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Abstract: Deep learning approaches based on convolutional neural networks (CNNs) have recently
achieved success in computer vision, demonstrating significant superiority in the domain of image
processing. For hyperspectral image (HSI) classification, convolutional neural networks are an effi-
cient option. Hyperspectral image classification approaches are often based on spectral information.
Convolutional neural networks are used for image classification in order to achieve greater perfor-
mance. The complex computation in convolutional neural networks requires hyper-parameters that
attain high accuracy outputs, and this process needs more computational time and effort. Following
up on the proposed technique, a bio-inspired metaheuristic strategy based on an enhanced form
of elephant herding optimization is proposed in this research paper. It allows one to automatically
search for and target the suitable values of convolutional neural network hyper-parameters. To
design an automatic system for hyperspectral image classification, the enhanced elephant herding
optimization (EEHO) with the AdaBound optimizer is implemented for the tuning and updating of
the hyper-parameters of convolutional neural networks (CNN-EEHO-AdaBound). The validation
of the convolutional network hyper-parameters should produce a highly accurate response of high-
accuracy outputs in order to achieve high-level accuracy in HSI classification, and this process takes a
significant amount of processing time. The experiments are carried out on benchmark datasets (Indian
Pines and Salinas) for evaluation. The proposed methodology outperforms state-of-the-art methods
in a performance comparative analysis, with the findings proving its effectiveness. The results show
the improved accuracy of HSI classification by optimising and tuning the hyper-parameters.

Keywords: convolutional neural network; AdaBound; elephant herding optimization; hyperspectral

image classification; optimization

1. Introduction

Deep learning techniques based on convolutional neural networks (CNNs) have
recently made significant progress in computer vision, demonstrating high efficiency in
image processing [1,2]. As a result, there has been a lot of interest in CNN models, which
has led to the use of CNNs in a variety of image processing contexts, such as remote sensing
image processing [3]. Hyperspectral image categorization has long been a feature in the
remote sensing sector. Meanwhile, CNN-based hyperspectral classification algorithms are
becoming increasingly popular [4]. Researchers face issues with a large number of spectral
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bands, larger data sizes, high redundancy, and limited training samples while working
with hyperspectral images [5].

Due to the versatility of conceptual model structures and their ability to avoid global
optimization problems, meta-heuristic optimization methods are recommended for image
classification. A single solution-based meta-heuristic approach and a population-based
meta-heuristic technique are the two sorts of meta-heuristic techniques. The population-
based method includes swarm intelligence (SI) algorithms [6]. Swarms, natural colonies,
herds, and other natural phenomena provide the basis for SI approaches. Particle swarm
optimization (PSO) [7], ant colony optimization (ACO) [8], the cuckoo search algorithm
(CS) [9], the artificial bee colony (ABC) algorithm [10], and elephant herding optimization
(EHO) [11] are some of the most prevalent SI algorithms. Classical optimization issues,
feature extraction, and weight tuning in neural networks are all highly functional for these
types of optimization techniques.

Several research studies have shown how to optimize spatial-spectral HSI across
several classification phases, starting with input data and sampling configurations and
finishing with classifier parameter tuning analysis. Some of them concentrate on enhancing
the precision of the input data by modifying the training sample, data size, balanced
distribution, and clipping the outline of the auxiliary data [12]. Different methodologies
with deep learning, such as CNNSs, have the ability to extract low-, mid-, and high-level
spatial properties. Many CNN-based models have been applied to HSI classification with
limited labelled samples. In order to appropriately train CNN in the context of few labelled
samples and fine-tuned hyper-parameters, many approaches have been proposed to either
increase the training set or decrease the network’s parameters. CNN’s HSI classification
is appropriate because of its local layer interconnection and shared weights, which make
it effective in capturing feature correlations. CNN-based HSI classification approaches
can be split into three types based on the input data of the models: spectral-based CNN,
spatial-based CNN, and spectral-spatial-based CNN. The pixel vectors are used as input
for spectral CNN-based HSI classification, which employs CNN to exclusively characterize
the HSI in the spectral domain. To extract the spectral properties of HSI, Hu et al. suggested
a 1D CNN with five convolutional layers [13]. Furthermore, [14] provided a valuable work
in which CNN was used to extract pixel-pair un-mixing features for HSI classification,
resulting in a higher classification rate.

Spatial CNN-based techniques are the next category of HSI classification methodology.
As the abundance information of HSI data contains significant spatial information in
addition to spectral information, it is important to extract the spatial features of HSI to
obtain the full-fledged classification of data. The majority of available spatial CNN-based
HSI classification techniques are based on primary components. For instance, in [15], spatial
patches’ with initial principal components were clipped at the centre pixel.

And neighbouring pixel was used to build a 2D CNN for HSI classification. The
most popular and trending CNN-based HSI classification methods are spectral-spatial
CNN-based approaches, which attempt to exploit both spectral and spatial HSI information
in a single structure. HSI's input is a 3D tensor, and 3D convolution is utilized to classify
it [16]. In [17], He et al. developed a 3D deep CNN to concurrently extract spatial and
spectral features using multiscale features. To retrieve spectral-spatial information and
standardize the model, the 3D convolutional layer and batch normalization layer were
illustrated in [17]. Hyungtae Lee et al. [18] developed CNN architecture to strengthen
HSI's spectral and spatial information at the same time. They used a residual structure to
improve CNN performance, which was mostly driven by minimal training data. CNN-
based approaches are the preferred standard algorithm for HSI classification today due to
their high classification performance.

