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Abstract: To realize the stable tracking control of the optoelectronic stabilized platform system under
nonlinear friction and external disturbance, an active disturbance rejection controller (ADRC) with
friction compensation is proposed to improve the target tracking ability and anti-disturbance perfor-
mance. First, a nonlinear LuGre observer is designed to estimate friction behavior and preliminarily
suppress the interference of friction torque on the system. Then, an ADRC is introduced to further
suppress the residual disturbance after friction compensation, and the stability of the ADRC system
is also proved. The effectiveness of this scheme is proved by simulation experiments, and this
scheme is compared with conventional ADRC and LuGre friction feedforward compensation. The
simulation results show that an ADRC with LuGre friction compensation is better with trajectory
tracking performance, which suppresses the influence of disturbance and improves the stability of
the optoelectronic stabilized platform system.

Keywords: optoelectronic stabilized platform; active disturbance rejection controller; LuGre friction
model; parameters identification; disturbance compensation

1. Introduction

In recent years, optoelectronic stabilized platforms have been equipped on various
aircrafts, ships and other carriers and are widely used in military reconnaissance and civil
fields. With the continuous development of science and technology, the optoelectronic
stabilized platform is applied in aerial, terrestrial and coastal areas to achieve monitoring
and tracking of target objects as well as to obtain high-resolution images, so it has strict
requirements on the servo control, image processing and other technologies associated with
the platform [1,2]. Disturbances such as nonlinear friction, frame coupling, uncertainty of
the system model, carrier vibration and wind resistance moment can lead to instability
of the platform’s visual axis, affecting the imaging quality of the optoelectronic detection
equipment and even leading to the loss of the tracked target object [3]. In addition, nonlinear
friction causes the platform system to crawl at a low speed resulting in unstable system
motion and generating tracking errors when the system is running at high speed [4].
Therefore, control strategies are used to suppress the effects of nonlinear friction and
external disturbances on the optoelectronic stabilized platform in order to improve the
stability accuracy of the visual axis [5,6].

Nonlinear friction is a major disturbance, which is generated when the motion state
between the frame and axis system changes, making the visual axis shift and affecting the
tracking of the target object by the optoelectronic detection equipment. In order to achieve
high precision and fast control of the platform system, a large number of scholars have
proposed various friction models and corresponding friction compensation methods [7,8].
Among them, the LuGre friction model proposed by C. Canudas De Wit in 1995 can
accurately describe the static and dynamic characteristics of friction, which is a more
perfect dynamic friction model for dynamic friction compensation [9]. In [10], an adaptive
backstepping controller with nonlinear friction compensation was designed for accurate
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tracking control of hydraulic systems. In [11], a synchronization control strategy with
adaptive friction compensation was applied in a wheeled planetary rover. In [12], a novel
robust adaptive sliding mode controller with friction compensation was proposed to
achieve accurate and stable control of the electro-optical targeting system. In [13], a robust
adaptive integral backstepping control strategy based on a modified LuGre friction model
was proposed for opto-electronic tracking systems. Friction compensation suppresses the
effect of nonlinear friction on the system and improves the tracking accuracy of the control
system to some extent. While other disturbances exist in the system, the effect of friction
compensation will be limited, and the control performance of the system will be degraded.

Along with the wide application of optoelectronic stabilized platforms, the require-
ments for platform performance are becoming increasingly strict. The platform performance
is mainly divided into disturbance suppression and stable tracking control. At present, var-
ious control methods have been proposed to improve the performance of the optoelectronic
stabilized platform in multiple research areas, such as PID control, neural network control,
adaptive control and sliding mode control. In [14,15], a compound control method based
on backstepping sliding mode control and adaptive neural network was proposed to realize
high-performance control of the inertially stabilized platform (ISP). In [16], a nonlinear
backstepping controller was designed in order to improve the tracking performance of
the two-axis stabilized platform. In [17], a compound PID control strategy was applied to
realize high-precision tracking of the target object. The above control strategies contain
complex and difficult design structures as well as highly complex algorithms. In practical
engineering applications, it is difficult to establish an accurate mathematical model because
of the nonlinear, strong coupling and uncertainty characteristics of the optoelectronic stabi-
lized platform, which limits the effect of the above controllers on the system and makes it
difficult to get excellent promotion and application.

