calculation, network optimization, and evaluation strategies. Quantum
GAN variants are presented in detail in Section 5. Finally, the paper is concluded in
Section 6.

2. Background
2.1. Generative Adversarial Networks (GANs)

The idea of quantum GANs originates from classical GANs, which were first proposed
by Goodfellow et al. [17]. A GAN aims at learning a target distribution, which can be a
series of text or a collection of images or audio, and generating samples that have similar
characteristics to the samples in the training distribution. The architecture of a typical GAN
is depicted in Figure 1. A GAN typically consists of a generator G and a discriminator D.
The generator and the discriminator are made from neural networks and are parameterized
by θG and θD, respectively. The mission of G is to take noise vectors z from a noise source
and produce data x′ that mimic the realistic data x as much as possible in order to fool D,
which is supposed to distinguish whether a sample is taken from the real distribution or
is generated by G. The distinguishing results y of D are then used to train both G and D
iteratively; in other words, θG and θD are updated alternately until the network reaches its
optimality. Ideally, this optimality, or Nash equilibrium [17], occurs when G can generate
identical samples to those in the real distribution, and D is not able to determine which
source the data belong to.
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Figure 1. The architecture of a typical GAN.

GANs are the most potential and popular types of networks used for generative tasks.
They vary in terms of network architectures, optimization strategies, and purposes of
use. Some notable variants of GANs include deep convolutional GAN [32], conditional
GAN [33], Wasserstein GAN [34], boundary equilibrium GAN [35], Big GAN [36], Lapla-
cian GAN [37], and information maximizing GAN [38]. Many GANs have been the basis
of outstanding achievements. For example, StyleGAN3 [39] obtained a Fréchet incep-
tion distance of 3.07 on the FFHQ dataset, 4.40 on the AFHQv2 dataset, and 4.57 on the
Beaches dataset. These networks have found their roles in image domains such as image
synthesis [36,37,40,41], image inpainting [42,43], image blending [44,45], image superres-
olution [46,47], and image-to-image translation [48–50]; audio domains such as speech
synthesis [51,52] and music composing [53,54]; and other fields such as autonomous driv-
ing [55], weather forecasting [56,57], and data augmentation [58,59]. GANs’ effectiveness
and varied applications have been described in previous surveys of them [18,19,60].

Consider two probability measures P and Q of a random variable x defined on a
measurable space (Ω,F ). Denote E[·] the expected value of [·]. Typical ways to measure
the distance between these two distributions are as follows.

• Total variation (TV) [61]:

TV(P, Q) = sup
A∈F
‖P(A)−Q(A)‖. (1)

• Kullback–Leibler divergence (KLD) [62]:

KLD(P‖Q) = EP(x)

[
log

P(x)
Q(x)

]
. (2)

• Jensen–Shannon divergence (JSD) [63]:

JSD(P‖Q) =
1
2

KLD(P‖M) +
1
2

KLD(Q‖M), (3)

where M = P+Q
2 .

• Wasserstein distance (WD) [34]:

W(P, Q) = inf
γ∈∏(P,Q)

E(x,y)∼γ[‖x− y‖], (4)
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where ∏(P, Q) is the set of all joint distributions γ(x; y) whose marginals are P and
Q. However, normally, the infimum is difficult to keep track of, so according to
Kantorovich–Rubinstein duality, the formula can be written as

W(P, Q) = sup
‖ f ‖L≤1

Ex∼P[ f (x)]− Ex∼Q[ f (x)]. (5)

The problem with some of these distances is that they may not be continuous in some
cases. When the two distributions have supports lying on low-dimensional manifolds, their
TV, JSD, and KLD will be discontinuous at some points [34]. The WD metric is defined by
the minimum cost of transporting mass to transform from one distribution to another. When
applied in a GAN, the discriminator becomes a critic, which aims to estimate a function
f (x) such that substituting that function into the WD formula will produce the exact or
approximate WD of the real and the generated distributions. The Lipschitz constraint,
‖ f ‖L ≤ 1, can be satisfied by clipping the weights of the critic [34], penalizing the model
if the gradient norm moves away from one [64,65], or adding a regularization term to the
formula to make sure the norm of the function is less than one [66].

Although classical GANs have shown their effectiveness in various fields, they still
face drawbacks that prevent them from tackling all generative problems. Sometimes, they
cost a lot of computational resources and have rather long runtimes [36]. They also have
difficulties in generating discrete data because it is not easy to represent the gradient
update of a discrete value to the parameters of the network [17]. In addition, training
a classical GAN usually encounters unstable convergence [67,68], vanishing gradients,
or mode collapse [69].

2.2. Quantum–Classical Interface

As quantum machines only work with data stored in quantum states, classical data
must be encoded into this form of data. Therefore, data encoding (or embedding) has also
become an interesting field of research. There are various data encoding techniques that
are used in quantum machine learning algorithms, but in quantum GANs, basis encoding,
amplitude encoding, and angle encoding are the most popular [70].

