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Abstract: Data heterogeneity may significantly deteriorate the performance of federated learning
since the client’s data distribution is divergent. To mitigate this issue, an effective method is to
partition these clients into suitable clusters. However, existing clustered federated learning is only
based on the gradient descent method, which leads to poor convergence performance. To accelerate
the convergence rate, this paper proposes clustered federated learning based on momentum gradient
descent (CFL-MGD) by integrating momentum and cluster techniques. In CFL-MGD, scattered
clients are partitioned into the same cluster when they have the same learning tasks. Meanwhile, each
client in the same cluster utilizes their own private data to update local model parameters through
the momentum gradient descent. Moreover, we present gradient averaging and model averaging
for global aggregation, respectively. To understand the proposed algorithm, we also prove that
CFL-MGD converges at an exponential rate for smooth and strongly convex loss functions. Finally,
we validate the effectiveness of CFL-MGD on CIFAR-10 and MNIST datasets.

Keywords: clusters; data heterogeneity; federated learning; momentum gradient descent (MGD)

1. Introduction

Recently, machine learning [1,2] has been successfully applied in distinct fields, such
as computer vision [3], voice recognition [4], and natural language processing [5]. Large
amounts of data are required in these data-intensive applications. Nonetheless, data are
generally generated and stored on personal terminal devices, such as mobile phones,
personal computers, wearable devices, etc. Traditional machine learning collects data
in a centralized manner and stores the data in a data center. However, this approach
no longer meets the requirements for privacy. Protecting privacy [6] while collecting
large amounts of data remains a key issue. For this reason, federated learning (FL) [7–9]
was proposed by Google in 2016. FL, as a promising edge-learning framework [10], has
received widespread attention as a distributed paradigm. FL enables multiple clients to
collaboratively train a global model without sharing or exchanging their own private data.
During the process of model training, information related to the model or information in
encrypted form can be exchanged between parties. This exchange does not expose any
protected private parts of the data on each client, and efficient learning can be carried out
between multiple participants and compute nodes. The emergence of federated learning
can effectively balance the contradiction between benefit and privacy, solving the problem
of data aggregation [11]. However, because of the highly decentralized system architecture
of FL, it also encounters a crucial challenge—data heterogeneity [12,13].

In FL, data heterogeneity mainly stems from the fact that each client participating in
the training is independently distributed, but does not follow the same sampling method,
resulting in non-independent identically distributed (non-i.i.d.) data [14,15]. This problem
leads to a steep decline in model accuracy, and how to mitigate the adverse effects of
non-i.i.d. is an open question. References [16,17] proposed the k-means clustered algorithm
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based on FL. However, the k-means clustering algorithm can only be used on convex
datasets, meaning that the shape of the k-means cluster can only be spherical, which cannot
be generalized to arbitrary shapes. Additionally, it heavily depends on the value of k, and
when the data amounts are large, we cannot judge in advance. Reference [16] used the
cosine distance to measure the similarities between network data objects. Reference [18]
proposed StoCFL, a novel clustered federated learning approach for addressing generic
non-IID issues. They also employed cosine distance to measure the similarity of clients.
However, their method did not account for differences in data values, in practice. Refer-
ence [17] proposed one-shot federated clustering by using k-means to cluster the clients [19].
Nevertheless, with the k-means method, is difficult to determine the value of k in practical
applications. In addition, some recent works have utilized user-clustered methods to
exploit data heterogeneity.

Reference [20] proposed a user-clustered algorithm based on the similarity between
clients, Reference [21] investigated a user-clustered algorithm based on model parameter
distance, and Reference [22] developed a user-clustered algorithm based on the weighted
sum of clients. The aforementioned works based on the user-clustered algorithm merely
considered the conditions to achieve clustering; however, the convergence rate has rarely
been a concern. Additionally, Reference [23] proposed the IFCA algorithm to divide clusters
by minimizing loss functions and provided convergence analysis, but the convergence rate
is not desirable. Reference [24] introduced a new clustered FL algorithm based on weighted
clients and discussed the convergence analysis. However, in cases with multiple missing
attributes, different weights must be assigned to the missing combinations of different
attributes, which significantly increases the calculation difficulty and reduces the prediction
accuracy. Despite the numerous works that have utilized clustered methods to address
data heterogeneity in FL, the convergence rate of clustered algorithms in FL remains an
urgent problem.

Currently, as an acceleration technique, the momentum method is widely used to
improve the convergence rate of the optimization algorithm [25–27]. Common algorithms
include momentum gradient descent (MGD) [28] and adaptive algorithms, such as Ada-
Grad [29], Adam [30–32], as well as some subsequently improved algorithms [33,34]. By
incorporating momentum, the previous gradient is reused, and a cumulative discount
is applied to it. By modifying the direction of gradient improvement, the influence of
the previous gradient on the current gradient is used to accelerate the training speed of
the model. The momentum method used in model training can effectively reduce the
training time and accelerate the convergence of the algorithm. For instance, Polyak’s
momentum GD is a classic momentum GD used to train neural networks, which has good
generalization and fast convergence [35–37]. As shown in Figure 1 [25], the MGD algorithm
can accelerate gradient descent and alleviate oscillation amplitude. In recent years, the
momentum method has been widely used in optimization algorithms to compensate for the
slow convergence in FL. Nevertheless, research on the application of momentum methods
in federated learning based on clustered algorithms is lacking.

In order to accelerate the convergence of the algorithm and alleviate data heterogeneity,
we propose a framework named clustered federated learning based on momentum gradient
descent (CFL-MGD), as shown in Figure 2. It combines Polyak’s momentum [38] and
clustered methods for use in federated learning. The learning process involves selecting
locally optimal parameters by minimizing the local loss function and dividing clients with
the same learning parameters into a cluster. The momentum gradient descent algorithm is
then used to update the model during the training process.

The essential contributions of this paper are as follows:

• We propose clustered federated learning based on momentum gradient descent to
address the data owned by clients in federated learning, where the data are habitually
non-independently identically distributed.

• We establish a convergence guarantee for the proposed CFL-MGD algorithm in a
convex setting and show that our algorithm can achieve exponential convergence.
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• We experimentally show that the proposed algorithm can perform well in non-convex
settings, such as neural networks.
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Figure 1. Comparison of MGD and GD.
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Figure 2. The overall architecture of clustered federated learning systems.
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The abbreviation interpretation is shown in Table 1.

Table 1. Abbreviation summary table.

Abbreviation Definition

m the number of clients
P total number of clusters

Cp the p-th of the cluster
Mt randomly select participating clients
Y a subset of the data points on the i-th client
|Y| the number of data points on the i-th client

Di, |Di| the dataset and dataset size of client i
φi(χ; Y) the i-th client’s loss function
φp(χ) the p-th cluster loss function
[P] the set of integers {1, 2, . . . , P}
‖·‖ the `2 norm of vectors
ri,p ri,p = 1 if i ∈ Cp else ri,p = 0
gi unbiased gradient estimation of ∇φi(w)

η, β learning rate
T the number of epochs

The remainder of this paper is established as follows. In Section 2, we introduce the
related work and define the preliminaries in Section 3. Then, we propose the algorithm in
Section 4 and analyze theoretical guarantees in Section 5. Next, in Section 6, we carefully
verify our theoretical analysis through experiments. Ultimately, we conclude this paper in
Section 7.

