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Abstract: Many systems on Earth and in space require precise orientation when observing the sky,
particularly for objects that move at high speeds in space, such as satellites, spaceships, and missiles.
These systems often rely on star trackers, which are devices that use star patterns to determine
the orientation of the spacecraft. However, traditional star trackers are often expensive and have
limitations in their accuracy and robustness. To address these challenges, this research aims to
develop a high-performance and cost-effective AI-based Real-Time Star Tracker system as a basic
platform for micro/nanosatellites. The system uses existing hardware, such as FPGAs and cameras,
which are already part of many avionics systems, to extract line-of-sight (LOS) vectors from sky
images. The algorithm implemented in this research is a “lost-in-space” algorithm that uses a
self-organizing neural network map (SOM) for star pattern recognition. SOM is an unsupervised
machine learning algorithm that is usually used for data visualization, clustering, and dimensionality
reduction. Today’s technologies enable star-based navigation, making matching a sky image to the
star map an important aspect of navigation. This research addresses the need for reliable, low-cost,
and high-performance star trackers, which can accurately recognize star patterns from sky images
with a success rate of about 98% in approximately 870 microseconds.

Keywords: star tracker; pattern recognition; self-organizing map; best-matched unit; artificial neural
network; lost in space

1. Introduction

Spacecraft relies heavily on navigation systems, which play a crucial role in directing
them towards their intended destination. These systems are designed to ensure that the
spacecraft follows a predetermined path with precision and within the specified time frame.
To achieve this, navigation systems must provide accurate data on various parameters,
such as the spacecraft’s horizontal attitude, course, velocity, and position. There are several
types of navigation systems available, including radio, GPS, scene matching, celestial, and
integrated navigation systems. Celestial navigation is a type of navigation that relies on
the astronomical coordinates of a celestial body to determine the spacecraft’s geographical
position and other navigation parameters. Unlike other navigation technologies, celestial
navigation is independent and does not require any ground equipment. It is also free from
electromagnetic interference and radiation, making it highly reliable and precise. Celestial
navigation is particularly useful for spacecraft navigating at high altitudes or thin air, al-
though it is not applicable to aircrafts flying within the Earth’s atmosphere due to the effects
of weather conditions. Overall, celestial navigation shows great promise for a wide range
of applications [1]. There are various algorithms available for celestial navigation using
star patterns [2–5], including: (1) Star identification utilizing modified triangle algorithms:
This algorithm uses geometric shapes and angles to identify stars in the sky. It works by
comparing the angles between three stars in the sky to a database of known star patterns
to determine the identity of the stars. This algorithm is computationally efficient and is
suitable for use in onboard navigation systems of spacecrafts [1]. (2) Star identification
utilizing star patterns: This algorithm uses a database of star patterns to identify stars in
the sky. It works by comparing the star pattern in the sky to a database of known star
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patterns to determine the identity of the stars. This algorithm is relatively simple and is
suitable for use in both spacecraft and ground-based navigation systems [1]. In recent
years, there has been a shift towards more advanced algorithms based on AI concepts,
as opposed to the traditionally classic algorithms. A study by Bendong Wang et al. [6]
proposed a deep-learning-based algorithm for star pattern recognition, based on convolu-
tional neural networks (CNNs), to accurately identify stars in astronomical images. The
research attained an accuracy rate of more than 98%. Another study by Jindong Xu et al. [7]
utilized a fuzzy C-means clustering algorithm to classify star patterns in high-resolution
star images, achieving an accuracy of over 95%. Our research focuses on utilizing neural
networks for star identification. The algorithm employs self-organizing neural network
map (SOM NN) [8,9] techniques to identify stars in the night sky by training the neural
network to recognize patterns from the Almanac. The trained network can then be used
to identify stars in real-time images. This algorithm is suitable for use in spacecraft and
ground-based navigation systems and offers high accuracy. The algorithm offers high
accuracy and reliability in determining the line of sight in space and is suitable for use in
unmanned spacecraft and missiles navigation [1]. The advantage of using an SOM (and
neural networks in general) in the “Lost in Space” algorithm for celestial navigation is that it
reduces the need to access memory while searching for star patterns. Unlike traditional star
identification algorithms that rely on comparing star patterns with a predefined database,
the SOM map organizes the star patterns in a way that allows for efficient and fast pattern
recognition. Once the SOM map has been trained, it can quickly identify star patterns in
real-time images without the need for repeated database access. This makes the “Lost in
Space” algorithm suitable for environments that cannot offer GPS navigation, and where
memory and computational resources may be limited. To complete the picture, the research
was carried out on a System On Chip Field Programmable Gate Array (SoC FPGA [10])
platform (see Figure 1). FPGAs are increasingly used in space applications due to their
high level of reliability, flexibility, and reconfigurability. FPGAs are designed to withstand
the harsh conditions of space, including radiation, extreme temperatures, and vacuum.
Furthermore, FPGAs are more resilient to single-event upsets (SEUs) caused by radiation
than conventional digital circuits, due to their ability to handle radiation [11–13]. This
makes FPGAs a reliable option for space applications where any downtime is unacceptable.