Basis encoding is the simplest way to embed classical data into a quantum state.
The inputs must be in binary form, and each of them corresponds with a computational
basis of the qubit system. In other words, an n-bit binary string x = {0, 1}n will be encoded
into a quantum state |x〉, and exactly n qubits are required to contain the information of
x. Thanks to the superposition property of quantum computing, one can encode multiple
inputs into a single quantum state. Suppose a collection of inputs D consists of M binary
strings xm of length n. Then, all inputs in D can be embedded in the quantum state:

|D〉 = 1√
M

M

∑
m=1
|xm〉 . (6)

Another data-encoding method is amplitude encoding, which is applied in [29,71].
This encoding method can help embed classical N-dimensional data points into a quantum
state. Each dimension of the data point becomes the amplitude of a corresponding compu-
tational basis state. More specifically, a data point x = (xk) for k = 1, . . . , N is encoded as

|x〉 = 1√
∑N

k=1 x2
k

N

∑
k=1

xk |ik〉 , (7)

where |ik〉 is the k-th computational basis state. To encode an input with N dimensions,
at least log2(N) qubits are needed. M inputs with N dimensions can be encoded together
by concatenating them to form a new data point with MN dimensions.
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Sometimes, for simplicity, angle encoding is applied. Here, each dimension of a data
point x = (xk) for k = 1, . . . , N becomes the angle of a rotation gate R(·). The encoded
quantum state is

|x〉 =
N⊗

k=1

R(xk) |0〉 . (8)

This method typically requires N qubits for N dimensions of x. For example, in Ref. [28],
Stein et al. normalized the range of each dimension of the dataset between 0 and 1, and then
transformed a data point x into an angle θ = 2 arcsin

√
x, which would then go through

Ry gates. This lets the quantum data return to the classical form after being generated.
In [72,73], various encoding types for classical data were evaluated. It should be noted
that for high-dimensional data, different ways of scanning data at the quantum–classical
interface may also impact the performance of quantum machine learning [74].

When the data are generated by a quantum generator, to let the traditional discrim-
inator interpret and distinguish between the real and the fake ones, or simply to enable
us to visualize them, they must be converted into a classical form. This can be done
by carrying out some quantum measurements using positive operator-valued measure-
ment [75]. Suppose each outcome m that can occur after the measurement corresponds with
a measurement operator Mm, and the state right before the measurement is |ψ〉. Then, the
probability that m occurs is p(m) = 〈ψ|M†

m Mm |ψ〉. After the measurement, the quantum
system immediately changes its state to Mm |ψ〉√

〈ψ|M†
m Mm |ψ〉

and can be no more manipulated.

Therefore, in practice, the quantum circuits are executed multiple times (or shots), and the
probability of each possible outcome will be estimated based on its occurrences.

3. Structures of QuGAN

A QuGAN can be fully quantum, hybrid, or based on tensor networks. A diagram of
quantum GAN categorization in terms of network architecture is sketched in Figure 2.

Figure 2. Quantum GAN structures.

In the fully quantum (or quantum-quantum) case, both the generator and the discrim-
inator are quantum. Suppose the quantum generator produces fake data with a density
matrix ρ, and the quantum discriminator must discriminate those fake data with true data
described by a density matrix σ with a measurement operator D. The outcomes of D can
be T (i.e., true, or the data are from the real data source), or F (i.e., false, or the data are
generated by the generator). Since T and F are positive operators with a 1-norm less than
or equal to 1, the set of them is convex, which means there must exist a minimum error
measurement [26]. To reach this optimal measurement, the discriminator aims to maximize
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the probability that it correctly categorizes the data as real or fake by following the gradients
of the probability with respect to its parameters to adjust its weights. After that, due to
the fact that the set of ρ is convex, the generator also manages to adjust its own weights to
maximize the probability that the discriminator fails to discriminate the data and produce
an optimal density matrix ρ [26]. Similarly to the traditional GANs, after a number of
iterations of adjusting the weights of both the generator and the discriminator, a quantum
GAN can also approach the Nash equilibrium. Some typical fully quantum GANs include
the networks proposed by Dallaire-Demers et al. [27], Huang et al. [29], and Stein et al. [28].

The mechanism is similar when only a part of the classical GAN is replaced by a quan-
tum engine. However, not all hybrid structures are possible. In particular, the generator or
the discriminator cannot be classical if the training dataset is generated by a quantum sys-
tem, which has quantum supremacy. This means the classical generator can never generate
the statistics of a dataset that are similar to those of a quantum data source [20]. Therefore,
using the same strategy as in a fully quantum network, the quantum discriminator can
always find a measurement to distinguish the true and the generated data. As a result,
the probability that the discriminator makes wrong predictions will always be less than 1

2 ,
and the Nash equilibrium will never happen [26]. On the contrary, in the case where the
discriminator is classical, both the real data and the generated data which are fed into the
discriminator are quantum.

When the target data are classical, either the generator or the discriminator can be
classical. However, although possessing quantum supremacy, the quantum systems only
act on data as quantum states and are unable to work with classical data directly. If the
discriminator is quantum, both the training data and the fake data generated by the classical
generator need to be encoded before being fed into the discriminator. On the contrary, if the
generator is quantum, the generated data must be measured using some computational
bases to produce classical generated samples [29,30].

Recently, Huggins et.al. [76] introduced a new genre of QuGAN architectures based
on tensor networks (TN). It is based on a high-rank tensor that describes the quantum
wavefunction of a multi-partite system as a factorization over low-rank tensors. This design
offers a robust and reliable foundation for developing quantum-assisted machine learning
models. Differently from the fully quantum or hybrid architectures mentioned above,
the models based on tensor networks provide a unified framework in which quantum
computing and classical computing can benefit from the same technical developments. This
means the same models are trained in a classical environment and then can be transferred
to a quantum environment for further optimization without any modification. Therefore,
this design is suitable for both classical and quantum data.