2. Related Work

Federated learning faces the challenge of data heterogeneity due to its highly decentral-
ized architecture. Numerous studies have been conducted to mitigate this issue. Clustered
FL was proposed in [20] as a solution for processing data heterogeneity. Subsequently,
many studies have shown that clustered federated learning is an effective way to address
the problem of data heterogeneity [14,39,40]. It divides clients into two partitions based
on the cosine similarity between clients. Reference [23] proposed the IFCA algorithm to
estimate cluster classes by minimizing the loss functions. In our paper, our algorithm
is similar to IFCA, but we delivered a major contribution to the convergence rate of the
algorithm. Meanwhile, the convergence of our algorithm and generalization of test data
are guaranteed.

2.1. FL and Data Heterogeneity

Federated learning consists of a central server and multiple clients. In FL, users’
personal devices are often in various regions and industries, so the data owned by each
client are non-i.i.d., resulting in data heterogeneity. In order to alleviate the problem,
Reference [41] proposed a combinatorial approach involving personalized federated learn-
ing. However, when extended to extensive networks, this approach is limited to convex
targets. User clustering methods are proposed in [42], but the parallel algorithm of user
clustering based on assumption loss is not common, and convergence analysis has not
been discussed. Reference [21] proposed a user-clustered algorithm based on the model
parameter distance, FeSEM, but the convergence rate of the algorithm was not analyzed.
Reference [17] proposed one-shot federated clustering by using the clustering method
(using local k-means), but it only performed one round of communication, resulting in
poor accuracy. Clustered federated learning (CFL) was proposed in [20]; it divided clients
into two partitions based on the similarity between clients, but it paid little attention to
the convergence rate. Reference [43] proposed proportional fairness-clustered federated
learning and provided a detailed convergence analysis, but the convergence effect was
closely related to the assumption that global variance is bounded.
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2.2. Momentum Method

As an acceleration technique, the momentum method is widely used to improve the
convergence rate of optimization algorithms. It is a special first-order optimization method
based on the classical gradient descent [25] method by adding momentum. Momentum
algorithms are divided into two classes: the heavy-ball momentum method proposed by
Polyak in 1964 [38], and the Nesterov-accelerated gradient (NAG) proposed by Nesterov in
1983 [44]. Ghadimi et al. conducted in-depth studies on the convergence of the heavy-ball
method and gave the average and individual convergence rates under the condition of
a smooth objective function [45]; however, they did not reach the optimal convergence
rate. Reference [46] established an algorithm framework with multiple parameters, which
uniformly processed the gradient descent method, the heavy-ball method, and the NAG
method. In this framework, different optimization algorithms could be obtained by setting
different parameters. The momentum method has been widely used to improve the
convergence rate of optimization algorithms. Therefore, it is feasible to apply momentum
in federated learning based on clustered algorithms.

3. Preliminaries

Let us consider a clustered federated learning framework with P clusters and m clients.
We have

min
χp

φp(χp) =
|Dp|
|D| ∑

i∈C∗p

φi(χp), (1)

where p ∈ [P]. Our goal is to find solutions {χp}P
p=1 that approach χ∗p = arg min

χ
φp(χ).

In this paper, we assume that m clients have P different data distributions, D1, D2, . . . , DP,
and are divided into P disjoint clusters, C∗1 , C∗2 , . . . , C∗P, and every client i ∈ C∗p owns n i.i.d.
data point yi,1, . . . , yi,n. In particular, we define the i-th client’s loss function

φi(χp; Y) =
1
|Y| ∑

y∈Y
f (χp; y), (2)

where Y ⊆ {yi,1, . . . , yi,n} represents the set of data points by the i-th client. This loss
function is defined as f (χp; y) : χ→ Rd with respect to the data point y. φi(χp) is the local
lost function. The CFL-MGD learning process is as follows: We adopted two optimization
schemes, i.e., average gradient and aggregate model parameters. Foremost, we set initial
values for u(0)

i , χ
(0)
i and χ

(0)
p , p ∈ [P].

Local Updating:

(a) For gradient averaging, we first compute the (stochastic) gradient ∇φi(χ
(t)
p ) and

update the momentum

u(t)
i = βu(t−1)

i +∇φi(χ
(t−1)
p ). (3)

(b) For model averaging, local updates are performed in parallel on each client:

u(t)
i = βu(t−1)

i +∇φi(χ
(t−1)
i )

χ
(t)
i = χ

(t−1)
i − ηu(t)

i .
(4)
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According to (4), node i optimizes its loss function φi(χ) by performing MGD. The
reason for using MGD is to improve the convergence of the algorithm.

Global aggregation: client i transmits u(t)
i , χ

(t)
i and ∇φi(χ

(t)
p ) to the central server,

which averages the received parameters from m clients to obtain the cluster parameters,
u(t)

p and χ
(t)
p , respectively. There are two approaches to this aggregation rule:

(a) Gradient averaging: 
χ
(t)
p = χ

(t−1)
p − η

m ∑
i∈Mt

ri,pu(t)
i

u(t)
p =

∑
i∈Mt

ri,pu(t)
i

∑
i∈Mt

ri,p
.

(5)

(b) Model averaging: 
χ
(t)
p = ∑

i∈Mt

ri,pχ
(t)
i / ∑

i∈Mt

ri,p

u(t)
p =

∑
i∈Mt

ri,pu(t)
i

∑
i∈Mt

ri,p
.

(6)

Here, ri,p is the one-hot encoding vector. The central server sends the aggregated

cluster parameters u(t)
p to i with ri,p = 1, and broadcasts the parameters χ

(t)
p for the next

iteration. If we let χ
(−1)
i = χ

(0)
i , then (4) can be equivalently written as the following single

variable version

χ
(t)
i = χ

(t−1)
i − η∇φi(χ

(t−1)
i ) + β(χ

(t−1)
i − χ

(t−2)
i ), (7)

where the term β(χ
(t−1)
i − χ

(t−2)
i ) is habitually referred to as Polyak’s momentum.

4. CFL-MGD Algorithm

A detailed introduction of the algorithm is given in this section, namely clustered
federated learning based on momentum gradient descent (CFL-MGD). The primary idea
is to cross-iterate the minimization loss function and evaluate the category of clusters.
There are two processes: initially, the server broadcasts P parameters and randomly selects
participating clients. Next, each client calculates and selects the model parameters that
minimize the local loss function

p̂ = arg min
p∈[P]

φi(χ
(t)
p ). (8)

For gradient averaging, each client calculates the gradient ∇̂φi(χ
(t)
p̂ ) and updates the

momentum buffer. For model averaging, each client performs MGD using (4). Ultimately,
the solution of each cluster is updated in parallel and the next iteration continues until the
end of the loop, using (5) or (6). The algorithm is formally expressed in Algorithm 1.
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Algorithm 1 Clustered federated learning based on momentum gradient descent (CFL-MGD).