The active disturbance rejection control strategy is a nonlinear control theory proposed
by Prof. Han [18], which is an active anti-disturbance control method. It directly regards
the unknown disturbances inside and outside the system as the total disturbance, expands
the total disturbance into a new expansion state, and estimates and compensates it through
the input and output of the system, so as to counteract disturbance and achieve the purpose
of anti-disturbance. At present, ADRCs have been widely used in many engineering
fields [19–24], such as multi-motor servo control, electro-hydraulic position servo control,
guidance law design, quadrotor UAV control and robot motion control. ADRCs do not need
to acquire an accurate mathematical model of the system and can estimate the uncertainty
of internal parameters and various external disturbances of the system online. It has the
characteristics of high control accuracy, fast tracking speed and strong anti-disturbance
ability. Combining ADRCs with various control strategies has been successfully applied
in the control system of optoelectronic stabilized platforms, such as an ADRC combined
with a neural network, adaptive control, fuzzy control and backstepping control. In [25],
an extended state observer (ESO) based on adaptive disturbance frequency was designed
to improve the anti-disturbance ability of photoelectric stabilized platforms. In [26], an
ADRC based on genetic algorithm parameter tuning was proposed to improve the anti-
interference performance and stability accuracy of the ISP. In [27], a nonlinear ESO based on
the fractional-order sliding mode control was applied to improve the tracking performance
of electro-optical tracking systems. In [28], a least mean square based ADRC controller was
designed to suppress various disturbances of the ISP. In [29], a modified nonlinear active
disturbance rejection control strategy was proposed to improve the tracking performance of
ISPs. However, considering the various uncertainties and disturbances encountered in the
operation of the actual optoelectronic stabilized platform system, the challenge of ADRC
still lies in the insufficient anti-disturbance capability and tracking performance. Among
the various disturbances to the platform system, friction torque disturbance is one of the
primary factors affecting the accuracy of the motion control system. In the above control
strategies, friction disturbance is regarded as a part of the total disturbance of ADRCs,
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and there is no analysis and compensation for friction disturbance according to actual
friction characteristics.

Aiming at the control system of optoelectronic stabilized platforms, an ADRC with
friction compensation was designed in this paper. Using a LuGre observer and an ADRC,
the influence of nonlinear friction and external disturbance of the platform control system
was decreased, and the target object can be tracked accurately. The contributions of this
paper are given as follows:

First, the LuGre observer with friction compensation and the ESO were applied in
the optoelectronic stabilized platform control system. The advantage of the proposed
method is that it can observe and suppress the influence of nonlinear friction and external
disturbances on the system.

Second, the active disturbance rejection control strategy was used to improve the
tracking accuracy of the system, and the stability of the closed-loop system was proved.
The ADRC with LuGre friction compensation used in the optoelectronic stabilized platform
control system is the most significant feature as compared with conventional ADRCs and
LuGre friction feedforward compensation [26,30].

The rest of this paper is organized as follows: First, Section 2 introduces the system
dynamics model. Section 3 describes the LuGre friction model and introduces the parameter
identification method of the LuGre model. Then, Section 4 is devoted to developing the
active disturbance rejection controller, and the stability of the ADRC system is proved.
Section 5 verifies the superiority of this method through a MATLAB simulation experiment.
Finally, Section 6 gives some conclusions and a discussion of future work.

2. Dynamics Model of Optoelectronic Stabilized Platform Systems
2.1. Closed-Loop Control System

The optoelectronic stabilized platform in this paper adopted a two-axis four-frame
structure, as shown in Figure 1. From outside to inside, they were—in order—the outer
azimuth gimbal A, the outer pitch gimbal E, the inner azimuth gimbal a and the inner
pitch gimbal e. The photoelectric detectors and photoelectric sensors were mounted on
the inner frame, and the outer frame was the carrier of the inner frame and follows the
inner frame, allowing the inner frame to make small angle movements in the azimuth and
pitch axis. The main function of the outer frame of the platform was to carry the inner
frame and the photoelectric equipment, and to provide a completely enclosed environment
for the inner frame. When the optoelectronic stabilized platform is subjected to huge
external disturbances, these disturbances must go through the isolation of the outer frame
to transmit to the inner frame, which greatly weakens the disturbances transmitted to
the inner frame. The inner frame, as the carrier of the photoelectric equipment, mainly
determines the stability accuracy of the optoelectronic stabilized platform.