An important issue in GANs is latent space [77]. As for QuGANs, all proposals up
to this time use a quantum generator, which requires the latent space to be a collection of
quantum states. The preferred method to prepare the latent space is randomly drawing
from a certain distribution. For example, in [30], the authors tested the network in the
cases where the latent quantum state is sampled from a uniform, a normal, or a random
distribution. There has been only one work where a quantum circuit-based generative
model was used to learn and generate the latent space of the generator in a classical
GAN [78].

4. Optimization of QuGAN
4.1. Loss Function

Just like the traditional GANs, the quantum version needs a function whose gradients
it can trace along to adjust its weight so as to reach the Nash equilibrium. This function
may involve different quantities. Some QuGANs make use of the quantum states of the
generator and the discriminator, and some others involve a certain function estimated
by the discriminator (in this case, it is called the critic). However, in most QuGANs,
the discriminating results of the discriminator are used to determine the loss.
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4.1.1. Maximum Likelihood

Inspired by the classical GANs, the generator and the discriminator also play a min-
imax game. Suppose x is a data point drawn from the real data distribution and x′ is a
sample generated by the generator. The discriminator should take x or x′ as input, label 1
if the input is a real sample, and label 0 otherwise. Denote D(·) as the probability that the
data (·) are from the real distribution. The goal of the discriminator is to make D(x) as near
1, and D(x′) as near 0 as possible. Meanwhile, the generator aims to fool the discriminator
by maximizing D(x′). Therefore, the cost of training a quantum GAN can be written as a
value function:

V(G, D) = Ex∼σ[log D(x)] + Ex′∼ρ[log (1− D(x′))], (9)

where E[·] is the expectation value, σ is the real data distribution, and ρ is the fake data
distribution generated by the generator. Training a quantum GAN means solving a minimax
problem: maxD minG V(G, D). This loss function is popular and used in most quantum
GAN works [28–30,79–81].

However, just like in the case of traditional GANs, in the beginning, the generated
and the real distributions may hardly overlap due to the poorly trained generator, which
enables the discriminator to easily classify the data with very high accuracy. This results
in the quick convergence of the discriminator and provides insufficient gradients for the
generator to learn because its loss function saturates. Therefore, in practice, instead of
minimizing Ex′∼ρ[log (1− D(x′))], the generator should attempt to maximize the function:

V(G) = Ex′∼ρ[log (D(x′))]. (10)

This function helps provide gradients with more information during the early stage of
learning while still resulting in the same optimal point [17]. Nonetheless, the discriminator
and the generator are trained simultaneously without considering each other. Therefore,
the gradients have large variances and fluctuate, which makes it uncertain that the training
process will end up with the convergence of the network.

In addition, the maximum likelihood cost function does not help the network over-
come mode collapse, and the generator produces an especially plausible output and it
keeps generating output similar or even identical to that one. This phenomenon happens
when the discriminator is stuck in a local minimum and facilitates the generator to over-
optimize for that particular discriminator. The generator will then rotate around a small
space of output with little variance [82]. In addition, optimizing the maximum likelihood
cost function is equivalent to minimizing the KLD between the real and the generated
distribution [83]. In principle, if we consider a distance between two distributions as
a cost function, minimizing this function will make one distribution closer to the other,
and this only holds if the distance is continuous. Otherwise, at the point of discontinuity,
the gradients become useless [34].

4.1.2. Wasserstein Distance

From the classical WD, Chakrabarti et al. made a reference to the quantum terms and
constructed a quantum Wasserstein semi-metric [84]. Denote the set of quantum states over
space X as D(X) and the trace of a matrix as Tr(·). The quantum Wasserstein semi-metric
between two states P ∈ D(X) and Q ∈ D(Y) is

qW(P ,Q) := min
π

Tr(πC)

s.t. TrY(π) = P , TrX(π) = Q, π ∈ D(X⊗Y), (11)

where π is the diagonal matrix representing the coupling distribution π(x, y) satisfying
TrY(π) = P and TrX(π) = Q in the diagonal, and C is a Hermitian matrix. In [84],
the authors chose C = 1

2 (IX⊗Y)− SWAP to leverage the concept of symmetric subspace
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in quantum information. Here, IX⊗Y is the identity operator over X⊗Y, and SWAP is an
operator that swaps −→x ⊗−→y into −→y ⊗−→x for all −→x ∈ X and −→y ∈ Y.

The dual form of the quantum Wasserstein semi-metric is

max
φ,ψ

Tr(Qψ)− Tr(Pφ)

s.t. IX ⊗ ψ− φ⊗ IY � C, φ ∈ H(X), ψ ∈ H(Y), (12)

whereH(X) andH(Y) are the sets of Hermitian matrices over space X and Y, respectively, [84].
Similarly to the Lipschitz constraint, the quantum Wasserstein semi-metric also has

a condition of IX ⊗ ψ− φ⊗ IY � C; i.e., C = (IX ⊗ ψ− φ⊗ IY) is a positive semidefinite
matrix. To satisfy this condition, Chakrabarti et al. added a quantum-relative-entropy-based
regularizer with a tunable coefficient λ to the semi-metric:

min
π

Tr(πC) + λTr(π log(π)− π log(P ⊗Q))

s.t. TrY(π) = P , TrX(π) = Q, π = D(X⊗Y). (13)

Accordingly, Chakrabarti et al. constructed an approximation of the semi-metric in
the dual form:

max
φ,ψ

EQ[ψ]− EP [φ]− EP⊗Q[ξR] s.t. φ ∈ H(X), ψ ∈ H(Y), (14)

where
ξR =

λ

e
exp(

−C− φ⊗ IY + IX ⊗ ψ

λ
). (15)

Optimizing the quantum Wasserstein semi-metric as the cost function is equivalent to
finding out the optimal parameters ψ and φ of the discriminator to approximate the exact
Wasserstein semi-metric between the real and the generated quantum states.