Input: Total of cluster P, step size η, β, p ∈ [P], initialization χ
(0)
p , u(0)

i = 0
1: for t = 1, 2, . . . , T do
2: center server: broadcast χ

(t)
p , p ∈ [P]

3: Mt ← Randomly select participating clients
4: for client i ∈ Mt in parallel do
5: evaluate cluster categories: p̂ = arg minp∈[P] φi(χ

(t)
p )

6: define vector ri = {ri,p}P
p=1 with ri,p = 1{p = p̂}

7: option I (gradient averaging):
8: compute gradient: g(t)i = ∇̂φi(χ

(t)
p̂ )

9: update momentum: u(t)
i = βu(t−1)

i + g(t−1)
i

10: reverse back ri, g(t)i and u(t)
i to the center server

11: option II (model averaging):
12: χ̃i

(t), u(t)
i =LocalUpdate(χ(t)

p̂ , u(t)
p , η, H), reverse back ri, χ̃

(t)
i and

u(t)
i to the center server

13: end for
14: center server:
15: option I (gradient averaging):

χ
(t)
p = χ

(t−1)
p − η

m ∑
i∈Mt

ri,pu(t)
i

u(t)
p =

∑
i∈Mt

ri,pu(t)
i

∑
i∈Mt

ri,p

send u(t)
p to i with ri,p = 1 and set u(t)

i = u(t)
p

16: option II (model averaging):
χ
(t)
p = ∑

i∈Mt

ri,pχ̃i
(t)/ ∑

i∈Mt

ri,p

u(t)
p = ∑

i∈Mt

ri,pu(t)
i / ∑

i∈Mt

ri,p
send u(t)

p to i with ri,p = 1

17: end for
18: return χ

(T)
p , p ∈ [P]

LocalUpdate(χ̃
(0)
i , u(0)

i , η, H) at the i-th client
19: for s = 1, 2, . . . , H do

20: momentum gradient descent:

{
χ̃
(s)
i = χ̃

(s−1)
i − ηu(s)

i

u(s)
i = βu(s−1)

i +∇φi(χ̃
(s−1)
i )

21: end for
22: return χ̃

(H)
i , u(H)

i

5. Theoretical Guarantees

In this section, we provide a theoretical analysis of the CFL-MGD algorithm by adopt-
ing the strategies of gradient averaging and model averaging. We first assume that all
clients participate in each iteration. Moreover, we utilize resampling techniques [47] in
our theoretical guarantees to reduce the dependency between the category evaluation and
computed gradient. In particular, we add momentum to each client to speed up conver-
gence. For the resampling techniques, if the aggregate number of iterations is T, we divide
the n data points owned by every client into 2T disjoint subsets. Thus, n′ = n

2T represents
the number of data points in each iteration used to compute the (stochastic) gradient or

evaluate cluster categories. For the i-th client, we use the subsets Ŷi
(1), . . . , Ŷi

(T) to evaluate
cluster categories and use Y(1)

i , . . . , Y(T)
i to compute the (stochastic) gradient. In particular,

for the i-th client in the t-th iteration, we employ Ŷi
(t) to evaluate the cluster categories and

employ Y(t)
i to compute the (stochastic) gradient. The advantage of this is that we use fresh
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data in each iteration and, accordingly, reduce dependencies between category evaluation
and computed gradient.

Naturally, the gradient update rule for the p-th cluster is
C(t)

p = {i ∈ [m] : p̂ = arg min φi(χ
(t)
p ; Ŷi

(t)
)}

χ
(t)
p = χ

(t−1)
p − η

m ∑
i∈Mt

ri,pu(t)
i

u(t)
i = βu(t−1)

i + g(t−1)
i ,

(9)

where C(t)
p presents the set of clients whose cluster category is estimated to be p at the

t-th iteration.
Specifically, the model update rule for the p-th cluster is

C(t)
p = {i ∈ [m] : p̂ = arg min φi(χ

(t)
p ; Ŷi

(t)
)}

χ
(t+1)
p = ∑

i∈Mt

ri,pχ̃i
(t)/ ∑

i∈Mt

ri,p

χ̃
(s)
i = χ̃

(s−1)
i − ηu(s)

i

u(s)
i = βu(s−1)

i +∇φi(χ̃
(s−1)
i ),

(10)

where u represents accumulated momentum, β is the momentum coefficient, η is the
learning rate, and χ̃

(0)
i represents the model parameter χ

(t)
p selected by client i at time t

from the server.
The following is the convergence guarantee of CFL-MGD. To further analyze our

algorithm, we suppose that the cluster loss function φp(χ) satisfies the below assumptions,
and that we adopt at least as much data per iteration per cluster as the dimension of the
parameter space, i.e., lmn′ & d. In addition, we define lp := |C∗p|/m as the proportion of
clients pertaining to the p-th cluster. In particular, we set l := min{l1, . . . , lP}. Moreover, we
define ∆ := minp 6=p′‖χ∗p − χ∗p′‖. In particular, the assumption on ∆ is to make sure that the
iterates maintain an `2 ball around χ∗p. In this paper, we require the following assumptions:

Assumption 1. (Smoothness): For all p ∈ [P], φp(χ) is L-smooth, i.e., ‖∇φp(χ)−∇φp(χ′)‖ ≤
L‖χ− χ′‖.

Assumption 2. (Strong convexity): For all p ∈ [P], φp(χ) is µ-strongly convex, i.e., φp(χ′) ≥
φp(χ) + 〈∇φp(χ), χ′ − χ〉+ µ

2 ‖χ′ − χ‖2.

Assumption 3. (Boundedness): For every χ and p ∈ [P], Ey∼Dp [(φ(χ; y)− φp(χ))2] ≤ σ2 and
Ey∼Dp [‖∇φ(χ; y)−∇φp(χ)‖2] ≤ v2.

Assumption 4. (Initialization): The initialization of parameters χ
(0)
p satisfies ‖χ(0)

p − χ∗p‖ ≤
1
4

√
µ
L ∆, ∀p ∈ [P], n′ & pσ2

µ2∆4 . Moreover, we also assume maxp∈[P]‖χ∗p‖ . 1.

Assumption 5. (Unbiasedness): The gradient estimator is unbiased, i.e., E[gi] = ∇̂φi(χ
(t)
p̂ ).

For the gradient averaging strategy, we provide the analysis of our algorithm based
on the above assumptions. Moreover, we assume that T iterations are performed, obtain
parameter vectors χ

(T)
p close to the truth parameters χ∗p, and prove that χ

(T)
p converges to

χ∗p at an exponential rate.

Theorem 1. Suppose Assumptions 1–5 hold. We choose η = 1/L, with a probability of at
least 1 − λ, for any λ ∈ (0, 1) and λ = 1 − λ0 − Pλ1 − 2λ2 − λ3 − Pλ4 − 4 exp(−clm).
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After T = 8L
lµ log( ∆

2ρ ) parallel iterations, constants c1, c2, c3, c4, c5, c6 > 0 exist, and we have for
all p ∈ [P]

‖χ(T)
p − χ∗p‖ ≤ ρ, (11)

where ρ = 16L
µp ρ0 . Õ( 1√

mn′
+ 1

n′ +
1

n′
√

m ), and ρ0 = 2v
λ0L
√

lmn′
+ c1

σ2

µ2λ2∆4n′ + c2
vσ
√

P
λ1µL∆2n′

√
mλ2

+

c3
βv
√

l
λ3(1−β)L

√
mn′

+ c4l + c5
βσ2

µ2λ2∆4n′ + c6
βσv
√

P
λ4µL∆2n′(1−β)

√
mλ2

.