In order to improve the anti-disturbance performance and tracking accuracy of the
platform, the platform control system adopted a three closed-loop control scheme consisting
of current loop, stabilization loop and position loop. The single-gimbal closed-loop control
system is shown in Figure 2. Among them, the current loop was used to reduce the
influence of current fluctuation on motor torque output. The stabilization loop was the core
of the control system, which was the key to stabilize the visual axis of the platform and
improve the anti-disturbance performance of the system. The position loop compensated
the distance between the controlled target and the visual axis by taking the miss distance
as the control quantity, realizing accurate tracking.
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Figure 1. Schematic diagram of two-axis four-frame optoelectronic stabilized platform.

The control system consists of current sensor, rate gyro, coder, torque motor, pulse-
width modulation (PWM) and controllers. The blocks of G− pos, G− spe and G− cur stand
for the controllers in the position loop, stabilization loop and current loop, respectively.
The PWM block was used to amplify power to drive the torque motor. Rate gyro and
coder were used to measure the angle speed and angle of the frame when it moved. θin
is the input angle, and ωout and θout are the output angle speed and angle of the system,
respectively; M f is the friction torque, and Md is other disturbances except friction. The
LuGre model is introduced in the next section.
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2.2. Motor System

The four frames of the optoelectronic stabilized platform are driven independently by
four torque motors. Assuming that the load frame is rigid, according to the motor voltage
balance equation and torque balance equation, the mathematical model of the motor system
is obtained as follows: 

.
θ = ω

Ua = Ceω + IaRa + La
.
Ia

Mm = Cm Ia
J

.
ω + Dlω = Mm −M f −Md

(1)

where θ and ω are angle and angular velocity, respectively; Ua, Ia, Ra and La are the arma-
ture voltage, current, resistance and inductance of the motor, respectively; Ce represents
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the back-EMF coefficient; Mm is the electromagnetic torque of the motor; Cm represents the
torque coefficient of motor; J is the total moment of inertia of the motor system; and Dl is
the damping coefficient of frame rotation.

In general, the value of Dl is so small that it can be neglected. In the actual system, the
current loop bandwidth is much larger than the speed loop bandwidth, and the back-EMF
is a slowly changing disturbance to the current loop, so the effect of the back-EMF can be
disregarded when designing the current loop. Figure 3 shows the structure diagram of
the current loop; the current controller often uses a PI controller with a transfer function
of Ki

τis+1
s , where Ki is the gain of the current controller, and τi is the integration time

constant. The transfer function of the PWM is Kp
Tps+1 , where Kp is the power amplification

coefficient and Tp is the switching period of the PWM square wave. K f is the current
feedback coefficient.
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Taking τi = Te = L/R, the inertia link corresponding to the electromagnetic time
constant in the motor can be cancelled. Let R

KiKpK f
= 2Tp when the damping ratio is

ξ = 0.707; the system is second-order optimal. Since the conduction time constant is usually
small, the current closed-loop transfer function can be simplified as:

Gi =
1/K f

Rs
(
Tps + 1

)
/KiKpK f + 1

=
1/K f

2T2
p s2 + 2Tps + 1

≈ 1
K f
(
2Tps + 1

) (2)

The LuGre friction model is used to compensate the system considering the friction
torque to which it is subjected.

3. LuGre Model Parameter Identification
3.1. LuGre Model

Based on [9,31,32], the LuGre friction model can be given by:
M f = σ0z + σ1

.
z + σ2ω

.
z = ω− |ω|

g(ω)
z

σ0g(ω) = Mc + (Ms −Mc)e−(
ω
ωs )

2
(3)

where z is the average deflection of bristles; σ0 is the stiffness coefficient of bristles; σ1 is
the damping coefficient; σ2 is the viscous friction coefficient; function g(ω) is positive and
represents different friction effects such as Stribeck effect; Mc represents coulomb friction
torque; Ms represents static friction torque; and ωs represents the Stribeck angular velocity.

The parameter identification of the LuGre model contains static parameter identifica-
tion and dynamic parameter identification [33,34], which respectively describe the friction
behavior of the system in steady state and critical state, and static parameters are estimated
by the Stribeck curve.
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3.2. Static Parameter Identification

When the system is in steady state (
.
z = 0), the steady-state relationship between total

friction torque Ms f and angle speed is shown in Equation (4). The system motion velocity
is kept constant, for the total friction torque Ms f is equal to the control torque Mm.