4.1.3. Total Variation

In the classical scenario, total variation is not a favorite type of cost function for GANs.
It is normally used as a metric to evaluate the performance of a network. Only a few works
have used total variation as a cost function, such as [85]. When it comes to quantum terms,
the total variation can be written as the trace distance of the target quantum state ρR and
the generated quantum state ρG:

D(ρR, ρG) =
1
2

Tr(ρR − ρG). (16)

In the case where the network converges, this distance reaches 0. At that time, the gen-
erated state is identical to the target state. We can see this type of cost function applied
in [86,87].

In [27], we can see that the first proposed quantum GAN also used total variation
as a cost function. Although classical GANs which inspire quantum GANs mostly use
log-likelihood as the cost function, Dallaire-Demers et al. [27] defined such a linear cost
function for simplicity and convenience. When the source of data is fairly selected, the final
form of the cost function is

1
2
+

1
4Λ

Λ

∑
λ=1

Tr((ρR − ρG)Z), (17)

where λ is the data label; Λ is the total number of labels; ρR and ρG are the quantum states
of the system after applying the discriminator in the cases of real data and generated data,
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respectively; and the expectation value of the operator Z = |real〉 〈real| − |fake〉 〈fake| is
proportional to the probability that the discriminator yields |real〉.

4.2. Gradient Computation

In quantum GANs, there are parametrized quantum circuits that build one or more
parts of the network. That part can be the generator, or the discriminator, or both, or even the
supplement components to assist the network in working more efficiently. These variational
circuits consist of quantum gates or unitaries with tunable continuous parameters. Similarly
to the classical counterparts, during the training process, the parameters are updated using
a certain optimizing algorithm, such as gradient descent [88], Adam [89], or Adagrad [90].
All these approaches to adjusting the circuits to optimality require calculating the gradients
of the cost function, including the partial derivatives with respect to the parameters of
the circuits.

Consider a gate Ui(θi) in a variational circuit consisting of a gate sequence U(θ) =
UN(θN)UN−1(θN−1)...Ui(θi)...U0(θ0) that depends on a set of parameters θ. Suppose the state
of the circuit before being applied Ui(θi) is |ψ〉. After going through Ui(θi), the circuit state can
be measured by an observable Q̂. Then, the circuit can be represented as a function f (θ):

f (θ) := 〈ψ|U†
i (θi)Q̂Ui(θi) |ψ〉 . (18)

The partial derivative of the function f with respect to the parameter θi of the gate
Ui(θi) is

∂ f
∂θi

= 〈ψ|
∂U†

i (θi)Q̂Ui(θi)

∂θi
|ψ〉 . (19)

Similarly to other quantum machine learning fields of research, there are two main
methods to calculate ∂ f

∂θi
, namely, the parameter-shift rule and linear combination of unitaries.

4.2.1. Parameter-Shift Method

The parameter-shift method was first proposed by Mitarai et al. [91], and then was
expanded by Schuld et al. [92]. In many cases, the partial derivative of a unitary conjugation
U†

i (θi)Q̂Ui(θi) with respect to θi can be expressed by that unitary conjugation itself but
with a shift s in θi:

∂U†
i (θi)Q̂Ui(θi)

∂θi
= r[U†

i (θi + s)Q̂Ui(θi + s)−U†
i (θi − s)Q̂Ui(θi − s)], (20)

where r is the positive eigenvalue of G, and s = π
4r . For example, if Ui is generated by a

Pauli product Pi, i.e., G = Pi
2 , then r = 1

2 and s = π
2 .

This method can only be applied to the cases where the gate is in the form of Ui(θi) =
exp(−iθiG) and the Hermitian operator G has at most two distinct eigenvalues. Many of the
works about quantum GANs use variational circuits consisting of this kind of quantum gates, so
it is used in a variety of quantum GAN optimization algorithms [28–30,80,81,84,87,93]. Making
use of the parameter-shift rule, one can easily calculate the gradient of the cost function without
impacting the network or constructing another circuit by executing the same variational circuit
again with only small modifications to the considered parameters.

4.2.2. Linear Combination of Unitaries

As for the quantum gates that do not belong to the types of gates above, their gradients
can always be evaluated by using their linear combinations of unitaries. Schuld et al. first
suggested the idea of decomposing the gates into linear unitary combinations in [94],
and then generalized the idea in [92].
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The partial derivative of the function f with respect to θi can be further decomposed as

∂ f
∂θi

=
K

∑
k=1

αk(〈ψ|U†
i (θi)Q̂Ak |ψ〉+ h.c.), (21)

where αk is real and Ak is a unitary matrix. For each individual term αk(〈ψ|U†
i (θi)Q̂Ak |ψ〉+

h.c.) in the sum, a corresponding quantum circuit, as in Figure 3, is implemented. An ancilla
bit in state |0〉 is added and applied to a Hadamard gate, followed by the application of
the unitary Ui conditioned on the ancilla’s state |0〉, and the unitary Ak conditioned on
the ancilla’s state |1〉. Finally, the ancilla is applied to another Hadamard gate. Measuring
the ancilla bit and the observable Q̂ for the final state |ψ′〉 gives Ẽ0, the expectations of Q̂
being when c = |0〉 with a probability of p0 and Ẽ1 when c = |1〉 with a probability of p1.
The individual term of the sum in the target derivative can then be easily derived:

αk(〈ψ|U†
i (θi)Q̂Ak |ψ〉+ h.c.) = 2αk(p0Ẽ0 − p1Ẽ1). (22)

Figure 3. The implemented circuit for computing an individual term in the target derivative using
gate decomposition.