We prove Theorem 1 in Appendix B.

Remark 1. To better understand the results, let us pay close attention to m and n and take the
remaining quantities as constant terms. Due to n = 2n′T, the convergence rate can be written
as Õ( 1√

mn + 1
n ).

1√
mn is the optimal rate if we know the class of clusters. Compared to ([23],

Theorem 2) of the statistical rate in strongly convex models Õ( 1√
mn + 1

n ), the CFL-MGD algorithm
achieves a similar rate of convergence.

Specifically, for the model averaging strategy, we conducted the following analysis
on the convergence of the proposed algorithm. Assuming the model parameter uploaded
by the i-th client is χ̃

(t)
i , the convergence of this algorithm can be shown by studying the

following formula.

‖χ(t+1)
p − χ∗p‖ =

∥∥∥∥∥∥ 1
|Cp| ∑

i∈Cp

χ
(t)
i −

η

|Cp| ∑
i∈Cp

∇φi(χ
(t−1)
i ) +

β

|Cp| ∑
i∈Cp

(χ
(t−1)
i − χ

(t−2)
i )− χ∗p

∥∥∥∥∥∥
≤ 1
|Cp| ∑

i∈Cp

‖χ(t)
i − χ∗p‖+

η

|Cp| ∑
i∈Cp

‖∇φi(χ
(t−1)
i )‖+ β

|Cp| ∑
i∈Cp

‖χ(t−1)
i − χ

(t−2)
i ‖.

(12)

Next, we can use the Lipschitz continuity of ∇φi:

‖χ(t+1)
p − χ∗p‖ ≤

1
|Cp| ∑

i∈Cp

‖χ(t)
i − χ∗p‖+

ηL
|Cp| ∑

i∈Cp

‖χ(t−1)
i − χ∗p‖

+
β

|Cp| ∑
i∈Cp

‖χ(t−1)
i − χ

(t−2)
i ‖.

(13)

We can simplify the second term by using the recursive definition of χi:

‖χ(t+1)
p − χ∗p‖ ≤

1
|Cp| ∑

i∈Cp

‖χ(t)
i − χ∗p‖+

ηL
|Cp| ∑

i∈Cp

∥∥∥∥χ
(t−1)
p − η

|Cp| ∑
j∈Cp

∇φj(χ
(t−2)
j )

+
β

|Cp| ∑
j∈Cp

(χ
(t−2)
j − χ

(t−3)
j )− χ∗p

∥∥∥∥
=

(
1 +

ηL
|Cp|

)
1
|Cp| ∑

i∈Cp

‖χ(t)
i − χ∗p‖+

β

|Cp| ∑
i∈Cp

‖χ(t−1)
i − χ

(t−2)
i ‖.

(14)

Finally, we can use |Cp| ≥ 1 to simplify the expression:

‖χ(t+1)
p − χ∗p‖ ≤

(
1 +

ηL
|Cp|

)
‖χ(t)

p − χ∗p‖+
β

|Cp| ∑
i∈Cp

‖χ(t−1)
i − χ

(t−2)
i ‖

=

(
1 +

ηL
|Cp|

)
‖χ(t)

p − χ∗p‖+ β(1 + β)
‖χ(t−1)

p − χ
(t−2)
p ‖2

‖χ(t−2)
p − χ

(t−1)
p ‖2

.

(15)
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By the definition of εt = ‖χ(t)
p − χ∗p‖, we can obtain

εt+1 ≤
(

1 +
ηL
|Cp|

)
εt + β(1 + β)

ε2
t−1

ε2
t−2

, (16)

where ε0 = ‖χ(0)
p − χ∗p‖ and ε−1 = ‖χ−1

p − χ∗p‖. For convenience, we define M =

max{
(

1 + ηL
|Cp |

)
, β(1 + β)}, we can obtain

εt+1 ≤ Mεt +
β(1 + β)

M
ε2

t−1

ε2
t−2

≤ M2εt−1 +
β(1 + β)

M
ε2

t−2

ε2
t−3

+
β(1 + β)

M
ε2

t−1

ε2
t−2

≤ M3εt−2 +
β(1 + β)

M
ε2

t−3

ε2
t−4

+
β(1 + β)

M
ε2

t−2

ε2
t−3

+
β(1 + β)

M
ε2

t−1

ε2
t−2

...

≤ Mt+1ε−1 +
t−1

∑
i=0

(
β(1 + β)

M

)t−τ ε2
τ

ε2
τ−1

.

(17)

If we take t = blog2 ε−1
0 c, we have εt+1 ≤ εt, i.e., {εt} is monotonically decreasing.

ε0 ≤ Mt+1ε−1 +
t−1

∑
τ=0

(
β(1 + β)

M

)t−τ ε2
i

ε2
τ−1

≤ Mt+1ε−1 +
β(1 + β)

M− 1

t−2

∑
τ=0

[(
ετ

ετ−1
− β

M

)2
− β2

M2

]
ε2

τ−1 +
β2

M− 1
ε2

t−1

≤ Mt+2 − 1
M− 1

ε−1 +
β(1 + β)

(M− 1)M2

t−2

∑
τ=0

ε2
τ +

β2

M− 1
ε2

t−1.

(18)

Here, we use inequality (x−y)2

4 ≤ x2+y2

2 and (a + b)2 ≤ 2(a2 + b2). Since εt is monoton-
ically decreasing, ∑t−2

i=0 ε2
i ≤ tε2

0. Meanwhile, we have t ≤ log2
1
ε0

. Thus, the convergence
rate can be derived as follows:

ε0 ≤
2M3

β

1
T + 2

(
ηL
|Cp|

+ β(1 + β)

)
log2

1
ε0

+
Mt+2 − 1

M− 1
ε−1, (19)

Because ε0 ≥ ε−1, we can simplify the upper bound of the rate of convergence
as follows:

ε0 ≤
2M3

β

1
T + 2

(
ηL
|Cp|

+ β(1 + β)

)
log2

1
ε0

+
MT+3

M− 1
ε0. (20)

Therefore, we obtain the upper bound of ‖χ(t+1)
p − χ∗p‖, which is a function of T.

We initially consider the following Lemma 1 prior to proving Theorem 1. Suppose that
Assumption 4 is satisfied. We analyze the error probability of clients being classified into

error clusters. Defining event ξ
p,p′

i indicates that clients belonging to the p-th cluster Cp

are divided into p′-th cluster Cp′ , which means that client i is correctly classified as ξ
(p,p)
i .

Therefore, we have

ξ
1,p
i =

{
φi(χ1; Ŷi ≥ φi(χp; Ŷi)

}
, (21)

where Ŷi is a collection of data points n′ owned by client i to evaluate the cluster category.
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Lemma 1. We assume that client i ∈ C∗p. Then, there exists a constant c1 for arbitrary p′ 6= p;
we have

P(ξ p,p′

i ) ≤ c1
σ2

∆4µ2n′
, (22)

by union bound

P(ξ p,p′

i ) ≤ c1
Pσ2

∆4µ2n′
. (23)

Proof of Lemma 1. Shorthand φi(χ) := φi(χ; Ŷi). Then,

P(ξ(1,p)
i ) ≤ P(φi(χ1) > δ) + P(φi(χp) ≤ δ), (24)

for arbitrary δ ≥ 0, we select δ =
φ1(χ1)+φ1(χp)

2 . We have

P(φi(χ1) > δ)

=P
(

φi(χ1) >
φ1(χ1) + φ1(χp)

2

)

=P
(

φi(χ1)− φ1(χ1) >
φ1(χp)− φ1(χ1)

2

)
.