Figure 1. AI-based real-time star tracker system diagram.

2. Materials and Methods

The AI-based real-time star tracker proposed in this study is described in Figure 1.
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The system composes:

• A high-sensitivity VIS camera [14];
• A DE1 evaluation board with Cyclone V FPGA-SOC with an ARM cortex A9 Dual

Core processor [15];
• A screen that displays the captured image at 60 FPS;
• A GUI application that allows a convenient interface with the camera for testing

purposes during the study and for displaying the results after the image has been
processed.

The FPGA serves as the central component of the system, performing hardware accel-
eration tasks for image processing. An on-chip Nios mini-processor assists by handling
camera control tasks. Additionally, an on-chip ARM processor, running Ubuntu 16.0.04
OS, employs C and Python applications to enable communication with the FPGA hard-
ware/logic, send and receive commands, perform a simple non-uniformity calibration
(NUC) on the image, and execute the final “lost-in-space” algorithm against an Almanac.
During image processing operations, the FPGA displays the image on the screen at a
constant rate of 60 FPS, regardless of the input frame rate, with a resolution of 1280 × 1024
(Figure 2). The FPGA also interacts with the PC GUI and receives/sends image properties
for analysis.

Figure 2. FPGA AI-based star tracker block diagram.

2.1. Optical Sensor and Image Capture

Selecting the right sensor for star research is critical and involves careful consider-
ation of sensor properties relevant to practical experiments. For this reason, it is highly
recommended to choose a high-quality camera that can produce images without clusters of
defective pixels or “hot” pixels, which are commonly referred to as DEPs. These issues can
significantly affect the accuracy and reliability of star observations, making it essential to
select a sensor that is capable of producing high-quality data. Despite this requirement,
it is worth noting that this study used a regular camera to demonstrate how the research
idea can be integrated into low-cost systems without compromising accuracy or reliability.
The Nios processor is responsible for controlling the optical sensor [14], initializing its
registers, and managing critical parameters, such as exposure time, analog/digital gain,
and resolution. Image capture can be triggered manually through a push button or by
the processor itself. Once the camera captures the image, it sends a Bayer format image
to the FPGA, which stamps the image with a time tag and converts it from Bayer [16]
to RGB and then to YCbCr to obtain the intensity image Y. Meanwhile, a histogram and
statistics, such as µ, σ, Min/Max, Common1, Common2, Range & Saturation State, are
calculated in parallel while the intensity image is transferred to the DDR memory. Thanks
to the on-the-fly image transformation to RGB and Y, the image stream to the DDR memory
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experiences only a minor latency of a few hundred microseconds. In parallel to those
operations, the RGB image is sent for display on the VGA screen at 60 FPS.

The sensor properties are described in Table 1.

Table 1. Camera properties.