In [19], Res-3D CNN, which was developed by the authors, attempted to enhance
the extraction of spatial-spectral features by adding residual interconnections to 3D CNN.
Although feature extraction with a small number of training samples can cause serious
information leakage, this technique also advises using a limited amount of training data.
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This calls for the model to be tuned with hyper-parameters. Zhong [20] constructed an
SSRN (spectral-spatial residual network) from unstructured hyperspectral data without
dimensionality reduction. They partitioned the fully convolutional learning procedure
into independent spatial feature learning and spectral feature extraction, and then added
residual interconnections to the existing system. SSRN acquired more prominent features,
and the extracted feature training strategy has a growing hand in hyperspectral classi-
fication studies in the future. It has also been noted that, in some instances, classifying
spatial information tends to lose small amounts of substantial information, although the
classification performance relies on the proposed classifier. In the paper of Sharma, [8], a
spatial-spectral HSI classification is presented, using nature-inspired ant colony optimiza-
tion. Improved classification accuracy was attained by combining two separate supervised
classifiers: Spectral Angle Mapper (SAM) and Support Vector Machine (SVM). One major
contributing aspect was the loss of minimal spatial information on classification due to
the small training samples. The EHO technique was followed by Jayanth et al. [21] to
classify high-spatial-resolution multispectral images. EHO determines the information
class and multispectral image fitness evaluation function. The experimental findings of
the datasets show that the proposed approach enhances overall accuracy by 10.7% for the
Arsikere taluk dataset and 6.63 percent for the National Institute of Technology Karnataka
(NITK) campus dataset, when contrasted with the SVM algorithm. The classification of
hyperspectral images was strengthened by the substantially optimised hyper-parameters.
An optimized algorithm that can compute fast and deliver efficient performance despite
the constraints is needed.

The effectiveness of the optimization algorithm will be more affected by the hyper-
parameter values. The most ideal values for hyper-parameters in optimization algo-
rithms are determined using a variety of techniques, such as evolutionary algorithms,
trial and error (TE), and random search gradients. The adaptive-moment estimation
method (Adam) [22] is frequently used for weight updates in deep learning neural net-
works. However, in this study, a new adaptive optimizer called AdaBound [23] was applied
to achieve faster hyper-parameter convergence. At the same time, the AdaBound optimizer
can minimize the generalization gaps in existing adaptive methods and SGD optimizers,
while maintaining a faster dynamic learning rate early in the training phase. The pro-
posed method is based on enhanced EHO optimization with the AdaBound optimizer for
HSI classification.

Elephant herding optimization (EHO) is a method for tackling global optimization
issues that is based on elephant herding behaviour [24]. Elephants from different families
live under the same authority as matriarch elephants, and when the male elephants reach
adulthood, they leave their family group. The phenomenal behaviour of elephants is
separated into clans by updating operators and separation operators. The present position
of the elephant is modified by the clan-updating operator. Later, the separating operator is
utilized. The applications of the EHO algorithm demonstrate its outstanding performance
in solving optimization challenges. Due to the sheer stochastic character of EHO and the
incorrect balance between analysis and development, it is confined to the local optimum.
This is considered a key drawback of EHO. As a result, The EHO's capability for analysis is
constrained, thus its convergence speed is slower [25].

To fix the low varying convergence of EHO towards the source and ensure an effective
balance between the analysis and development stages, this research proposes a spatial—
spectral enhanced elephant herding optimization algorithm with the AdaBound optimizer
on a CNN classifier for supervised HSI classification, by combining spatial-spectral features.
The proposed method uses spectral classifier capabilities to provide effective results with
a limited training data set. To test the efficiency of our suggested strategy, we analysed
two different standardized hyperspectral image datasets, Indian Pines and Salinas, with
their respective ground truths. When compared to other existing classification algorithms,
the suggested technique outperforms them in terms of computation time and accuracy
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rate when deployed on hyperspectral images. The following are the key contributions of
the research.

e To provide efficient accuracy for hyperspectral images, an improved and enhanced
EHO method with an AdaBound optimizer updating a hyper-parameter algorithm
was developed. As matriarch, the fittest elephant in the clan with the most recent
position is chosen. Fixing the clan operator in EEHO improved the evaluation by
enhancing its population randomly and removing inappropriate convergence towards
the source. In EEHO-AdaBound, the algorithm’s global convergence performance
is improved. It has a better convergence speed and a higher convergence accuracy
rate than traditional optimization techniques. It can also determine the best CNN
hyper-parameters.

e In this study, the EEHO-AdaBound was designed to optimize the CNN'’s initial
threshold values and weights. The results of the experiments reveal that the pro-
posed method achieves the best accuracy for classification issues while also over-
coming the drawbacks of CNN, which are readily trapped in local minimum val-
ues and have low stability. In addition, when compared to other CNN approaches,
CNN-EEHO-AdaBound classification is greatly enhanced.

e  The proposed enhanced elephant herding optimization with the AdaBound optimizer
on the CNN classifier verifies and validates HIS datasets, and shows that they are
superior to the optimization algorithms.

The following outlines how the rest of the article is organized: The basic literature
of the EHO algorithm is presented in Section 2. Section 3 explains the methodology
of the proposed work, as well as the enhanced EHO with the AdaBound optimizer for
updating the hyper-parameters. Section 4 depicts the proposed work’s experimental
analysis, Section 5 the results and their discussions, and Section 6 the work’s conclusion.