Ms f =
[

Mc + (Ms −Mc)e−(
ω
ωs )

2]
sgn(ω) + σ2ω = Mm (4)

Given that the platform system rotates at a set of invariable angle speeds {ωi}N
i=1, and

the corresponding control torque is {Mmi}N
i=1, the steady-state correspondence between

the friction torque and angle speed, i.e., the Stribeck curve, is determined. The parameter
vectors to be identified are as follows:

P1 =
[
M̂s, M̂c, ω̂s, σ̂2

]
(5)

The identification error is defined as:

e(P1, ωi) = Mmi −Ms f (P1, ωi) (6)

where Ms f (P1, ωi) denotes the desired friction torque, which is determined by Equation (7).

Ms f (P1, ωi) =

[
M̂c +

(
M̂s − M̂c

)
e−(

ωi
ω̂s )

2
]

sgn(ωi) + σ̂2ωi (7)

The objective function is defined as

S1 =
1
2 ∑N

i=1 e2(P1, ωi) (8)

Ultimately, the static parameters Mc, Ms, ωs and σ2 are determined by minimizing the
objective function S1.

3.3. Dynamic Parameter Identification

The state variable z of the LuGre friction model cannot be measured directly, so the
values of σ00 and σ10 are approximated by Equation (9) using the presliding displacement
method [35], and then the dynamic parameters σ0 and σ1 are obtained by the least
squares method. {

σ00 ≈ ∆M
∆θ

σ10 ≈ 2
√

σ00 J − σ2
(9)

where ∆M and ∆θ are the variation of control torque and angle in the presliding phase,
respectively. The parameter vectors to be identified are as follows:

P2 = [σ̂0, σ̂1] (10)

The identification error is defined as

e(P2, ti) = θ(ti)− θ(P2, ti) (11)

where θ(ti) represents the angle of the system output corresponding to moment ti and
θ(P2, ti) represents the angle of the model system consisting of the identification parameters
corresponding to moment ti.

The objective function is defined as:

S2 = c1

N

∑
i=1

e2(P2, ti) + c2max{|e(P2, ti)|} (12)
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where c1 and c2 are weight coefficients. The dynamic parameters σ0 and σ1 are determined
by minimizing the objective function S2.

4. Controller Design

The LuGre model is put forward to compensate the friction torque disturbance of the
platform system. However, because the system will change with the external environment,
the system friction characteristics may differ from the friction compensation model. The
LuGre model is insensitive to other disturbances, and the compensation result is that there are
still residual disturbances in the system. Therefore, the ADRC is introduced to observe and
compensate these residual disturbances and accurately track the target objects in real time.

4.1. ADRC Algorithm

An ADRC consists of three parts: tracking differentiator (TD), extended state observer
(ESO) and nonlinear state error feedback control law (NLSEF). Figure 4 shows the structure
diagram of an ADRC.
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Where x1 and x2 are the outputs of TD, which respectively represent the tracking
signal and differential signal of the input signal v; z1 , z2 and z3 are the observed values
of x1, x2 and d, respectively; u and y are the input and output of the controlled object,
respectively; and b is the system gain.

According to Figure 2, the disturbance of the platform system is combined with
friction compensation, and the disturbance structure diagram of the system after friction
compensation can be obtained, as shown in Figure 5. M′f is the friction torque compensated
by LuGre friction, and ∆M f is the friction compensation error, with ∆M f = M f −M′f .
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With the current I as the input of the controlled object in ADRC, the total disturbance
d = ∆M f + Md. Assuming that d is bounded, i.e., ‖d‖∞ ≤ dm, and dm denotes the upper
limit value of the disturbance, its second-order nonlinear system equation of state can be
written as:
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.

x1 = x2.
x2 = bu + d
y = x1

(13)

First, TD is used to arrange a transition process, which can effectively track the input
signal and extract a differential signal, improving the conflict between system rapidity and
overshoot. For a given speed ωr of the system, the TD is designed as:{ .

x1 = x2.
x2 = f han(x1 −ωr, x2, r, h)

(14)

where r is the speed factor which can determine the tracking speed, and h is the filter factor.
f han(·) is the fast optimal control synthesis function, which has a better arrangement

of the transition process of the reference signal so as to keep it from overshooting. The
specific form is as follows: 

d = rh
d0 = dh
y = x1 − v + hx2
a0 =

√
d2 + 8r|y|

a =

{
x2 +

(a0−d)
2 |y| > d0

x2 +
y
h |y| ≤ d0

f han = −
{

rsgn(a) |a| > d
ra
d |a| ≤ d

(15)