Although this method can be applied for any kind of gate, it requires an additional
qubit as the ancilla and applying the gates and their decompositions conditioned on the
ancilla. In addition, one must execute the circuit several times to estimate the probabilities
and the expected values for each decomposition component of the gate, and there are in
total K such components, which is resource-consuming. In addition, how to decompose the
gate must also be determined. However, for the gates that are not in the form of exp(−iθiG),
or when the generator G of the gates has more than two eigenvalues, this is the only way
to compute the gradient. Some quantum GAN architectures using this method are [79,84].
In the first-ever suggested quantum GAN architecture [27], although the derivatives are
computed directly, the method can also be categorized as linear combinations of unitaries
with a special K = 1.

4.3. Optimization and Evaluation Strategies

A good strategy to optimize a quantum GAN is also an important research direction
with a lot of interesting questions. For example, what is the order of training the generator
and the discriminator that results in the most efficient optimization process? How much
should one train the generator in comparison with the discriminator? How many steps
of gradients should the network go through? How can the parameters of a network be
initialized for the best performance? Additionally, how can one set or even adjust the
learning rate to adapt to the change during the training process?

These problems matter when training a classical GAN, and they are certainly carried
through to the quantum counterparts. With the exponential computational power and the
more complicated algorithms, researchers should carefully set up the hyperparameters and
determine the optimization strategy before conducting the training process.

The solutions to these issues, however, are rather indiscriminate, and due to the
different structures of the networks and the elusiveness of quantum nature, there has
been no rule to find out the best training strategy that can be applied for every quantum
network in general, and for every quantum GAN in particular. To tackle the learning rate
and the number of measurement shots, Huang et al. [29] simply performed a grid search
to find the optimal hyperparameters. In the same manner, some researchers also set the
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hyperparameters and adjust them manually during the training process. For example,
Dallaire-Demers et al. [27] set the number of gradient steps to 10,000 and the initial learning
rate of the discriminator to 10; the latter was made to decrease exponentially to 0.1 during
the first 4000 steps and then remain constant. The learning rate of the generator was
5 times as much as that of the discriminator. In [28], Stein et al. trained the network
25 times with the constant learning rate of 0.01, and the initial weights of the network were
drawn randomly from (0, π). This was also the case for a quantum WGAN [84], where
Chakrabarti et al. set a fixed learning rate for both the generator and the discriminator.
Many others have seen the benefits of preconstructed optimizing algorithms, so they
directly use these for training their networks. For instance, Zoufal et al. [30] made use of
the AMSGRAD algorithm in [95] to optimize their quantum GAN.

Jointly training the generator and the discriminator is a more difficult issue to deter-
mine. In comparison with the discriminator, if the generator is trained too little, it may not
get enough information to defeat the discriminator, which results in instability in the loss of
the network. On the contrary, if the generator is trained too much, it will likely lead to mode
collapse, and there will be a waste of computational resources. This also varies and depends
on each network architecture and the authors’ purposes. Many approaches to handle this
problem have been applied. To make the data source choice for the discriminator truly fair,
Dallaire-Demers et al. [27] tossed a coin to determine the input of the discriminator to be
real data or generated data. During the training process, the generator is updated once for
every 100 gradient steps of the discriminator. Meanwhile, Huang et al. [29] updated the
generator and the discriminator iteratively for a preset number of epochs. Alternatively,
in [28], for each iteration, Stein et al. trained the discriminator on all real data once, then on I
generated samples, and finally trained the generator for R times. For the quantum supports
that produce data prior, as in [78], the quantum part is updated after a certain number of
times of training the main network. However, for the quantum WGAN family, thanks to
the role of the critics in finding the best function to estimate the Wasserstein distance, not
discriminating between real and fake samples, they can be trained to optimality before the
generators are trained using the optimal distance.

Like their classical counterparts, quantum GANs require some methods to assess their
performances. There are many useful metrics used for classical networks, but those for
quantum networks are still an open question. Even in the classical cases, finding suitable
metrics that embrace as many aspects as possible, such as network running time, resources
needed, and the similarity between generated and real data, is complicated.

To evaluate the performance of the classical GANs, there are many metrics that have
been invented and applied. These metrics can be used directly to assess the efficiency
of a quantum GAN in the case where the network generates classical data. In [30],
Zoufal et al. calculated the relative entropy and the Kolmogorov–Smirnov statistic between
the generator’s output and the real distribution. Huang et al. [29] used Fréchet distance to
measure the similarity of the generated and the target data. The Hellinger distance between
the fake dataset and the real dataset is another metric, and it was used in Stein et al.’s
work [28]. On the other hand, Rudolph et al. [78] made use of the Inception-v3 network to
calculate the inception score to evaluate the proposed network’s performance.