2. Related Work EHO

Metaheuristic optimization approaches are used as solutions for a variety of situations
where exhaustive variable selection techniques are either too expensive or require efficient
solutions. Swarm intelligence optimization algorithms are global, powerful optimization
procedures that try to address a variety of issues that can be simplified to a fitness function
of optimization [26]. In recent research, these are frequently employed for time-series signal
processing, analysis, and image classification applications [27]. The ability to obtain the
finest classification models and feature sets in a short period of computation time is key to
the success of swarm algorithms in image classification. In the studies, SI methods have
been used to classify land cover by utilising metaheuristic optimization techniques, such
as particle swarm optimization (PSO), with CNNs [28] and SVM [29]. In an impressive
empirical investigation (9), SVM was integrated with ant colony optimization, genetic
algorithms, and artificial bee colony optimization [30]. SI methods have indeed been
improving over time, and there are now a variety of upgraded methods and applications
with improved search techniques. The EHO optimization algorithm is a new technique
used in a hybrid model for hyperspectral image classification with the objective of fine-
tuning the hyper-parameters and appropriate feature selections. Wang et al. were the
first to propose the EHO method [11]. It was combined with the SVM classifier to create a
hybrid system for identifying human behaviour [31]. A further study [32], in which the
researchers presented a customised form of EHO as an independent classifier to increase
hyperspectral image classification accuracy, used EHO with long short-term memory
(LSTM) for spatial-spectral hyperspectral image classification enhancement. Whereas
the EHO technique can approximate ideal accuracy with dimensionality reduction as the
primary goal, it does not guarantee it. When an SI method such as EHO combines feature
reduction and feature selection in the same phase, it becomes a great optimizer. Hence,
this paper proposes a spatial-spectral enhanced elephant herding optimization algorithm
with an AdaBound optimizer on the CNN classifier method, in order to achieve improved
accuracy and relatively reduced computational time. The research proposes an enhanced
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EHO optimization technique with parameter tuning, spatial-spectral feature extraction,
and selection stages linked, in order to avoid feature set selection dependencies and system
hyper-parameter tuning.

2.1. Basics of EHO

Elephants, as communal animals, live in matriarchal societies with females and off-
spring. An elephant clan comprises several elephants and is led by a matriarch. Female
members wish to reside with their families, whilst male leaders prefer to remain outside
and will progressively gain complete independence from their family. Figure 1 depicts
the elephant population devised in paper [11] after observing genuine elephant herding
behaviour. In EHO, the following assumptions are factored in:

Matriarch \\ m m"F
m Il
Female

7
Elephant calves m «7/ Elephants
Matriarch \\m AN m ]

} Aged Matriarch is removed and new position presented

v Elephants

New Elephant calves

I

New N | Female
Matrarch \\m M\mm ) m | m /7 Elephants

Figure 1. Elephant behaviour in a clan.

(1) The elephant clan population is confined to a specific number of elephants in each clan.

(2) From each generation, a predetermined number of male elephants from the chief
group will leave their associated family and live alone in a remote location.

(38) Each clan’s elephants are governed by a matriarch.

2.1.1. Clan-Updating Operator

As per elephant habit, each clan has a matriarch who governs the elephants. As a
result, each elephant’s new position is determined by the matriarch. Equation (1) shows
the calculation of the position of an elephant m in the clan Cn:

Puew,Cnm = PCnm 8 X (pbest,Cn - an,m) X f 1)

The new and old positions for elephant m in clan Crn are represented by pye cn,m and
Pcn,m, respectively. py.s ¢y, is the matriarch of the clan, and she represents the best and
fittest elephant. New position s [0, 1] is a scale factor determining the influence of the
matriarch, and the best elephant position belongs to f [0, 1]. The best and fittest elephant in
clan is calculated by Equation (2)

Pnew,Cnm = W X Peenter,Cn 2

where w [0, 1] is a factor that affects the elephants new position at peepter,cn and influence
Cn on best fit elephant p,ey cpm- Clan centre individual is peepter, cn, Which is calculated
using Equation (3).
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Pcenter,Cnz = —— X 2 pcn,m,z (3)
gc” m=1

where 1 < z < Z and g¢,, denote the number of elephants in clan Cn, and pcy, ;, , denotes
the individual elephant pcy, , , in the z-dimension. Hence, peepter,cr is the new best position
of an elephant in clan Cn, and it is updated using Equation (3).

2.1.2. Separating Operator

When tackling optimization issues, the parting process by which male elephants
depart their family group can be simulated as a separation operator. As indicated in
Equation (4), the separation operator is applied by the elephant member with the lowest
performance in each generation.

Pworst, Cn = Pmin + (pmax — Pmin + 1) X Rand 4)

where pjux denotes the upper bound and p,,;,, denotes the lower bound of each individual
elephant position in the family. p;,o,st, ¢y denotes the worst member of clan Cn. Rand [0, 1]
is a stochastic distribution with values ranging from 0 to 1.

The mainframe of EHO is summarised based on the descriptions of the clan-updating
and separating operators. EHO Algorithm 1 corresponds to the following;:

Algorithm 1: Elephant herding optimization algorithm

Start

Initialize. Set the number of iterations E = 1, set P for population initialization; choose Gen Max
for maximum generation and elephant count as.

While searching, do

Sorting the individual elephant’s actual fitness is used to classify the population.
For all clans, generate count

For elephant j in the family clan

Compute ppew,cnm and update pcy, , by Equation (1).

Sort the population according to the fitness of individuals.

For all clans’ ci do

For elephant m in the clan Cn do

Generate pj,. cn,m and update pc, ,, by Equation (1).

If penm= Prest,cn then

Produce pyew,cn,m and update pc, », by Equation (2).