(25)

Similarly, we acquire P(φi(χp) ≤ δ) = P
(

φi(χp)− φ1(χp) ≤ −
φ1(χp)−φ1(χ1)

2

)
.

According to Assumption 2, we obtain

φ1(χp) ≥ φ1(χ∗1) +
µ

2
‖χp − χ∗1‖2 ≥ φ1(χ∗1) +

9µ

32
∆2, (26)

where the second inequality is satisfied by ‖χp − χ∗1‖ ≥ ∆− 1
4

√
µ
L ∆ ≥ 3

4 ∆. According to
Assumptions 1 and 4, we know that

φ1(χ1) ≤ φ1(χ∗1) +
L
2
‖χ1 − χ∗1‖ ≤ φ1(χ∗1) +

µ

32
∆2. (27)

Combining (26) and (27) yields

φ1(χp)− φ1(χ1) ≥
µ

4
∆2. (28)

According to Chebyshev’s inequality, we acquire

P(φi(χ1) > δ) ≤ 64σ2

∆4µ2n′
, (29)

and

P(φi(χp) ≤ δ) ≤ 64σ2

∆4µ2n′
. (30)

The proof is now complete.

In order to prove Theorem 1, we first prove the following Lemma 2. We assume that
at some iteration, we obtain a vector of parameters χ(t).
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Lemma 2. Suppose Assumptions 1–5 hold. We choose η = 1/L, with a probability of at least
1− Pλ5, for any λ ∈ (0, 1). For all p ∈ [P], we have

‖χ(t+1)
p − χ∗p‖ ≤ (1− lµ

8L
)‖χ(t)

p − χ∗p‖+ ρ0. (31)

Proof of Lemma 2. Without loss of generality, we focus on the first cluster

χ
(t+1)
1 =χ

(t)
1 −

η

m ∑
i∈C1

(βu(t)
i + g(t)i )

=χ
(t)
1 −

η

m ∑
i∈C1

g(t)i + β(χ
(t)
1 − χ

(t−1)
1 ).

(32)

As for ‖χ(t+1)
1 −χ∗1‖, it is written in (33), where the last term uses the triangle inequality

‖a− b‖ ≤ ‖a‖+ ‖b‖.

‖χ(t+1)
1 − χ∗1‖ =

∥∥∥∥χ
(t)
1 −

η

m ∑
i∈C1

g(t)i + β(χ
(t)
1 − χ

(t−1)
1 )− χ∗1

∥∥∥∥
=

∥∥∥∥χ
(t)
1 −

η

m ∑
i∈C1∩C∗1

g(t)i −
η

m ∑
i∈C1∩C∗1

g(t)i + β(χ
(t)
1 − χ

(t−1)
1 )− χ∗1

∥∥∥∥
=

∥∥∥∥χ
(t)
1 − χ∗1 −

η

m ∑
i∈C1∩C∗1

g(t)i −
η

m ∑
i∈C1∩C∗1

g(t)i −
βη

m ∑
i∈C1

u(t)
i

∥∥∥∥
=

∥∥∥∥χ
(t)
1 − χ∗1 −

η

m ∑
i∈C1∩C∗1

g(t)i −
(

η

m ∑
i∈C1∩C∗1

g(t)i +
βη

m ∑
i∈C1

u(t)
i

)∥∥∥∥
=

∥∥∥∥ χ
(t)
1 − χ∗1 −

η

m ∑
i∈C1∩C∗1

g(t)i︸ ︷︷ ︸
T1

−
(

η

m ∑
i∈C1∩C∗1

g(t)i︸ ︷︷ ︸
T2

+
βη

m ∑
i∈C1

u(t)
i︸ ︷︷ ︸

T3

)∥∥∥∥
≤‖T1‖+ ‖T2‖+ ‖T3‖.

(33)

In the following part, we analyze the upper bounds of ‖T1‖, ‖T2‖, and ‖T3‖, respectively.
Analysis of the ‖T1‖:

T1 = χ
(t)
1 − χ∗1 − η̂∇φ1(χ1)︸ ︷︷ ︸

T11

+η̂(∇φ1(χ1)−
1

|C1 ∩ C∗1 |
∑

i∈C1∩C∗1

g(t)i )

︸ ︷︷ ︸
T12

,
(34)

where η̂ := η
m |C1 ∩ C∗1 |. We obtain the following with a probability of at least 1− λ0 −

2 exp(−clm),

‖T1‖ ≤ (1− lµ
8L

)‖χ(t)
1 − χ∗1‖+

2v
λ0L
√

lmn′
. (35)

Analysis of the ‖T2‖: We define T2p = ∑i∈C1∩C∗p g(t)i , and p ≥ 2. So T2 = η
m ∑P

p=2 T2p.
With a probability of at least 1− Pλ1 − λ2, we have

‖T2‖ ≤ c1
σ2

µ2λ2∆4n′
+ c2

vσ
√

P
λ1µL∆2n′

√
mλ2

. (36)
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Analysis of the ‖T3‖:

T3 =
βη

m ∑
i∈C1

u(t)
i

=
βη

m

(
∑

i∈C1∩C∗1

u(t)
i + ∑

i∈C1∩C∗1

u(t)
i

)

=
ηβ

m ∑
i∈C1∩C∗1

u(t)
i︸ ︷︷ ︸

T31

+
βη

m ∑
i∈C1∩C∗1

u(t)
i︸ ︷︷ ︸

T32

.

(37)

With a probability of at least 1− λ2 − λ3 − Pλ4 − 2 exp(−clm), we have

‖T3‖ ≤ c3
βv
√

lt
λ3(1− β)L

√
mn′

+ c4l + c5
βσ2

µ2λ2∆4n′
+ c6

βσv
√

Pt
λ4µL∆2n′(1− β)

√
mλ2

. (38)

Submitting (35), (36), and (38) into (33), and using the union bound completes
the proof.

We give detailed proof of the upper bounds of ‖T1‖, ‖T2‖, and ‖T3‖ in Appendix A.

6. Simulation and Analysis

In this section, we will use the CIFAR-10 dataset [48] on the convolution neural net-
work and MNIST dataset [49] on a fully connected neural network to verify our theoretical
analysis. In the experiments, we compare our algorithm with IFCA algorithms [23], Fe-
dAvg [8], and FedBCD [50], and the experimental results show that our algorithm is more
efficient and converges faster. Moreover, we relax the initialization requirements and still
achieve a good convergence rate.