Subject Parameters Our Case

Active Matrix [mm] 5.7H × 4.28V 1 2.81H × 2.25V
Active pixels 2592H × 1944V 1280H × 1024V

Pixel size 2.2 × 2.2 µm
Bit depth Global shutter 12 bit

Gain A/D 1–16 Analog, Digital 16 Analog
FOV [deg] According to lens 13.38H × 10.72V

1 V—Vertical, H—Horizontal.

With the Sunex DSL901J-NIR-F3.0 lens [17] with a 4 mm aperture, we obtain the
information described in Table 2.

Table 2. Single-pixel field of view.

Feature Value

Sensor MT9P001
Lens: SUNEX DSL901j-NIR-F3.0
Focal length 12 mm

F# 3
Aperture 4 mm

SensorActiveArea-X 0.002816 m
SensorActiveArea-Y 0.0022528 m

X 1280 Pixels
Y 1024 Pixels

Pixel Size 2.2 µm
Fov(x) 2 arctan 0.5AactiveAreaX

f ocallength = 13.38◦

Fov(Y) 2 arctan 0.5AactiveAreaY
f ocallength = 10.72◦

deg/Pixel(x) 13.38◦
1280pixels = 0.01045 deg

pixels

deg/Pixel(y) 10.72◦
1024pixels = 0.01046 deg

pixels

deg/Pixel(avg) 10.46× 10−3 deg
pixels

Finding the angular distance:
In the process of matching stars in a picture with a star map, we need to measure

the distance between each two neighboring stars, which is often unknown and large. As
a result, the angular distance is commonly used. An angular distance across the sky
is defined as an angle between two-unit radius vectors from the center of a sky sphere
pointing toward the two objects. This is also the shortest angular distance across the
sphere between the two objects. In order to find the angular distance of two stars, we first
need to define our system resolution, which is to know the angular distance spread by
a single pixel (Table 2). Computationally, the angular distance d, between two celestial
coordinates, can be calculated using the following formula: suppose that~a and~b are unit
vectors representing a star direction vector, so d = arcos(~a · ~bT). In our case, each pixel
covers an angular distance of 10.46 · 10−3 degrees, so the angular resolution of our image is
10.46× 10−3 deg

pixels .

2.2. Image Processing

In general, all the high-computation operations are carried out by the FPGA. Camera
triggering causes the sensor to expose the optical matrix in Global Shutter mode. The
image transferred to FPGA for processing comes in a Bayer Pattern format (Figure 3). In
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most high-resolution sensors, the detector matrix is provided in this format, reducing the
information transfer time and the amount of information flowing from the sensor to the
image processor. During the image reconstruction process, the FPGA evaluates the two
missing colors using the nearest neighbors algorithm, which is expressed in Equation (1):

Î(i,j) =


(R(i,j), Ĝ(i,j), B̂(i,j)), f or i odd & j even
(R̂(i,j), Ĝ(i,j), B(i,j)), f or i even & j odd
(R̂(i,j), G(i, j), B̂(i,j)), otherwise

(1)

for example (relative to Figure 3):
At R(3,4) the two complementary colors B and G are obtained by Equation (2):

B̂(3,4) = 0.25(B(2,3) + B(2,5) + B(4,3) + B(4,5))

Ĝ(3,4) = 0.25(G(3,3) + G(2,4) + G(3,5) + G(4,4))
(2)

At B(2,3), the two complementary colors R and G are obtained by Equation (3):

R̂(2,3) = 0.25(R(1,2) + R(1,4) + R(3,2) + R(3,4))

Ĝ(2,3) = 0.25(G(1,3) + G(2,2) + G(3,3) + G(2,4))
(3)

At G(2,2) the two complementary colors R and B are obtained by Equation (4):

R̂(2,2) = 0.5(R(1,2) + R(3,2))

B̂(2,2) = 0.5(B(2,1) + B(2,3))
(4)

At G(3,3) the two complementary colors R and B are obtained by Equation (5):

R̂(3,3) = 0.5(R(3,2) + R(3,4))

B̂(3,3) = 0.5(B(2,3) + B(4,3))
(5)

Figure 3. Bayer pattern.