Secondly, ESO is the core of the ADRC, which expands the total disturbance d in the
system into a new state variable x3 and observes each of the state variables in the system
in the following form: 

e = z1 −ω
.

z1 = z2 − β1e
.

z2 = z3 − β2 f al
(

e, 1
2 , δ1

)
+ bu

.
z3 = −β3 f al

(
e, 1

4 , δ1

) (16)

where β1, β2 and β3 are the observer gains; and δ1 is the controller adjustable pa-
rameter. The bandwidth method is used to determine the observer gains by taking
β1 = 3ω0, β2 = 3ω2

0 and β3 = ω3
0, where ω0 is the observer bandwidth.

f al(·) is a nonlinear function of the following form:

f al(x, α, δ) =

{
x

δ(1−α) |x| ≤ δ

sign(x)|x|α |x| > δ
(17)

Finally, NLSEF is used to fit state errors and compensate for perturbations; its form is
as follows: 

e1 = x1 − z1
e2 = x2 − z2
I0 = η1 f al

(
e1, 3

4 , δ2
)
+ η2 f al

(
e2, 5

4 , δ2
)

Iin = I0 − z3
b

(18)

where η1 and η2 are the gains of NLSEF; and δ2 is the controller adjustable parameter.
The structure of the ADRC with LuGre friction compensation is shown in Figure 6.
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4.2. System Stability Analysis

By using nonlinear functions to discuss the ADRC algorithm, the nonlinear ADRC
algorithm has many advantages, such as higher accuracy and higher feedback efficiency,
but it requires more control parameters to be adjusted, and it is difficult to determine the
stability boundary, which is difficult in the theoretical study. Since the core idea of the
ADRC is to estimate and compensate disturbance in real time, the linear form is used to
study the stability of ADRC systems.

Suppose that the system is given a bounded input signal r and its differential signals
.
r

and
..
r are bounded, let ẽi = xi − zi, εi = ri − xi. In the linear expansion state, zi(i = 1, 2, 3)

is the estimated value of xi and ẽi is the estimated error value. The output of ESO
[z1, z2, z3] satisfy the following feedback control.

u =
k1

b
(r− z1) +

k2

b
( .
r− z2

)
+

1
b
(..
r− z3

)
(19)

where k1 and k2 are the controller’s parameters and are greater than 0. Equation (13) can be
described as:

..
x = d− z3 + k1(r− z1) + k2

( .
r− z2

)
+

..
r (20)

Let r1 = r, r2 =
.
r, r3 =

..
r as follows.{ .

ε1 =
.

r1 −
.

x1 = r2 − x2 = ε2.
ε2 =

.
r2 −

.
x2 = r3 −

..
x = −k1ε1 − k2ε2 − k1 ẽ1 − k2 ẽ2 − ẽ3

(21)

Let 

ε =
[

ε1 ε2
]T

E =
[

ẽ1 ẽ2 ẽ3
]T

A1 =

[
0 1
−k1 −k2

]
A2 =

[
0 0 0
−k1 −k2 −1

] (22)

Equation (21) can be expressed in matrix form as follows.

.
ε = A1ε + A2 ẽ (23)

The estimation error of ESO is shown as follows.

lim
t→∞
‖̃e‖2 = 0 (24)

Theorem 1. Assuming that d is bounded, then there exists controller parameters k1 > 0 and
k2 > 0 to make tracking error ε tend to zero, such that the closed-loop system is stable [36].
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Proof of Theorem 1. According to Equation (23), one has �

ε = exp(A1t)·ε(0) +
∫ t

0
exp(A1(t− τ))·A2 ẽdτ (25)

Due to
|λI2 − A1| = λ2 + k2λ + k1 (26)

Choose the values of k1 and k2 such that |λI2 − A1| =
(
λ + λ1

)(
λ + λ2

)
, where

0 < λ1 < λ2. A1 has two different eigenvalues, so that A1 can be diagonalized; that is,
there is an invertible matrix T such that A1 = Tdiag

{
−λ1,−λ2

}
T−1, so:

exp(A1t) = Tdiag
{

exp
(
−λ1t

)
, exp

(
−λ2t

)}
T−1 (27)