6.1. Datasets

CIFAR-10 and MNIST datasets were used to construct the experimental environment.
To simulate different clients maintaining different data, we rotated the images. The CIFAR-
10 dataset includes 60,000 color images, with 50,000 for training and 10,000 for testing. It
is divided into 10 categories, with 6000 images per category. We enlarged the dataset by
rotating the images by 0 and 180 degrees, resulting in 2 clusters (P = 2). We assumed
m clients and divided each client to contain n images of the same rotation operation to
conform to mn = 60,000P. The test sets were also equally divided into mtest = 10,000P/n
clients. For the MNIST dataset, we performed the same operation but divided it into
4 clusters (P = 4) by rotating the images by 0, 90, 180, and 270 degrees. The rotation
operation is an effective method to enlarge datasets and is frequently used in clustered FL.

6.2. Neural Network Model

In our paper, we use two neural network models. One is a convolutional neural net-
work [51] and the other is a fully connected neural network [52]. The convolutional neural
network (CNN) is constructed from the bottom up. First, the input images go through a
convolution layer, and then the resulting information is processed through pooling (Max
pooling is used here). Then, after the same processing, the information obtained in the
second step is transmitted to the fully connected neural layer consisting of two layers,
which is also a general two-layer neural network. Finally, a classifier is connected for clas-
sification and prediction. The fully connected neural network is a multi-layer perceptron
(MLP) [52], which is a network of multi-layer neurons. Non-linear activation functions are
needed between layers, and there must be a hidden layer that conceals both inputs and
outputs. Additionally, a high degree of connectivity is determined by the synaptic weight
of the network.
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In this paper, the convolutional neural network contains two convolution layers and
two fully connected layers. This kind of neural network model is universal. Accordingly,
another common one is a fully connected neural network model, which contains the ReLU
activation function adopted in the experimental setting of the MNIST dataset.

6.3. Results Analysis

We compare our algorithm with IFCA [23], FedAvg [8], and FedBCD [50] algo-
rithms. To facilitate the representation of the legend, let us abbreviate CFL-MGD as
MCFL. For CIFAR-10 experiments, we divided the P = 2 clusters with m = 200 clients
and n = 500 data. In addition, we set the participation rate to 0.1, the step size decay to
0.99, and chose a learning rate of 0.01 and momentum of 0.9. For MNIST experiments, we
divided the P = 4 clusters with m = 2400 clients and n = 100 data, with a learning rate
of 0.1. For FedAvg, the algorithm learns a single global model from data owned by all
clients and ignores the identities of the clusters. In the IFCA scheme, the aggregation step
in Algorithm becomes χ

(t)
p = ∑

i∈Mt

ri,pχ̃i
(t)/ ∑

i∈Mt

ri,p. The CFL-MGD algorithm is similar

to the IFCA algorithm. However, the difference is that MGD is used in the local update
process to accelerate convergence.

The experimental results on the CIFAR-10 dataset are shown in Figure 3. It can be
observed from Figure 3a that our algorithm achieves smaller loss values compared to the
other three algorithms. Figure 3b shows that although our algorithm is only slightly better
than IFCA in terms of test accuracy, it reaches stability earlier and changes faster in the first
100 rounds. This faster convergence speed is due to the addition of the momentum term,
which reduces the amplitude of the oscillation. Since IFCA performs stochastic gradient
descent locally, the performance gain due to the momentum will vanish. Compared with
the remaining two algorithms, it is clear that the MCFL algorithm proposed in this paper
outperforms both FedAvg and FedBCD in terms of both training loss and test accuracy.
During the execution of the MCFL algorithm, it gradually discovers the underlying cluster
categories of participating clients, and after identifying the correct cluster, training and
testing each model with the same distribution of data leads to better accuracy. FedAvg
performs worse than the proposed algorithm because it attempts to match all data from
different distributions and does not provide personalized predictions. FedBCD performs
worse than MCFL due to the multiple local computations.

The experimental results on the MNIST dataset are shown in Figure 4. It can be
observed from Figure 4a that the training loss function curves of all algorithms gradually
converge as the number of communication rounds increases. Similarly, it can be observed
from Figure 4b that the test accuracy curve gradually rises as the number of communica-
tion rounds increases until iteration convergence. It is evident that the MCFL algorithm
proposed in this paper is far more effective than the other three algorithms in terms of
both training loss and test accuracy. On the other hand, in the first 100 rounds, the MCFL
loss function curve decreases much faster than the other three algorithms and converges
to a fixed point earlier. Therefore, the effectiveness of MCFL is verified. Furthermore, we
developed a more detailed analysis of our experimental results, as shown in Table 2.

Table 2. Test accuracy (%) on CIFAR-10 and MNIST datasets (epoch = 300).

CIFAR-10 MNIST

MCFL 1 80.43 ± 0.14 96.05 ± 0.12
IFCA 75.53 ± 0.90 92.60 ± 0.27

FedAvg 69.52 ± 1.09 89.84 ± 0.32
FedBCD 47.31 ± 1.50 70.06 ± 0.92

1 To facilitate the representation of the legend, let us abbreviate CFL-MGD as MCFL.
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(a)

(b)

Figure 3. Test accuracy and training loss for different algorithms on the CIFAR-10 dataset. For IFCA,
FedAvg, and our algorithm, the experimental environment is a convolution neural network that
contains two convolutional layers and two fully connected layers, and for the FedBCD algorithm,
the experimental environment is a deeper ResNet-20 model [53]. (a) Train loss vs. epoch; (b) test
accuracy vs. epoch.
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(a)

(b)

Figure 4. Test accuracy and training loss for different algorithms on the MNIST dataset. For IFCA,
FedAvg, and our algorithm, the experimental environment is a fully connected neural network that
contains the ReLU activation function and a hidden layer, and the number of clusters, P = 4; for the
FedBCD algorithm, the experimental environment is a three-layered neural network. (a) Train loss vs.
epoch; (b) test accuracy vs. epoch.
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7. Conclusions

In this paper, we propose clustering federated learning based on momentum gradient
descent. It can divide clients into appropriate clusters according to the clustering method
of loss function minimization. Each client in the same cluster updates the local model
parameters by momentum gradient descent using their private data and considers the
momentum term and clustering in each iteration. This approach solves the suboptimal
result caused by data heterogeneity and accelerates the convergence of the algorithm. For
the gradient averaging and model averaging methods proposed in the global aggregation
stage, we show that their convergence rates are Õ( 1√

mn + 1
n ), where n = 2n′T and Õ( 1

T ),
respectively. Moreover, we verify that our CFL-MGD algorithm improves the test accuracies
by 4.90% and 3.45% compared to IFCA on the CIFAR-10 and MNIST datasets, respectively.
In terms of the convergence rate of the algorithm, more significant improvements can be
achieved compared with the clustering federation learning baseline IFCA. However, one
potential risk is that our algorithm still requires users to send an estimate of their cluster
category to the central server. Therefore, there may still be privacy concerns during this
step. In future work, heterogeneous federated learning privacy protection schemes for
complex scenarios can be further explored.
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Appendix A. Proof of Lemma 2

Bound ‖T1‖

T1 = χ
(t)
1 − χ∗1 − η̂∇φ1(χ1)︸ ︷︷ ︸

T11

+ η̂(∇φ1(χ1)−
1

|C1 ∩ C∗1 |
∑

i∈C1∩C∗1

g(t)i )

︸ ︷︷ ︸
T12

,
(A1)

where η̂ := η
m |C1 ∩ C∗1 |. Because the φp(χ) is µ-strongly convex and L-smooth functions,

we know that when η̂ ≤ 1
L , we obtain

‖T11‖ =‖χ
(t)
1 − χ∗1 − η̂∇φ1(χ1)‖

≤(1− η̂µL
µ + L

)‖χ(t)
1 − χ∗1‖.