End if

End for

End for

For all present clans” Cn do

Interchange the worst individual elephant Cn by Equation (4).

End for

Estimate each elephant individual in the clan for new position, respectively.
Incrementing the generation count K =K + 1.

End while

Output: the optimal best elephant position

End.

3. Methodology
3.1. AdaBound Optimizer as Hyper-Parameter Updating Method in Enhancing EHO

The EHO method is a generalised stochastic search algorithm created by Wang et al. [11]
and based on research on elephant behavioural biases. The EHO algorithm is frequently
used in machine learning and deep learning optimization. The spatial-spectral hyper-
spectral image classification in the literature [31] reveals that the modulation classification
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performance is greatly enhanced using the EHO algorithm to optimise neural networks.
The EHO algorithm, on the other hand, contains limitations such as:

e  Unreasonable convergence towards the updated operator in the origin has a lower
effect on expanding further.
e Initial elephant position allocation is uneven.

For the abovementioned reasons, this paper proposes an enhanced EHO with an
AdaBound optimizer. Here, the AdaBound optimizer is used for hyper-parameter updating.

AdaBound Optimizer

To train the proposed CNN model with enhanced EHO, the hyper-parameters are
updated using the AdaBound optimizer. The advantage of using the AdaBound optimizer is
that it can use dynamic bounds on learning rates to achieve the objective of converting from
adaptive to stochastic gradient descent (SGD) optimization, which lowers the generalisation
gap between adaptive and SGD approaches with high learning rates. The a is used as
the algorithm's starting step size, and a/ L; is the learning rate. The AdaBound optimizer
parameters are updated according to the below equations:

ne = P+ (1= p1)hs (6)
st = Bemp—1 + (1— B1)(ly)? 7)
"= (®)
where n; = clip («/+/Li, ny(t), n,(t))
Ly = diag(I}) 9)

where the momentum values 1 and B, are typically 0.9 and 0.99. clip (a/+/L¢, n;(t), n,(t))
denotes that the learning rate a/ L; has been clipped at these values to avoid gradient in-
stability at higher and lower bounds. Instead of a constant lower and upper bound, the
hypermeters of n; and n,, are specified as functions of t. In addition, the parameter update
is explained as follows:

w41 = argmin H (wr — 1y 1) (10)
N, Diag(n;)

In the above Equation (10), the learning rate is denoted as the function of f. Hence, the
lower and upper bounds’ limit difference is much lower. According to this characteristic,
the above method behaves as Adam at the begining, with bounds having minimal effect
on the learning rate. Later, the method behaves as SGD with constrained bounds. With
this advantage, AdaBound with new updated hyper-parameters is implemented in EHO
to enhance it further. Algorithm 2 presents EEHO with the AdaBound optimizer. The
hyper-parameters & and j are considered in the EEHO method, and the initial values of
« and B are randomly set within 0 and 1. The convergence rate of the algorithm majorly
depends on learning L;; on the other hand, 81 and B, have less of an impact on classification
accuracy. Thus, this is the factor to improve the performance of classification, by updating
the hyper-parameters and enhancing the EHO algorithm. The AdaBound coefficients are
setas L; =0.001, B1 = 0.9, and B, = 0.999, with a considerable number of iterations. Further,
with these updated hypermeters, the minimum error rate is observed; thus, these values are
termed as optimal hyper-parameters. In Figure 2, the flow chart of the EEHO-AdaBound
is represented.
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The maximum elephant population M and its
iteration it_max_adabound=1

I}

Compute the Fitness value using Equation 6

= ey =

For every elephant M in each clan Cn

Arrange elephants according to fitness value

Compute Ppesr = first position elephant
Compute pPy,ors¢ = first position elephant

Clan updatm+g parameter
Using Equation 2 and 3 update each elephant in clan
by n
¥
Separating operator
Using Equation 4 replace the worst elephant in clan

it_max_ada
bound=1 is
ompleted 2

Figure 2. Flow chart of enhanced EHO with AdaBound optimizer.

Algorithm 2: EEHO with AdaBound approach for updating hyper-parameters

# it_max denotes the maximum number of iterations for the EHO algorithm

# it_max_adabound denotes the maximum number of iterations for the AdaBound method
# C_it_adabound denotes the present iteration number of the AdaBound algorithm

# C_it_EHO denotes the present iteration number of the EHO algorithm

# Start Initializations

Initialize the input feature parameters: it_max, it_max_adabound, L, 81, B2, and «a.
Set the present position of elephants

For C_it_adabound = 1: it_max_adabound

# Develop EEHO

Compute the fitness function of each elephant in the clan

To obtain the best and worst new elephants’ position, calculate and update clan operator
For C_it_EHO = 1: it_max

Equation (1) is used to update the new position of each elephant, respectively
Using Equation (3), evaluate the centre position of elephants

Update the new best value for the elephant’s position using Equation (2)
Calculate the worst value using Equation (4) to update the elephant’s position.
Repeat and evaluate new fitness function for each elephant

The best and worst elephant’s position is recognized

End for

Update the individual elephant’s positions

# End of EHO

Compute w; 1 learning and loss error using Equation (10)

Update the new values for hyper-parameters using Equations (6)—(10).