The classical metrics can also be used in some cases of quantum data. When proposing
the first quantum GAN, Dallaire-Demers et al. [27] applied the KLD method to the trace of
the density matrix:

S(ρR‖ρG) = Tr(ρR(log ρR − log ρG)). (23)

Many of the quantum GANs working with quantum data use quantum fidelity and trace
distance to attain the similarity of the generated states and the target states [84,86,87,93,96].
The trace distance of two states ρR and ρG is defined as

D(ρR, ρG) =
1
2

Tr(ρR − ρG). (24)
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The fidelity of two states ρR and ρG is calculated using

F(ρR, ρG) = (Tr(
√√

ρRρG
√

ρR))
2. (25)

When the calculated values of these metrics approach 0, it means that the generated
distribution is near the target distribution, or the evaluated network has a good perfor-
mance. In addition, in some computer vision tasks, to judge how effectively a network
works, one may simply display the generated data and make a perceptual comparison with
the training data, as in [79].

5. Quantum GAN Variants

In this section, a wide variety of QuGANs are discussed in detail. A summary of
typical quantum GAN variants and their characteristics is provided in Table 1.

5.1. Fully Quantum GANs

With fully quantum GANs, both generators and discriminators are constructed by
quantum circuits, connected directly with the other, and they together apply to a system
of qubits [27–29,79,86,87,93]. The target distributions can be quantum, which can be fed
directly into the network, or classical, which must be encoded to some quantum states
before being input into the network. The workflow of fully quantum GANs is depicted in
Figure 4. The noise from latent space puts the quantum system in the state |z〉. After being
applied by the generator, the system is in state |ψ〉. At this time, in the case the real
data are used, the real quantum data source outputs state |x〉 from the quantum system.
The discriminator is then applied, and it changes the state to |y〉. The states |y〉 in the cases
where the discriminator’s input is real or generated will then be used for the cost function
and updating the parameters in the circuits.

(a)

(b)

Figure 4. The workflow of a fully quantum network in the cases where the target data are (a) quantum
and (b) classical.
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Table 1. A summary of quantum GAN variants and their characteristics.

Year Name Author Data Type Encoding
Method Conditional Quantum G Quantum D Loss Function Gradient Network Evaluation Application

2018 Quantum generative
adversarial networks [27]

Dallaire-Demers
et al. Quantum None Yes Yes Yes Total

variation

Directly using
a separate register Cross entropy

Generate pure quantum state
with 2 labels;
Approximate quantum circuits

2019

Quantum Generative
Adversarial Networks for
learning and loading
random distributions [30]

Zoufal et al. Classical None No Yes No Log-
likelihood

Parameter-shift
Relative entropy;
Kolmogorov–
Smirnovm statistic

Learn and load random
probability distribution
into quantum states;
Financial derivative pricing

2019
Quantum Wasserstein
Generative Adversarial
Networks [84]

Chakrabarti
et al. Quantum None No Yes Yes

Quantum
Wasserstein
distance with
regularizer

Directly using
a separate quantum
circuit;
Parameter-shift

State fidelity Approximate
quantum circuits

2019

OpticalGAN: Generative
Adversarial Networks for
Continuous Variable
Quantum Computation [79]

Shrivastava et al. Quantum None No Yes Yes Log-
likelihood

Gate decomposi-
tion

Visualization Generate energy eigenstates
and coherent states

2019

Quantum generative
adversarial learning in
a superconducting
quantum circuit [86]

Hu et al. Quantum None No Yes Yes Total
variation

By definition State fidelity
Replicate a quantum state
from a quantum channel
simulator

2019

Efficient Online Quantum
Generative Adversarial
Learning Algorithms with
Applications [93]

Du et al. Quantum None No Yes Yes Total
variation

Zero-order
differential method;
Parameter-shift

State fidelity
Entanglement test for
a bipartite pure state;
Approximate a pure state

2019
Adversarial quantum circuit
learning for pure state
approximation [87]

Benedetti et al. Quantum None No Yes Yes Total
variation

Parameter-shift Trace distance Approximate
pure states

2020

Quantum generative
adversarial network
for generating discrete
distribution [80]

Situ et al. Classical None No Yes No Log like-
lihood

Parameter-shift
Number of valid
generated samples;
KLD

Generate discrete
distribution such as BAS

2021 Experimental Quantum
Generative Adversarial
Networks for Image
Generation [29]

Quantum
batch GAN Huang et al. Classical

Amplitude
encoding No Yes Yes Log-likelihood Parameter-shift

2-Wasserstein
distance (Fréchet
distance)

Generate handwritten
digit images of 0 and 1;
Generate a data set
of images (gray scale bar)

Quantum
patch GAN None No Visualization;

Fréchet distance

2021

QuGAN: A Quantum
State Fidelity based
Generative Adversarial
Network [28]

Stein et al. Classical Angle
encoding No Yes Yes Log-

likelihood
Parameter-shift Hellinger distance

Generate images of
handwritten digits
from the MNIST dataset

2021

A hybrid quantum–classical
conditional generative
adversarial network
algorithm for human-centered
paradigm in cloud [81]

Liu et al. Classical None Yes Yes No Log-
likelihood

Parameter-shift
Time complexity;
Number of bits used;
Visualization

Generate discrete
distribution such as BAS
with human orientation
on the generated data

2022
Learning quantum data
with the quantum
earth mover’s distance [96]

Kiani et al. Quantum None No Yes Yes
Quantum
Wasserstein
distance

Directly using
a linear program;
Parameter-shift

State fidelity
Estimate quantum states
and approximate quantum
circuits
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In this variant of quantum GANs, both the generator and the discriminator are boosted
by quantum supremacy, and they can benefit from two facts. First, the computational power
is leveraged at an exponential rate in comparison with classical neural networks. Second,
they can manipulate, learn from, and generate certain types of data that classical GANs
cannot [26]. For example, in [29], to achieve the same performance with the quantum batch
GAN using totally 21 parameters, the classical GANs must have at least 106 parameters.