(A2)
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E[‖T12‖2] = v2

n′ |C1∩C∗1 |
can be acquired by Assumption 3, i.e., E[‖T12‖] ≤ v√

n′ |C1∩C∗1 |
.

According to Markov’s inequality, for any λ0, with probability of at least 1− λ0,

‖T12‖ ≤
v

λ0

√
n′|C1 ∩ C∗1 |

. (A3)

Next, we analyze |C1 ∩ C∗1 |. Using Lemma 1 and ([23], Theorem 1), we can obtain the
probability that each client i is correctly classified, given by P(ξi) ≥ 1

2 . Therefore, we have

E[|C1 ∩ C∗1 |] ≥E[
1
2
|C∗1 |] =

1
2

l1m, (A4)

where |C∗1 | = l1m. Since |C1 ∩C∗1 | is a sum of the Bernoulli random variables with a success
probability of at least 1

2 , we have

P(|C1 ∩ C∗1 | ≤
1
4

l1m) ≤P(
∣∣|C1 ∩ C∗1 | −E[|C1 ∩ C∗1 |]

∣∣ ≥ 1
4

l1m)

≤2 exp(−clm),
(A5)

where l = min{l1, l2, . . . , lP}, and the final step obeys Hoeffding’s inequality. Therefore,
we have

P(|C1 ∩ C∗1 | ≥
1
4

l1m) ≥ 1− 2 exp(−clm). (A6)

Assuming |C1 ∩ C∗1 | ≥
1
4 l1m and choosing η = 1

L , we have η̂ ≤ 1
L and η̂ ≥ p

4L .
Combining with the facts in (A2), we have

‖T11‖ ≤ (1− lµ
8L

)‖χ(t)
1 − χ∗1‖. (A7)

Ultimately, we combine (A3) and (A7) to acquire the probability of at least 1− λ0 −
2 exp(−clm),

‖T1‖ ≤ (1− lµ
8L

)‖χ(t)
1 − χ∗1‖+

2v
λ0L
√

lmn′
. (A8)

Bound ‖T2‖ We define T2p = ∑i∈C1∩C∗p g(t)i and p ≥ 2. Thus, T2 = η
m ∑P

p=2 T2p. We
first analyze T2p

T2p =|C1 ∩ C∗p|∇φp(χ1) + ∑
i∈C1∩C∗p

(g(t)i −∇φp(χ1)). (A9)

According to Assumption 1, we have

‖∇φp(χ1)−∇φp(χ
∗
p)‖ ≤L‖χ1 − χ∗p‖ ≤ 3L, (A10)

the second step follows the fact that ‖χ1 − χ∗p‖ ≤ ‖χ1 − χ∗1‖ + ‖χ∗p‖ + ‖χ∗1‖ ≤ 1 + 1 +

1
4

√
µ
L ∆ ≤ 3, and the second inequality applies to Assumption 4. Next, we analyze

E
[∥∥∥∥ ∑

i∈C1∩C∗p

(g(t)i −∇φp(χ1))

∥∥∥∥2]
≤|C1 ∩ C∗p|

v2

n′
, (A11)

which means E
[∥∥∥∥∑i∈C1∩C∗p (g(t)i −∇φp(χ1))

∥∥∥∥] ≤ √|C1 ∩ C∗p| v√
n′

. According to Markov’s

inequality, for any λ1 ∈ (0, 1), with a probability of at least 1− λ1,
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∥∥∥∥ ∑
i∈C1∩C∗p

(g(t)i −∇φp(χ1))

∥∥∥∥ ≤ √|C1 ∩ C∗p|
v

λ1
√

n′
. (A12)

By combining (A10) and (A12), we can obtain a probability of at least 1− λ1,

‖T2p‖ ≤3L|C1 ∩ C∗p|+
√
|C1 ∩ C∗p|

v
λ1
√

n′
. (A13)

Eventually, applying the union bound, we can obtain a probability of at least 1− Pλ1,

‖T2‖ ≤
3Lη

m
|C1 ∩ C∗1 |+

ηv
√

P
λ1m
√

n′

√
|C1 ∩ C∗1 |. (A14)

Then, we analyze |C1 ∩ C∗1 |, according to Lemma 1, we have

E[|C1 ∩ C∗1 |] ≤ c1
mσ2

µ2∆4n′
. (A15)

According to Markov’s inequality, for any λ2 ∈ (0, 1), we have

P
(
|C1 ∩ C∗1 | ≤ c1

mσ2

µ2λ2∆4n′

)
≤ 1− λ2. (A16)

Combining (A14) and (A16), and with a probability of at least 1− Pλ1 − λ2,

‖T2‖ ≤ c1
σ2

µ2λ2∆4n′
+ c2

vσ
√

P
λ1µL∆2n′

√
mλ2

. (A17)

Bounding ‖T3‖
T3 =

βη

m ∑
i∈C1

u(t)
i

=
βη

m

(
∑

i∈C1∩C∗1

u(t)
i + ∑

i∈C1∩C∗1

u(t)
i

)

=
ηβ

m ∑
i∈C1∩C∗1

u(t)
i︸ ︷︷ ︸

T31

+
βη

m ∑
i∈C1∩C∗1

u(t)
i︸ ︷︷ ︸

T32

.

(A18)

Because u(t)
i = βu(t−1)

i + g(t−1)
i and u(0)

i = 0, we can recursively use it t times, yielding

u(t)
i =

t−1

∑
τ=0

βt−1−τ g(τ)i , ∀t ≥ 1 (A19)

Therefore, substituting (A19) into (A18), yields

T31 =
ηβ

m ∑
i∈C1∩C∗1

t−1

∑
τ=0

βt−1−τ g(τ)i , (A20)

T32 =
ηβ

m ∑
i∈C1∩C∗1

t−1

∑
τ=0

βt−1−τ g(τ)i . (A21)

We first analyze T31,



Electronics 2023, 12, 1972 20 of 24

T31 =
ηβ

m ∑
i∈C1∩C∗1

t−1

∑
τ=0

βt−1−τ g(τ)i

=
ηβ

m ∑
i∈C1∩C∗1

( t−1

∑
τ=0

βt−1−τ g(τ)i −∇φ1(χ1)

)
+

ηβ

m
|C1 ∩ C∗1 |∇φ1(χ1).