End for
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3.2. The EEHO-CNN Approach

The design of classifiers is a vital aspect of hyperspectral image classification. With
the advancement of machine learning, CNN as a classifier has strong self-learning and
self-adaptive capabilities and can deal with difficult nonlinear issues. CNN has become
widely used in the domain of image classification. This section describes how a convolution
neural network based on the enhanced elephant herding algorithm with an AdaBound
optimizer is used to classify the hyperspectral images. Figure 3 presents a convolution
neural network, in which each node in the network instantly and adaptively selects the
distinctive feature and extracts all of the key feature parameters at the same time, ensuring
that the image processing accuracy is not limited by the order in which they are used. The
CNN classifier in this paper has a three-layer network topology. The number of nodes
in the input and output layers is defined by the number of input and output images,
respectively. Equation (11) shows how to compute the number of hidden layers’ nodes of
the proposed method:

p=Vi+3 +k (11)

where 7 is the number of input features, § is the output features, and k [1,100] is constant,
such that CNN has an integer range of hidden layer nodes from [v/7 +3 41, v/# 4+ 5 + 100].

EEHO-AdaBound Algorithm

Initialization
u

Extracted Feature

Training set Testing set
samples samples.
CNN structure
designed

o
2z
H

0000000
0 =000000
0=000000

| Initialize the network weights and ‘
tan
Using Equation 2 and 3 update each elephant in clan ‘ hyper-parameter
byn
1
Separating operator
Using Equation 4 replace the worst elephant in lan

Condition

"l‘

Best it position weights and hyper-
parameter of CNN

Trained CNN |

!

Figure 3. The CNN-EEHO-AdaBound flowchart for HSI classification.

Moreover, the CNN’s preliminary thresholds and weights are set to a different value
between —1 and 1, which has an impact on the training duration. With low robustness,
this affects the outcomes and convergence results of the CNN. As a result, choosing the
best initial weights and thresholds will considerably improve the CNN’s performance. The
EEHO with the AdaBound optimizer is used in this paper to optimise the initial threshold
values and weights of the CNN.

The input feature set is used to train the CNN in order to predict the system output, and
the fitness function’s aim is to minimise the mean absolute error (MAE) between the CNN
output layer and the corresponding results. The following describes the optimal solution:

| =

8
f(8) = 2|Yi—1’i| (12)
i=
where & = [@1, d,..., 1@13] is the feature vector that has merged initial weights and thresh-
old values of CNN, such that the weights are set as 191 = [191, z§2, ey @dl] and the threshold
value is given by h = [@d1+1, @d2+2, ey @dz]- Secondly, the features between the input
layer and the hidden layers are given by initial weights set to O = [@dzﬂ, @d2+2, e, 19,13}
and the threshold value setto f, = 04311, 04312,...,0p], wheredy = fi x p,dy =i x p +,
d3 = i xp+p x*?, D is the sum of all nodes in the CNN, D is depicted as D = 7 x
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PHPp+pxP4r, Y = [Yl, Y, ..., Yn} is the required expected feature output, and
P =[Py, P,,...,P,]is the predicted output.

The work flow of the CNN based on EEHO with the AdaBound optimizer for HSI
classification presented in the proposed approach is shown in Figure 3; the procedural
explanation of the design and analysis of the proposed method is as follows:

Step 1: Set the parameters, in which the total number of present elephant groups is Z,
the number of elephants M, and the number of elephants in each clan Cn, Z = M x n =;
the maximum number of group iterations is GenMax. Consider the impact factor ¢, qubit
mutation probability 41 and g,  and the maximum number of iterations Gen. Randomly
generate the elephant’s starting position in domain.

Step 2: Using Equation (6), map the best position to the present position; compute the
actual fitness value f (l@) using Equation (7) for each elephant. Depending on the evaluated
fitness value provided, arrange the elephants in ascending form. @é is the global fitness
value along with the elephant’s new position value.

Step 3: Split all the elephant groups into clans C; compute the elephants’ best and
worst fitness in Cn clan.

Step 4: Update the clan operator using Equations (1)—(3) to obtain each elephant position.

Step 5: Evaluate the separating operator to replace the individual elephant with its
worst case fitness in Cn using Equations (4) and (10).

Step 6: Integrate the elephants of each clan; use Equation (10) to compute each
elephant’s fitness value f (&). To obtain the elephants’ new location with the global optimal
fitness value, organize the elephants in increasing order of their fitness count.

Step 7: Repeat from step 3 until the last elephant obtains the position; otherwise,
compute the global position ¢ = [191, &,..., @D] and stop the algorithm.

Step 8: Once training the network with the best initial thresholds values and weights,
the trained CNN models achieve HSI classification accuracy.

4. Experimental Results and Analysis

In this section, the experimental setting provided for the proposed method and the
parameterized algorithm are explained. Using two HSI datasets, the proposed method for
automatically designing CNN5s for HSI classification demonstrates the usefulness of the
proposed method.

4.1. Dataset

In this section, the proposed method is tested on two standard hyperspectral datasets [33].
Figure 4 presents a diverse vegetation area over the Indian Pines test environment in north-
eastern Indiana, USA (Indian Pines), and the Salinas Valley in California, USA (Salinas
Valley) (Salinas). The comprehensive data of the training samples of each class are presented
in Table 1.

Il Unknown M Oats
I Afaffa I Soybean-notil
[ Corn-notil I Soybean-mintil
I Corn-mintill I Soybean-Clean
Com I Wheat
I Grass-pasture I Woods
Grass:trees I Buildings-GrassTrees-Drives
I Grass-pasture-mowed M Stone-Steel-Towers
0 Hay-windrowed

Figure 4. Indian Pines dataset with colour codes.
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Table 1. Training and test samples of Indian Pines dataset.