5.2. Hybrid Quantum–Classical GANs

A GAN could be a combination of a quantum and a classical module. In practice,
a GAN with a classical generator and a quantum discriminator is never used. As stated
in [26], if the target distribution is quantum, it is impossible for the classical generator to
estimate and learn such a distribution. On the other hand, if the target data are classical,
the generator is able to generate such data, but it can always be beaten by the quantum
discriminator. In this way, the generator never reaches its convergence. Hence, a hybrid
quantum–classical GAN has a quantum generator and a classical discriminator. The ar-
chitecture of a hybrid quantum–classical GAN is illustrated in Figure 5. This variant of
quantum GANs is used to generate classical data with extraordinary performance in com-
parison with traditional GANs. Since the discriminator is also classical, the target data do
not need encoding. However, the states of the quantum system after the generator must be
measured to be transformed into classical statistics, which are readable for the discriminator.
The classical discriminator can be made of a fully connected neural network [29,30,80],
with its output being 0 or 1, corresponding with real and fake examples, respectively. This
reduces the problem to a two-class classification.

Figure 5. The workflow of a hybrid quantum–classical GAN.

Although only the generator has quantum power, it is enough for hybrid GANs to
outperform traditional ones. In [80], a GAN with a quantum generator and a classical
discriminator was able to generate discrete distributions, a difficult task for classical GANs
to deal with. Most notably, the proposed hybrid GAN could easily converge after only
about 1000 epochs.

5.3. Tensor-Network-Based GANs

Tensor networks have recently been considered as a promising design for many
generative learning tasks [76,97,98]. In [76], the authors considered two families of tensor
networks, namely, matrix product states and tree tensor networks, to model a generative
circuit. Their architectures are shown in Figure 6. Rather than applying the universal unitary
operators of all qubits, tensor-network-based generative models consider some specific
patterns by choosing a subset of qubits for each unitary transformation. The algorithms
begin by initializing 2V qubits in one subset in a reference computational basis state 〈0|⊗2V ,
then transform these qubits by a unitary operator. Another subset of 2V qubits is prepared
in 〈0|⊗2V , and half of them will be entangled with V qubits from the first subset by another
unitary operator. The process continues until the total number of qubits reaches the desired
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output dimensionality. Figure 6 shows examples of the designs of generators based on tree
tensor network (a) and matrix product states (b) with V = 2.

(a) Tree Tensor Network (b) Matrix Product State

Figure 6. Generative models with tensor networks.

5.4. Quantum Conditional GANs

In classical generative tasks, the input of the generator is random, so one has no control
over the generated output. To force the network to produce the examples with desired
classes, one conditional constraint about the label is added [33]. Both the generator and the
discriminator are aware of this constraint. In addition to discriminating whether the sample
comes from a real or generated distribution, the discriminator has to evaluate whether
the sample has the characteristics corresponding to the right label or not. This is the same
approach when it comes to the quantum scenario. The conditional label λ is also encoded
in the form of quantum states. The schematic of quantum conditional GANs is shown in
Figure 7.

(a)

(b)

Figure 7. The workflow of (a) a quantum conditional GAN generating quantum data and (b) that of
a hybrid conditional GAN generating classical data.

In [27], Dallaire-Demers et al. delicately constructed the quantum conditional GAN
version based on the structural similarities between classical and quantum mechanics.
The real data source R is used to provide real data, and the generator G(θG) and the
discriminator D(θD) are parametrized quantum circuits. During the training process,
a coin is tossed to determine the source of data. If the outcome is tails, the real data source
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is used to train the discriminator. If it is heads, the generator takes the latent noise and
produces the fake data. Only in the heads case are both the generator and the discriminator
trained. This keeps the network from having the generator trained too much. The cost
function used for parameter update is the total variation or the trace distance between
the quantum states of the system when the input data of the discriminator is real or
generated. The network was tested on generating quantum states ρR

A = |0〉 〈0| with label
A, and ρR

B = |1〉 〈1| with label B. After about 7000 steps of the discriminator, the KLD of
the real and generated data reaches zero.

Liu et al. [81] also proposed a hybrid quantum–classical conditional GAN that utilizes
human orientation on the generated data. The conditional variable in this network is not a
label of data, but it contains the probability distribution of samples in the training set. This
classical conditional constraint is encoded as a quantum state as |λ〉 = ∑m

j=1
1
αj
|λj〉, where

1
αj

= (p(x|λj))
−1/2, λj is the j-th label and m is the total number of classes. Of course,

1
αj

must meet the condition of amplitudes of a quantum state. Normally, the classical

label of an example is in the form of one-hot coding, so it is convenient to express |λj〉
as the corresponding basis states. The network uses the log-likelihood cost function and
parameter-shift method [92] to calculate the gradients. After being trained for 100 epochs,
each epoch with 150 network training iterations, the network could generate a distribution
similar to BAS, a discrete distribution, with less time complexity and controllability, using
the generated data. Thanks to this human-centered algorithm, quantum GANs of this type
have been noticed for their huge potential for the human-centered paradigm in the cloud.