The RGB image undergoes a linear transformation to YCbCr. The purpose of the
transition is to obtain a Y component that describes the intensity of the brightness in the
grayscale image. The statistics and histogram are extracted from the Y component as it is
saved to memory. The FPGA performs the following calculations (see Equation (6)) as the
information flows into memory:

• Image average, STD, and variance, which are used to calculate parameters for the
thresholding process;

• Pixel min/max value, range: max–min, which can be used for image enhancement of
the display, such as stretching the histogram of the image;

• Building a histogram and finding the parameters: common1, number of pixels in
common1, common2, number of pixels in common2, saturation signal (actively high
when 20% of the pixels are above 90% of brightness), and the number of pixels above
the saturation value. The FPGA looks for two common values, one on the left side of
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the histogram for dark pictures and the other on the right side of the histogram for
images with either the sun or the moon. The common value is used for the threshold
calculation and for the exposure-time control mechanism. This process is performed
on every single frame.

σ2 = (
1
N

N

∑
n=1

X2
i )− µ2 , µ =

1
N

N

∑
n=1

Xi (6)

After the intensity image Y, is saved into shared memory, the FPGA triggers the ARM
processor to perform non-uniformity calibration (NUC) using a predefined “Dead Pixels”
table. Once the NUC correction is completed, control is returned to the FPGA, which reads
the NUC-updated image from memory and applies statistical threshold filtering, followed
by cluster extraction. Finally, all image properties are internally saved and transferred to
the GUI (Figure 4) for analysis.

Figure 4. Star Tracker GUI.

2.2.1. Non-Uniformity Calibration and Statistical Thresholding

The automatic calibration of image sensor involves compensating for certain irregular-
ities in the optical matrix. Specifically, the presence of dark pixels that are not part of the
visible resolution requires a calculation of random noise that must be subtracted from the
visible pixel value during image reading. Furthermore, defective pixel elements need to
be repaired prior to threshold processing. In order to identify DEPs, we capture images
under dark conditions or use a black body. Any pixels that deviate from the expected
behavior of the detector matrix are identified and marked. The coordinates of these DEPs
are mapped and substituted with a local/global common value in accordance with the
ARM processor’s DEPs list. Although this procedure does not preclude the occurrence
of random “hot” pixels, such single pixel events can be treated by the cluster detection
algorithm. In Figure 5, we can see one star that does not belong to the DEPs list, marked in
green, all others are known DEPs.
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Figure 5. Star detection report. On the left side of the report, we can see the Linux terminal output. It
shows that the system detected one group seven times. This effect is due to the star search algorithm.
After filtering out identical results, we are left with a single star. In the center of the image, we see
star detection and DEP identification. In the top right corner, we see a reference image of a real star.
Below it, there is an image histogram

After performing the NUC, the processor initiates an image read request. The FPGA
begins to read the image from the memory in order to extract the groups. Prior to the cluster
detection process, the image goes through the statistical threshold analysis, where instead
of µ, we take the common value from the histogram. The threshold selection process is
dynamic, with the threshold value in each image determined by the latest statistics of that
image. The specific value, i.e., 250, used in Equation (8) (shown below) depends on the
camera and its constant noise level:

threshold = Common + 3 · σ + Bias (7)

∀Imagein video stream

Threshold =

{
250, i f Thresholdi < 250
Threshold, i f Thresholdi ≥ 250

(8)

∀Pixelin image

Pixeli =

{
0, i f Pixeli < Threshold
Pixeli, i f Pixeli ≥ Threshold

(9)

2.2.2. Clustering Detection and Saving Groups to Memory

After the image passes the statistical threshold, a process of detecting a pixel group
mass center is performed. This process is based on the fact that a star is relatively small,
with a diameter of 9–11 pixels. The clusters detection algorithm operates as a raster line
scanner (Figure 6). It scans the threshold-filtered image and identifies pixel clusters, each
represented by their mass center x, y and their mass. Each such cluster is considered a
single star (the algorithm is optimized for star detection, and thus, ignores large objects
that have a diameter larger than 13 pixels, such as the moon and sun). Star properties are
stored in the DDR memory in the following format: [∑ xiwi, ∑ wi, ∑ yiwi] (Table 3).