For any positive number t > 0,

exp‖(A1t)‖2 ≤ ‖T‖2‖T
−1‖2exp

(
−λ1t

)
= βexp

(
−λ1t

)
(28)

When λ1 and λ2 are selected, β is a constant.

lim
t→∞
‖exp(A1t)‖2 = 0 (29)

Similarly,
‖exp(A1(t− τ))‖2 ≤ βexp

(
−λ1(t− τ)

)
, t ≥ τ (30)

Since the ESO estimation error lim
t→∞
‖ẽ‖2 = 0, the second norm of ẽ has an upper

bound α. For any specified η > 0, there is a positive number t0 , and the second norm of ẽ
is less than η when t > t0.

‖
∫ t

0 exp(A1(t− τ))A2 ẽdτ‖2 = ‖
∫ t0

0 exp(A1(t− τ))A2 ẽdτ‖2 + ‖
∫ t

t0
exp(A1(t− τ))A2 ẽdτ‖2

≤ βexp
(
−λ1t

)
·‖A2‖2α

∫ t0
0 exp

(
λ1τ

)
dτ + βexp

(
−λ1t

)
·‖A2‖2η

∫ t
t0

exp
(
λ1τ

)
dτ

= exp
(
−λ1t

)
·β‖A2‖2α

∫ t0
0 exp

(
λ1τ

)
dτ + βexp

(
−λ1t

)
‖A2‖2· η

λ1

[
exp
(
λ1t
)
− exp

(
λ1t0

)]
≤ M1exp

(
−λ1t

)
+ η

λ1
β‖A2‖2

= M1exp
(
−λ1t

)
+ M2η

(31)

where M1 = β‖A2‖2α
∫ t0

0 exp
(
λ1τ

)
dτ and M2 = β‖A2‖2

λ1
are constants. From

exp
(
−λ1t

)
→ 0(t→ ∞) , Equation (32) can be obtained as below.

lim
t→∞
‖
∫ t

0
exp(A1(t− τ))A2 ẽdτ‖2 = 0 (32)

Combining Equations (25), (29) and (32), Equation (33) is described as follows:

lim
t→∞
‖ε‖2 = 0 (33)

According to Theorem 1, with the system model unknown, the above assumes that
the system total disturbance d is bounded; that is, ‖d‖∞ ≤ dm, and there are controller’s
parameters k1 > 0 and k2 > 0 making the tracking error of the closed-loop system tend to
0. Thus, for bounded input r, the output of the closed-loop system is bounded; that is, the
closed-loop system is BIBO stable.



Electronics 2023, 12, 1261 11 of 16

5. Simulations and Results

Because the inner frame plays a major role in the stability accuracy of the optoelectronic
stabilized platform, this paper takes the inner pitch frame as an example and simulates the
inner pitch frame of the platform with MATLAB to verify the effectiveness of the scheme.
The parameters of LuGre model and platform system are listed in Table 1.

Table 1. System and LuGre model parameters.

Parameters Value

Total moment of inertia (kg·m2) J = 1.1
Motor resistance (Ω) Ra = 4.2

Motor inductance (mH) La = 3.78
Torque coefficient (Nm/A) Cm = 3.478

Back-EMF coefficient (V·s/deg) Ce = 0.78
Stiction force (Nm) Ms = 0.6

Coulomb friction (Nm) Mc = 0.15
Viscous friction coefficient (Nm·s/deg) σ2 = 0.02

Stribeck angular velocity (deg/s) ωs = 0.05
Stiffness coefficient (Nm/deg) σ0 = 47.3

Damping coefficient (Nm·s/deg) σ1 = 0.73

To demonstrate the superiority of the ADRC with a LuGre friction model, a comparison
experiment is made with LuGre model feedforward compensation and an ADRC.

5.1. Sinusoidal Trajectory Tracking Experiment

The sinusoidal input signal θin = 2sin(0.5πt) is the tracking curve of the desired
output, and an external disturbance Md = sin(3πt) + 2sin(2πt) + sin

(
t + π

3
)

is added to
the system. The simulation results of the three control methods are shown in Figure 7,
and Table 2 compares the angle tracking error and angle speed error of the three control
methods in terms of both maximum (MAX) value and root mean square (RMX). Figure 7a
represents the angle tracking curve, and it can be seen from the figure that the ADRC with
the LuGre model can track the given input signal better. Figure 7b represents the angle
error curve. The maximum value of the angle error of this scheme is about 0.0628◦ and
the root mean square of the error is about 0.0171◦. The root mean square of the error is
reduced by 62.54% compared with the ADRC and 93.14% compared with LuGre model
feedforward compensation; therefore, the error is significantly reduced.