5.5. Quantum Wasserstein GANs

Quantum Wasserstein GANs are the quantum GANs that use Wasserstein distance,
or Earth mover’s distance (EMD), as their cost functions. Differently from other quantum
GANs variants, the mission of the discriminator in Wasserstein GANs (WGANs) is not
to distinguish between the real and the generated data. Due to the fact that Wasserstein
distance contains a function that satisfies the Lipschitz condition, the discriminator acts
as an estimator that finds out the optimal function for calculating the distance. After the
distance is computed, it is used to update the parameters in the generator. The workflow of
quantum WGANs is illustrated in Figure 8.

Figure 8. The general workflow of a quantum WGAN.

The first quantum Wasserstein GAN was proposed by Chakrabarti et al. [84]. The gen-
erator consists of ensembles of unnitaries {(p1, U1), ..., (pr, Ur)}, parameterized by the set of
parameters θ. Each tuple (pi, Ui) means applying the unitary Ui, a 1-qubit or 2-qubit Pauli
rotation quantum gate, with probability pi. The discriminator contains linear combinations
of tensor products of Pauli matrices that are parameterized by two sets of parameters, α
and β, corresponding to φ and ψ, respectively, in the formula in Section 4.1.2. The gradients
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of the cost function with respect to pi, α and β are computed directly, since the cost function
is a linear function of those parameters. The gradients of the cost function with respect to θ
are estimated by the parameter-shift method [92].

However, Kiani et al. realized that this formula of quantum Wasserstein distance is
unitarily invariant, so they developed another formula and applied it to their quantum
WGAN [96]. The Wasserstein distance between two states, ρ and σ, is

DEM(ρ, σ) = max Tr[(ρ− σ)H] s.t. H ∈ On, ‖H‖L ≤ 1, (26)

where On is the set of n-qubit observables. The quantum Lipschitz constant of the observ-
able H must be at most one. The discriminator contains the parameterized sum of strings
of Pauli operators and is supposed to estimate the quantum EMD. The generator in this
network has the same architecture as that in Chakrabarti et al.’s work [84]. The weights
of the discriminator are updated by executing a linear program, the probabilities of the
unitaries in the generator are updated by directly computing the gradients, and gradients of
the cost function with respect to the unitary parameters are calculated via parameter-shift
rules [92].

Quantum Wasserstein GANs can help overcome the disadvantages of quantum GANs
using other metrics for network updating, such as discontinuous distances between real
and generated distributions, mode collapse, and vanishing gradients. They can successfully
estimate GHZ state [96], up to 8 qubit pure states, up to 3 qubit mixed states, and even 4
qubit pure states with noise [84]. They can also be used to approximate quantum circuits
such as the 1D 3-qubit Heisenberg model circuit [99] with an average output fidelity of
0.9999 [84] and 8 qubit teacher circuits using student circuits of depth 4 with the fidelity of
approximately 1 [96].

5.6. Quantum Patch GANs Using Multiple Sub-Generators

For a classical dataset with M dimensions, whichever encoding method is used, each
sample requires at least N = log M qubits to be represented. To deal with the case there
are limited quantum resources, i.e., the number of available qubits, Huang et al. suggested
a quantum patch GAN [29]. This network consists of T quantum sub-generators and a
classical discriminator. The sub-generators are identical, and each is responsible for a
portion of the high-dimensional data. The outputs of the sub-generators are measured and
concatenated together to form a classical vector, which then can be fed into the discrim-
inator. Thanks to dividing the data into small parts for each sub-generator, the training
can be carried out on distributed quantum devices parallelly or on a single quantum
device sequentially.

5.7. Quantum GANs Using Quantum Fidelity for a Cost Function

This fully quantum GAN variant was suggested by Stein et al. [28]. The architectures
of the generator and the discriminator, the gradient calculation method, and the training
strategy stay the same as other fully quantum GANs, but there is a modification in the
cost function. The outcomes of the discriminator when the input is real (x) and fake (x′),
i.e., D(x) and D(x′), are alternated by the fidelities of the state generated by encoding the
real samples (ξ) and the state after applying by the generator (γ), respectively, with the
state after applying the discriminator (δ). In other words, the original value function

V(G, D) = Ex∼σ[log D(x)] + Ex′∼ρ[log (1− D(x′))] (27)

becomes
V(G, D) = E[log D(| 〈ξ, δ〉 |2)] + E[log(1− D(| 〈γ, δ〉 |2))]. (28)

The fidelities of the states are obtained using an ancilla qubit in initial state 1√
2
|0〉+

1√
2
|1〉 and then applying a controlled swap gate and a Hadamard gate. The probability

that the measurement at the ancilla bit yields 0 is equal to half the needed fidelity plus 1
2 .
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6. Conclusions

Quantum GAN is a new and potential field of research in quantum machine learning.
This kind of quantum generative network is inspired by classical GANs, which have already
proved their effectiveness and wide applications. In addition to the outstanding nature of
GANs, quantum GANs even perform with higher efficiency due to their unique quantum
properties and exponential computing power.

In this work, we have reviewed recent advances in quantum GANs in terms of their
architectures, input encodings, loss functions, gradient calculation methods, and network
training strategies. Different variants of QuGANs were discussed in detail. Although
benefiting from quantum supremacy, quantum GANs still have problems, such as instability
in the training process, vanishing gradients, and mode collapse. In addition, the choices of
latent space, parameter initialization, and circuit architecture also have crucial impacts on
the performance of a network. In future work, we will carry out extensive evaluations of
QuGAN proposals and architecture-related options.
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