Line Scanner-Based Clustering Detection: How It Works:
During the line scan, the column vector is scanned using 13 pixels from 13 neighboring

lines and the presence of a star is either confirmed or denied (Figure 6). If there is a non-zero
value at the vector edges, then the star is rejected. When a potential star is identified, the
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FPGA records it in memory. The star’s shape is retained in the form of [∑ xiwi,∑ wi,∑ yiwi]
format. In this way, the values X, Y, and Magnitude can be later extracted by the ARM
processor at a sub-pixel level (Equation (10)). Since the scanning process is performed
continuously on the image, there may be duplicate stars in the resulting list. To address
this, after the scanning is completed, the ARM sorts and filters the groups list based on
the coordinates [X,Y] of the constellations. Finally, the groups without repetitions are
sent to the “lost-in-space” algorithm, and at the same time, the data are sent to the GUI
for presentation.

Cy =
∑N

n=1 YiWi

∑N
n=1 Wi

; Cx =
∑N

n=1 XiWi

∑N
n=1 Wi

(10)

where N—number of pixels in group, i—pixel Index (at x or y direction), Wi—pixel value
at index i.

Table 3. Group structure in DDR memory.

DDR addr Base ++4h ++8h ++Ch ++10h

Variable Total groups ∑N
n=1 XiWi ∑N

n=1 Wi ∑N
n=1 YiWi ∑N

n=1 XiWi

Group No. – Group1 – – Group2

Figure 6. Star detection by the FPGA.

2.3. Star Pattern Recognition Related to Almanac

After clustering detection is completed, the FPGA sends a command to the ARM
processor to begin executing the lost-in-space algorithm. The processor then reads the
clusters data from memory, calculating the coordinates and magnitudes of each suspected
star in the image and then performs filtering, to filter out repetitive stars. The list of
coordinates for the five stars is sent to both the self-organizing map neural network for
further processing and to the graphical user interface (GUI) for display purposes. The “lost
in space” algorithm, described in Figure 7, option 2, demonstrates how pattern recognition
is performed by matching coordinate series obtained from the camera against the star map.
For each star, four neighboring stars are selected based on camera sensitivity within a given
field of view (FOV). For this study, a [15◦X, 15◦Y] FOV was taken and the database was
built using a four-neighboring-star basis with a pixel contribution of 10.41 millidegrees
per pixel.
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Figure 7. Star Identification algorithm: choosing stars by intensity.

The neural network architecture of SOMs consists of an input layer and an output
layer. The input layer is also called the features vector, which receives the high-dimensional
input data, and the output layer contains a set of neurons organized in a grid-like structure.
Each neuron in the output layer represents a different cluster or group. During training, the
weights of the output layer neurons are adjusted to map the high-dimensional input data
onto the lower-dimensional output layer grid. This process results in a 2D representation of
the input data, which can be visualized as a map or a scatter plot. To generate this feature
vector (Algorithm 1), we begin by selecting the five strongest stars from the list of stars. We
determine the strength of each star based on its brightness criteria. Next, we identify the
star closest to the center of the image matrix and designate it as the main star. From these
selected stars, we generate a feature vector containing ten angular distances that are sorted
in ascending order. To calculate the angular distances, we measure the angle between the
main star and each of the other four stars, as well as the angles between each pair of the
four stars themselves. This feature vector is then used as input for the SOM network to
perform pattern matching or clustering.

Algorithm 1 ARM preparatory actions for pattern matching using an AI Kohonen map [1]

1: Sort all the stars in the image from the strongest to the weakest and selecting the five
strongest stars (Figure 8).

2: Mark the star closest to the center as the main star.
3: The other four neighboring stars are selected so that they are within a radius equivalent

to the distance of Rt < R < RFOV (Rt = 0.5 to 1.0 degrees, 0.85 < R < 7.5degmax in our
case) from the main star. The selected stars are arranged by their distance from the
main star, closest to furthest.

4: Looking at the distances between any two stars in a five-star group ( 5stars
2distances) =

(5
2) = 10 distances, we gather all 10 distance combinations (Equations (11) and (12)).