Table 2. Comparison of angle tracking error and angle speed error under sinusoidal input signal.

Controller ADRC LuGre LuGre + ADRC

Angle error (MAX) 0.1884◦ 0.4418◦ 0.0628◦

Angle error (RMX) 0.0323◦ 0.1764◦ 0.0121◦

Angle speed error (MAX) 0.4638◦/s 0.9837◦/s 0.0693◦/s
Angle speed error (RMX) 0.0832◦/s 0.3987◦/s 0.0176◦/s

Figure 7c,d represents the angle speed and angle speed error curves; the maximum
value of the angle speed error of this scheme is about 0.0495◦/s and the root mean square
of the error is about 0.0156◦/s. The root mean square of the error decreased by up to 78.85%
compared with ADRC and 95.58% compared with LuGre model feedforward compensation.
The results show that the ADRC with LuGre model has better position tracking capability
and the best anti-disturbance effect.
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of the angle error curve; (c) Diagram of the angle speed tracking curve; (d) Diagram of the angle
speed error curve.

5.2. Multiple Sinusoidal Trajectory Tracking Experiment

The input signal θin = sin(0.5πt) + 2sin
(
t + π

6
)

is the tracking curve of the desired
output, and a random signal with zero mean and unit variance is added to the system as an
external disturbance, Md = rand(1). The simulation results of the three control methods are
shown in Figure 8, and Table 3 compares the position tracking error and angular velocity
error of the three control methods in terms of both maximum value and root mean square.
Figure 8a represents the angle tracking curve, from which it can be seen that the angle θ of
the scheme tracks the given input signal with a small phase difference.
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Figure 8. Multiple sinusoidal trajectory tracking results. (a) Diagram of the angle tracking curve;
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Table 3. Comparison of angle tracking error and angle speed error under multiple sinusoidal input signals.

Controller ADRC LuGre LuGre + ADRC

Angle error(MAX) 0.3801◦ 0.5834◦ 0.0542◦

Angle error(RMX) 0.0752◦ 0.1467◦ 0.0117◦

Angle speed error(MAX) 0.5365◦/s 0.7737◦/s 0.0737◦/s
Angle speed error(RMX) 0.0973◦/s 0.1447◦/s 0.0189◦/s

Figure 8b represents the angle error curve; the maximum value of the angle error of
this scheme is about 0.0542◦, and the root mean square of the error is about 0.0117◦; the
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root mean square of the error is reduced by 84.44% compared to the ADRC and 92.02%
compared to LuGre model feedforward compensation.

Figure 8c,d represents the angle speed and angle speed error curves. The peak value
of the angular velocity error of this scheme is about 0.0660◦/s and the root mean square
of the error is about 0.0189◦/s. The root mean square of the error decreased by up to
80.58% compared with the ADRC and 86.94% compared with LuGre model feedforward
compensation. The results show that the ADRC with LuGre model has the smallest tracking
error and the best anti-disturbance effect.

The above simulation experiments show that the ADRC with LuGre friction compen-
sation proposed in this paper has better anti-disturbance performance and target tracking
capability in the case of nonlinear friction and external disturbances, and the control scheme
can achieve high precision and stable control compared with conventional ADRCs and
LuGre friction feedforward compensation.

6. Conclusions

In order to improve the anti-disturbance performance of the optoelectronic stabilized
platform, an active disturbance rejection controller with LuGre friction model was proposed
to realize stable tracking control in the case of nonlinear friction and external interference.
First, the LuGre model was introduced to suppress the disturbance of friction torque on
the system. Second, utilizing the characteristics of the ADRC to observe and compensate
disturbance, the compensation error of the friction model and the influence of other distur-
bances on the system were decreased, and the stability of the ADRC system was proved.
Finally, under different input signals, the proposed control scheme was compared with the
conventional ADRC and LuGre model feedforward compensation. Simulation results show
that the ADRC with LuGre friction model proposed in this paper can improve the tracking
accuracy and stability of the system. We aim to further improve the ADRC algorithm’s
control performance and lessen the impact of multi-source disturbances on optoelectronic
stabilized platform systems.
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