Class Number Class Name No. of Training Samples = No. of Test Samples

1 Alfalfa 5 41
2 Corn-not ill 143 1285
3 Corn-mintill 83 747
4 Corn 24 213
5 Grass-pasture 49 434
6 Grass-trees 73 657
7 Grasspasture-mowed 3 25
8 Hay-windrowed 48 430
9 Oats 2 18
10 Soybean-notill 98 874
11 Soybean-mintill 246 2209
12 Soybean-clean 60 533
13 Wheat 21 184
14 Woods 127 1138
15 Buildings—grass— 39 347
Trees-Drives
16 Stone-Steel-Towers 10 83
17 TOTAL 1031 9218

From the AVIRIS sensor, a 220-band sensor was used to capture images of the Indian
Pines test environment. After removing the water absorption bands, the usable dataset
includes a large number of bands (200), with 145 x 145 pixels each. The ground truth map
includes 16 different classes of interest.

The second dataset, Salinas, was gathered with the 224-band by the Airborne Vis-
ible Infrared Imaging Spectrometer (AVIRIS) over Salinas Valley, California, as shown
in Figure 5. It has a spatial resolution of 3.7 m per pixel. After removing the 20 water
absorption bands and the 16 land cover classes, the available dataset consists of 204 bands
of 512 x 217 pixels.

I Unknovn I Soll vinyard develop
I Brocoli green weeds 1 I Com Senesced green weeds
[ Brocoli green weeds 2 I Lettuce romaine 4wk

I Fallow I Lettuce_romaine_Swk
Fallow_rough_plow I Lettuce_romaine_bwk

I Fallow_smooth I Lettuce romaine_Twk
Stubble I Vinyard_untrained

I Celery I Vinyard vertical trellis

I Grapes untreined

Figure 5. Salinas dataset with colour codes.

4.2. Experiments Compared with Existing Approaches

Different CNN classification methods based on spatial-spectral information were used
to compare with the proposed method. The CNN-EEHO-AdaBound approach was evalu-
ated in order to assess its performance. To validate the suggested techniques, numerous
handmade CNN models with spectral-spatial information were analysed on hyperspectral
datasets. The 2D-3D CNN [34] underwent extensive trials with various numbers of training
samples, and it was discovered that the CNN model frequently degrades as the sample size
decreases. The residual-based approaches to spectral-spatial residual networks (SSRN) [20]
and ResNet [35] can obtain better classification accuracy. For contrast, DenseNet [36] was
utilised, which exploited shortcut connections between layers of CNN. e-CNN [37], an
automatic design analysis method of CNN using AdaBound optimizers to explore the
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spatial-spectral information, achieved good performance accuracy and was also compared
with the proposed method. The existing approaches were compared with previously
created CNN models in terms of classification accuracy and computational complexity.

4.3. Experiment Parameter Settings

This section shows the details of the experiment settings, as each dataset was divided
into three components in the proposed experiments: a training set, a test set, and a valida-
tion set. The training set and validation set proportions of the Indian Pine and Salinas are 5%
and 1%, respectively, with the remaining pixels serving as a testing dataset. Tables 1 and 2 il-
lustrate the distribution of the sample of the two datasets for each class of their ground truth.
Table 3 depicts the parameter setting for the proposed CNN-EEHO-AdaBound method.

Table 2. Training and test samples of Salinas dataset.

Class Number Class Name No. of Training Samples  No. of Test Samples
1 Brocoli_green_weeds_1 101 1908
2 Brocoli_green_weeds_2 187 3539
3 Fallow 99 1877
4 Fallow_rough_plow 70 1324
5 Fallow_smooth 134 2544
6 Stubble 198 3761
7 Celery 179 3400
8 Grapes_untrained 564 10,707
9 Soil_vinyard_develop 311 5892
10 Corn_senesced_green_weeds 164 3114
11 Lettuce_romaine_4wk 54 1014
12 Lettuce_romaine_5wk 97 1830
13 Lettuce_romaine_6wk 46 870
14 Lettuce_romaine_7wk 54 1016
15 Vinyard_untrained 364 6904
16 Vinyard_vertical_trellis 91 1716
17 Total 2713 51,416

Table 3. The hyper-parameters of CNN-EEHO-AdaBound.

Literals Considering Parameter Parameter Value
M Number of input layer nodes 220
14 Number of output layer nodes 16
l Number of hidden layer nodes 300
Ly CNN learning rate 0.01
8 CNN training target error 0.001
epochs CNN maximum number of cycles 100
it_max_adabound CNN-EEHO maximum number of iterations 50
Z Population size of the quantum elephant herding 30
C Number of clans 5
Cy Number of elephants in each clan 6
€ Influencing factor 0.4

Whilst carrying out the experiment, the training sets of 2D-3D CNN, SSRN, ResNet,
DenseNet, and e-CNN, such as filter size, training epoch, etc., were the same as in the
corresponding papers.

5. Results Analysis and Discussion

To demonstrate the usefulness of the proposed method, a study of the classification
results is compared in terms of classification accuracy, parameters, and time complexity on
benchmark hyperspectral datasets. The proposed method shows the optimal structures and
examines the convergence to show that the proposed EEHO with the AdaBound optimizer
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algorithm is feasible. Finally, testing samples are validated using hyperspectral datasets to
promote the effectiveness of CNN-EEHO-AdaBound algorithm techniques.

5.1. Accuracy of HSI Classification

The performance of the models was measured using three metrics: overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (Kappa). The ratio of samples properly
identified by the model is denoted by OA. The average reliability of all ground objects is
denoted by the letter AA. The confusion-matrix indicates the percentage of faults minimised
by classification versus an essentially random classification. KAPPA is an accuracy score
based on the confusion-matrix.