Neighbors are selected in such a way that they cannot be closer than 20 pixels in angular
distance to another star [1].

5: The angular distances are sorted in ascending order and constitute the features vector.
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Feature Vector : Ptr = [rT
1 r2 rT

1 r3 rT
1 r4 rT

1 r5 rT
2 r3 rT

2 r4 rT
2 r5 rT

3 r4 rT
3 r5 rT

4 r5] (11)

∀Star : ri =
[ xi√

x2
i +y2

i + f 2
+ yi√

x2
i +y2

i + f 2
+ f√

x2
i +y2

i + f 2

]T
(12)

where ri—direction unit vector, (xi, yi)—star coordinates. f—focal length.

Figure 8. Camera FOV: star number is arranged by intensity.

Once we calculated the feature vector, we introduce the features vector to the well-
trained Kohonen network (Figure 9) and obtain an index by which we can return to the
star map and find the appropriate direction vector—line of sight. There are many ways to
think about how the database is organized, and it is possible to characterize it, build the
features vector accordingly, run it, and test whether the results are satisfactory.

Figure 9. Kohonen map and indexing to Almanac.

2.3.1. Building the Database Using Camera Sensitivity in a Given FOV, for NN Training

To train the network using the Almanac stars list, we need to filter out stars that cannot
be detected by the specific camera due to its sensitivity. Once we have a list of candidate
stars, we create a corresponding feature vector for each star based on the neighboring stars
within a given field of view (FOV) as follows:

1. Select the radius in a FOV; in our case, radius R = 7.5 deg.
2. From the Tycho2 2018 almanac, a sensitivity of magnitude 6 is selected. The database

is filtered accordingly and then sorted by intensity from high to low. The map is now
reduced to 4642 stars out of over two million.

3. For each star, we take the four brightest neighboring stars, for which the minimum
distance between the main star and the nearest neighbor is 0.85 degrees.
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4. Find the distances between any two stars in a five-star group. We gather all 10 distance
combinations. Neighbors are chosen in such way that they are not closer than 20 pixels
(angular distance) to another star.

5. The angular distances are sorted in ascending order and constitute the features vector
of the SOM.

We now create the list shown in Table 4.

Table 4. An ordered database of stellar distances.

MainStar
Index Feature1 Fea.2 Fea.3 Fea.4 Fea.5 Fea.6 Fea.7 Fea.8 Fea.9 Feature10

1 0.4423 0.5401 0.5713 1.7155 2.2265 2.2459 2.3442 3.5961 3.9351 4.1632
2 1.1573 1.6522 2.0266 2.4743 2.7054 2.7343 4.0751 4.3159 5.1978 6.5945
3 0.169 1.269 2.5161 2.7003 2.866 3.2137 4.6179 4.7815 5.658 5.8259
4 0.1473 0.9652 1.7718 1.836 1.9854 2.5176 2.8021 2.8488 3.6899 3.719

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4642 2.6456 4.3696 6.0897 6.2987 6.6346 6.7552 7.0136 7.8045 9.025 12.6147

Visually, in Figure 10, we can see an example of a sky ball with neighboring stars at
the defined spatial angle of 7.5 deg.

Figure 10. Neighboring stars at the defined spatial angle of R ≤ 7.5 deg.

2.3.2. Building a Self-Organizing Map Network—Kohonen Map

There are a number of topologies for building the network, the map structure, and
the distances from neighboring neurons (e.g., triangle, bubble, Mexican hat, Gaussian,
hexagon). During the research, Gaussian topology was used in the SOM structure and the
MiniSom library in Python was used.

Network structure:

• Size: 69 × 69;
• Features vector: 10;
• Clusters output: 4642;
• Sigma: 3;
• Learning rate: 0.7;
• Neighborhood function: Gaussian;
• Train batch: 1 M.
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When the network is ready, we pass the entire database through the network and
commence training. For each feature, the weight network wij is updated until, finally, we
obtain a distance map that describes the distance distribution (Euclidean distance ‖x−wij‖)
between the neighbors. For each pattern in the dataset, the corresponding winning neuron
has been marked. Each type of marker represents a main star class. If the average distance
is high, then the surrounding weights are different and the color is bright; if the average
distance is low, then a dark color is applied, as described in the following image (Figure 11).