(A22)

According to Assumption 3, we have

E
[∥∥∥∥ ∑

i∈C1∩C∗1

t−1

∑
τ=0

βt−1−τ g(τ)i −∇φ1(χ1)

∥∥∥∥2]

≤E
[∥∥∥∥ 1

1− β ∑
i∈C1∩C∗1

t−1

∑
τ=0

g(τ)i −∇φ1(χ1)

∥∥∥∥2]

≤ 1
(1− β)2E

[∥∥∥∥ ∑
i∈C1∩C∗1

t−1

∑
τ=0

g(τ)i −∇φ1(χ1)

∥∥∥∥2]

≤ 1
(1− β)2 |C1 ∩ C∗1 |

v2

n′
t,

(A23)

which implies

E
[∥∥∥∥ ∑

i∈C1∩C∗1

t−1

∑
τ=0

βt−1−τ g(τ)i −∇φ1(χ1)

∥∥∥∥] ≤ v
(1− β)

√
|C1 ∩ C∗1 |

t
n′

. (A24)

Therefore, by Markov’s inequality, for any λ3 ∈ (0, 1), with a probability of at least
1− λ3, ∥∥∥∥ ∑

i∈C1∩C∗1

t−1

∑
τ=0

βt−1−τ g(τ)i −∇φ1(χ1)

∥∥∥∥ ≤ v
(1− β)λ3

√
|C1 ∩ C∗1 |

t
n′

. (A25)

As can be seen from the above, |C1 ∩ C∗1 | ≥
1
4 l1m with a probability of at least

1− 2 exp(−clm), and choosing η = 1
L . Then according to Assumption 1, we obtain

‖∇φ1(χ1)−∇φ1(χ∗1)‖ ≤ L‖χ1 − χ∗1‖ ≤ L. (A26)

Combining (A25), (A26) with (A22), and acquiring with a probability of at least
1− λ3 − 2 exp(−clm),

‖T31‖ ≤
βv
√

lt
2λ3(1− β)L

√
mn′

+
l
4

= c3
βv
√

lt
λ3(1− β)L

√
mn′

+ c4l.

(A27)

Analyzing T32, we define

T3p = ∑
i∈C1∩C∗p

t−1

∑
τ=0

βt−1−τ g(τ)i

= ∑
i∈C1∩C∗p

( t−1

∑
τ=0

βt−1−τ g(τ)i −∇φp(χ1)

)
+ |C1 ∩ C∗p|∇φp(χ1),

(A28)

and we can know T32 = βη
m

P
∑

p=2
T3p. According to Assumption 3, we have
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E
[∥∥∥∥ ∑

i∈C1∩C∗p

t−1

∑
τ=0

βt−1−τ g(τ)i −∇φp(χ1)

∥∥∥∥2]

≤E
[∥∥∥∥ 1

1− β ∑
i∈C1∩C∗p

t−1

∑
τ=0

g(τ)i −∇φp(χ1)

∥∥∥∥2]

≤ 1
(1− β)2E

[∥∥∥∥ ∑
i∈C1∩C∗p

t−1

∑
τ=0

g(τ)i −∇φp(χ1)

∥∥∥∥2]

≤ 1
(1− β)2 |C1 ∩ C∗p|

v2

n′
t,

(A29)

which implies

E
[∥∥∥∥ ∑

i∈C1∩C∗p

t−1

∑
τ=0

βt−1−τ g(τ)i −∇φp(χ1)

∥∥∥∥] ≤ v
(1− β)

√
|C1 ∩ C∗p|

t
n′

, (A30)

and for any λ4 ∈ (0, 1), by Markov’s inequality, acquiring a probability of at least 1− λ4,∥∥∥∥ ∑
i∈C1∩C∗p

t−1

∑
τ=0

βt−1−τ g(τ)i −∇φp(χ1)

∥∥∥∥ ≤ v
(1− β)λ4

√
|C1 ∩ C∗p|

t
n′

. (A31)

Conclusively, using union bound and (A28), we can conclude with a probability of at
least 1− Pλ4,

‖T32‖ ≤
3Lβη

m
|C1 ∩ C∗1 |+

βηv
√

P
m(1− β)λ4

√
|C1 ∩ C∗1 |

t
n′

. (A32)

We can substitute (A16) into (A32) with a probability of at least 1− λ2 − Pλ4, and
choosing η = 1

L , we obtain

‖T32‖ ≤ c1
3βσ2

µ2λ2∆4n′
+

βσv
√

P
n′(1− β)µ∆2λ4L

√
c1t

mλ2

= c5
βσ2

µ2λ2∆4n′
+ c6

βσv
√

Pt
λ4µL∆2n′(1− β)

√
mλ2

.

(A33)

Combining (A27) and (A33), and with a probability of at least 1− λ2 − λ3 − Pλ4 −
2 exp(−clm),

‖T3‖ ≤ c3
βv
√

lt
λ3(1− β)L

√
mn′

+ c4l + c5
βσ2

µ2λ2∆4n′
+ c6

βσv
√

Pt
λ4µL∆2n′(1− β)

√
mλ2

. (A34)

Combining (A8), (A17) and (A34) with a probability of at least 1− λ0 − Pλ1 − 2λ2 −
λ3 − Pλ4 − 4 exp(−clm),

‖χ(t+1)
1 − χ∗1‖ ≤(1−

lµ
8L

)‖χ(t)
1 − χ∗1‖+

2v
λ0L
√

lmn′

+ c1
σ2

µ2λ2∆4n′
+ c2

vσ
√

P
λ1µL∆2n′

√
mλ2

+ c3
βv
√

lt
λ3(1− β)L

√
mn′

+ c4l + c5
βσ2

µ2λ2∆4n′

+ c6
βσv
√

Pt
λ4µL∆2n′(1− β)

√
mλ2

.

(A35)
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We let λ5 = λ0 + Pλ1 + 2λ2 + λ3 + Pλ4 + 4 exp(−clm), and

ρ0 =
2v

λ0L
√

lmn′
+ c1

σ2

µ2λ2∆4n′
+ c2

vσ
√

P
λ1µL∆2n′

√
mλ2

+ c3
βv
√

lt
λ3(1− β)L

√
mn′

+ c4l + c5
βσ2

µ2λ2∆4n′

+ c6
βσv
√

Pt
λ4µL∆2n′(1− β)

√
mλ2

,

(A36)

Therefore, by union bound, for any λ5 ∈ (0, 1) and all p ∈ [P], we can obtain that with
a probability of at least 1− Pλ5,

‖χ(t+1)
p − χ∗p‖ ≤ (1− lµ

8L
)‖χ(t)

p − χ∗p‖+ ρ0. (A37)

Appendix B. Proof of Theorem 1

We formally analyze the convergence of our entire algorithm. By choosing

ρ0 ≤
l

32
(

µ

L
)

3
2 ∆, (A38)

to satisfy (A36) and ‖χ(t+1)
p − χ∗p‖ ≤ 1

4

√
µ
L ∆. Moreover, we iterate T times over (A37)

and obtain
‖χ(T)

p − χ∗p‖ ≤ (1− lµ
8L

)T‖χ(0)
p − χ∗p‖+

8L
lµ

ρ0. (A39)

When we choose T = 8L
lµ log( lµ∆

32ρ0L ), we have

(1− lµ
8L

)T‖χ(0)
p − χ∗p‖ ≤

1
4

√
µ

L
∆(1− lµ

8L
)T

=
1
4

√
µ

L
∆(1− lµ

8L
)

8L
lµ log( lµ∆

32ρ0 L )

=
1
4

√
µ

L
∆ exp− log( lµ∆

32ρ0 L )

=
8ρ0

l

√
L
µ

,

(A40)

which means

‖χ(T)
p − χ∗p‖ ≤

8ρ0

l

√
L
µ
+

8L
µl

ρ0 ≤
16L
µl

ρ0. (A41)

Accordingly, we can obtain the final rate of convergence

ρ =
16L
µl

ρ0. (A42)
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