Tables 4 and 5 exhibit the comprehensive classification results on HSI datasets on
the proposed method and the other existing methods. As shown in Tables 4 and 5, CNN
with EEHO and the AdaBound Optimizer significantly outperforms previous approaches
such as 2D-3D CNN, spectral-spatial residual network (SSRN), residual network (ResNet),
dense network DenseNet, and e-CNN in terms of classification accuracy. The proposed
method outperformed the other methods in the classification of the Indian Pines dataset.
With improvements of 0.11%, 0.18%, and 1.62%, respectively, the CNN-EEHO-AdaBound
approach had the best AA and Kappa. The best OA, AA, and Kappa results for the Salinas
dataset came from CNN-EEHO-AdaBound, with increases of 0.98%, 0.39%, and 1.08,
respectively. There may be significant discrepancies in the accuracy of each class. In the
first-class classification on Salinas, CNN-EEHO-AdaBound outperformed 2D-3D CNN
by 5.56%.

To summarise the classification accuracy analysis, the proposed CNN-EEHO-AdaBound
method outperformed state-of-the-art CNIN models such as 2D-3D CNN, SSRN, ResNet,
DenseNet, and e-CNN. Using the AdaBound optimizer, the offered methodologies can also
identify more optimised architectures. On the other hand, the tuned hyper-parameters
resulted in an improved classification performance and reduced computation time.

Table 4. Class-wise overall accuracy (OA%), average accuracy (AA%), and k kappa are represented
in the Indian Pines dataset.

Class ZCDI:I?’I\]ID SSRN ResNet DenseNet e-CNN CAN(E;EEE;)_
1 71.24 95.26 97.98 99.29 89.79 99.72
2 72.65 95.67 97.63 94.36 97.45 98.64
3 75.13 96.36 96.64 97.58 97.02 97.58
4 87.20 88.83 88.10 99.68 94.32 100.00
5 69.36 97.68 98.57 99.28 95.19 97.64
6 93.57 96.79 100.05 89.57 99.41 100.00
7 64.28 98.25 99.98 100.00 97.23 98.26
8 98.10 99.15 95.14 95.12 99.56 96.76
9 83.13 77.28 94.25 94.50 87.05 98.86
10 77.16 97.79 99.34 96.37 97.34 100.00
11 85.15 98.63 98.28 98.54 99.02 100.00
12 74.87 100.00 100.00 99.01 99.34 97.26
13 98.24 98.38 94.83 100.00 99.67 95.21
14 94.87 99.14 97.28 99.15 99.00 96.84
15 81.89 89.37 89.64 90.16 99.46 88.29
16 77.37 93.48 99.06 89.87 9493 99.04

OA 83.39 96.91 98.26 99.03 99.36 99.47
AA 82.29 96.06 97.75 98.89 98.81 98.99

k x 100 81.26 95.79 97.78 98.71 97.94 98.32
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Table 5. Class-wise overall accuracy (OA%), average accuracy (AA%), and k kappa are represented
in the Salinas dataset.

Class ZIC);I?\]ID SSRN ResNet DenseNet e-CNN Cg(li\;;::)iilg_
1 94.11 98.46 95.67 99.49 99.67 99.67
2 98.46 96.76 95.79 97.12 98.78 99.39
3 86.03 88.32 92.46 98.63 100.00 98.66
4 98.45 97.68 96.89 98.79 99.12 97.70
5 85.65 92.59 95.26 100.00 98.34 100.00
6 97.68 98.14 89.35 100.00 99.49 100.00
7 95.09 99.06 97.06 99.36 99.37 98.49
8 96.98 75.79 92.37 99.89 99.18 97.71
9 97.12 98.45 98.28 96.78 99.47 98.30
10 77.44 77.60 88.92 97.45 98.31 99.63
11 84.60 79.23 97.56 99.15 98.99 100.00
12 98.36 97.11 100.00 100.00 99.26 100.00
13 97.65 89.98 87.16 98.38 99.46 97.28
14 89.89 88.59 89.03 100.00 99.38 99.18
15 44.23 59.04 91.27 90.45 99.11 92.84
16 85.18 89.11 98.89 97.59 99.98 98.87
OA 90.87 97.15 98.14 99.04 99.01 99.99
AA 89.16 97.56 98.08 99.29 99.19 99.58
k x 100 88.04 95.83 96.51 97.57 97.04 98.12

5.2. Convergence Analysis of CNN-EEHO-AdaBound Approach

In order to significantly speed up optimal value, the convergence analysis of the CNN-
EEHO-AdaBound technique must be carried out. The HSI classification accuracy of the
optimised convolution neural network, which comprised architectures and biased weight
parameters, was used to calculate fitness. The number of architectural characteristics and
the position of the elephants, on the other hand, were only related to architecture. As a
result, the number of architectural parameters and the position of all elephants were crucial
criteria in the CNN-EEHO-AdaBound approach’s architecture convergence study:.

The number of hyper-parameters in architectures was inversely proportional to the
number of operations in those architectures. The number of hyper-parameters fluctuated as
the operations in the models changed, indicating that the designs converged when the num-
ber of hyper-parameters remained constant throughout the iterations. The accuracy and
number of hyper-parameters of fit during the iterations using the CNN-EEHO-AdaBound
technique based on HSI datasets are shown in Figure 6. The architectures converged at
seven, nine, and eleven iterations based on the Salinas and Indian Pines datasets, respec-
tively, according to the number of hyper-parameters. After the convergence of the designs,
the testing dataset’s accuracy further improved. The fundamental reason for this is that the
hyper-parameters of the architectures retained from the EEHO-AdaBound were optimised
when CNN was trained until the maximum number of iterations was achieved.

0.075 | 100 0.075 | 100

0.007 — 80 0.007 | — 80

0.065 - 60 0.065 60

Accuracy %
Accuracy %

0.060 | [ a0 o.060 | L a0
,,,,, Accuracy _ Accuracy

Hyper-Parameters
Hyper-Parameters

0.055 Hyperparameters | 0055 o I Hyperparameters |~ 20

0.050 | ~ o 0.050 [
T T T T T T — T T T T
0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Number of iterations Number of iterations

Figure 6. The training convergence performance.
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5.3. HSI Classification Maps

The entire HSI image classification maps of all the models effectively represent the
classification results. Figures 7 and 8 demonstrate the classification maps generated by
several models using two benchmark datasets. In comparison to the other models, the
proposed CNN-EEHO-AdaBound produced less dispersion in the class with a wide area,
implying that it can achieve more specific classification accuracy in this category. The
CNN-EEHO-AdaBound method achieves better results in the classification of various
classes in HSI data.

(f (&) (h)

Figure 7. Indian Pines classification maps. (a) RGB image; (b) ground truth; (c) 2D-3D CNN;
(d) SSRN; (e) ResNet; (f) DenseNet; (g) e-CNN; and (h) CNN-EEHO-AdaBound.

Figure 8. Salinas classification maps. (a) RGB image; (b) ground truth; (c¢) 2D-3D CNN; (d) SSRN;
(e) ResNet; (f) DenseNet; (g) e-CNN; and (h) CNN-EEHO-AdaBound.

5.4. Comparisons of CNN-EEHO-AdaBound Performance with Other Optimization Algorithms

The PSO-CNN cell-based approach [7], CSO-CNN approach [9], and ACO approach [8]
techniques were studied in order to compare the accuracy and effectiveness of the proposed
CNN-EEHO-AdaBound and other optimization algorithms. The overall classification
accuracy of the four optimization techniques is depicted in Table 6.

Table 6. Overall accuracy of Salinas dataset with other optimization algorithms.

Performance Evaluation for CNN-EEHO-
Indian Pines Dataset CSO-CNN ACO PSO-CNN AdaBound
OA 91.54 94.61 96.18 99.47
AA 95.49 95.83 96.27 98.99

K x 100 90.53 93.75 95.84 98.32
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As can be seen in Figure 9, the classification accuracy of the CNN-EEHO-AdaBound
method according to the optimization algorithms is significantly higher than that of the
existing algorithm, implying that the performance of CNN-EEHO-AdaBound can be
enhanced by utilising optimization techniques. The CNN-EEHO-AdaBound method
is slightly more precise than other optimization methods, and all of them can achieve
greater than 99 percent accuracy. The fundamental reason for this is that these algorithms
determine the ideal fitness evaluation value of the individual population, which is a global
optimization strategy, decreasing the likelihood of CNN-EEHO-AdaBound that flows into
a local minimum. On the other hand, EEHO-AdaBound is an enhancement of the EHO
algorithm, with a bio-inspired technique that is very simple to apply and achieves positive
efficacy. A faster convergence speed is another advantage of EEHO-AdaBound.

Optimization Algorithms Overall Accuracy for HSI Classification

Overall Accuracy (%)

CSO-CNN
ACO
PSO-CNN
— CNN-EEHO-AdaBound

35 40 45 50

Number of Training Iterations

Figure 9. Overall accuracy for optimization algorithms.

The best optimal fitness value of each optimised generation group of every method
is shown in Figure 9, under the condition that the characteristic exponent is & = 1.5. The
EEHO-AdaBound algorithm presented in this paper performs much better than the other
three algorithms in terms of convergence speed and convergence accuracy, as also shown in
Figure 9. As the EEHO-AdaBound is based on the EHO algorithm, it evolves the elephant’s
current state with the perfect situation using tuned hyper-parameters. Individuals’ previous
metadata are successfully utilised in the evolutionary process, and the algorithm'’s global
convergence potential is strengthened further.

6. Conclusions

In this research, a high-precision EHO-based algorithm is employed to classify hy-
perspectral images over CNN using the AdaBound optimizer as a high-speed converging
optimizer. The enhanced version of EHO with the AdaBound optimizer method provides
much improved classification accuracy by using CNN within it. EEHO-AdaBound out-
performs the performance by updating the hyper-parameters. To classify the 16 classes in
the HSI dataset, a CNN is optimised using the EEHO-AdaBound approach. The experi-
mental results reveal that the adaptive weight has a good damping impact on the error
rate and convergence of the CNN-EEHO-AdaBound approach, considerably improving
the accuracy of the HSI dataset. The suggested CNN-EEHO-AdaBound classifier has
greatly increased classification accuracy when compared to existing classic CNN classifiers.
Furthermore, the EEHO-AdaBound algorithm proposed in this work can improve the
EHO'’s global convergence competence; when compared to other traditional optimization
algorithms, EEHO-AdaBound has a faster convergence speed and higher convergence
accuracy, demonstrating its greater versatility and ease of application to other optimization
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problems. When the hyper-parameters are updated, the CNN-EEHO-AdaBound-based
classifier has a maximum classification accuracy of 99.6%. The classification performance
measures can be further enhanced in the future by modifying EHO. For the HSI image
classification problem, the superiority of the EEHO-AdaBound algorithm in CNN as a
technique to update hyper-parameters achieves good performance.
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