Figure 11. Kohonen distance map.

The algorithm works such that for a given cluster, the best matching unit (BMU)
neuron closest to 0 lights up. Furthermore, the environment around the winning neuron
is the most supportive (Algorithm 2). The algorithm considers neighbor values using the
activation frequency parameter. This parameter is based on the relative frequency at which
each neuron is contained in the neighboring BMU, so that there is an individual memory of
activation obtained from each neuron (a realistic characteristic that changes the dynamics
of map formation). Using this parameter reduces the network error. In the following image
(Figure 12), we can see the activation frequency map of our application.
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Algorithm 2 Apply the self organizing map (SOM) algorithm: repeat the following proce-
dure until the map converges1.

AT EACH TIME T, PRESENT AN INPUT X(t) AND SELECT THE WINNING NEURON

νt = arg min
k ∈ Ω ‖X(t) − wK(t)‖ Update the weights of the winner and its neighbors

∆wk(t) = α(t)η(ν,k,t)[X(t) − wν(t)]

η(ν,k,t) = e
− ‖rν−rk‖

2σ2
t

1 whereby:

• X ∈ Rn is the input vector;
• At the start of the learning process, all the weights {w1, w2, . . . , wM} are initialized to small random numbers;
• wi is the weight vector associated with neuron i and is a vector of the same dimension n of the input;
• ri is the location vector of neuron i on the grid (M is the total number of neurons on the grid);
• α(t) has a learning rate of rate (0,1) and the scalar decreases monotonically;
• σ(t) represents the effective range of the neighborhood and often decreases with time;
• η(v,k,t) is the neighborhood function, ν is the winning neuron, and k is the neighbor neuron;
• Ω is the set of neuron indexes.

Figure 12. Activation frequency map.

At the same time, we look at two trends that provide information about network con-
vergence: quantization error and topographic error (Figure 13). Results with a confidence
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of 97.7% were achieved in the training process. The quantization error refers to the average
distance between the input data and the best-matching neuron in the SOM. It is a measure
of how well the SOM has grouped similar input data together into clusters, and can be
used to assess the quality of the map’s representation of the input data. Topographic error,
on the other hand, refers to the proportion of neighboring neurons in the SOM that are not
topologically adjacent to the best-matching neuron for a given input data point. In other
words, it measures how accurately the SOM has preserved the topology of the input data in
the map. A lower topographic error indicates that the SOM has accurately mapped similar
input data to nearby neurons in the map.

Figure 13. Quantization error and topographic error. Quantization error: 0.00014; topographic error:
0.02218.

The product we obtain from the network is a labels map that links the star index to
the mapping (i, j) in the Kohonen map. When the network is well trained, for each entry
Vector-K entering the network, the suitable neuron in position (i, j) will be obtained. In case
where looking up a vector yields multiple possible solutions, the algorithm can be re-run
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with a different main star at each time. At the end of the process, the MainStar index is
located and the LOS can be found.

3. Results

After an overview of the study, the current focus shifts to the presentation of the
results specifically related to stars pattern recognition. With the neural network trained to
recognize star patterns using feature vectors, the following example was examined:

Suppose
−→
V1 is the input vector corresponding to a star in index 21 and its neighbors

N1-N4 are taken from the Almanac as described in Table 5.−→
V (i=21) [0.4556 , −0.5362 , −0.7106].

Table 5. An example of a structure of five neighboring stars.

Main Star Index N1 N2 N3 N4 1

21 423 449 446 70
1 Ni is the matching neighbors’ indexes.

The feature vector of a star index 21 (Table 6) is taken and random noise is added to it
of up to four pixels, to simulate the stars sampled from the sky image.

Table 6. Star index 21, angular distances [deg].

Star Index 21 Feature Vector [0–9]

3.1083 4.3947 5.0128 5.0412 6.1340 6.6687 6.6815 8.7224 9.4316 9.6025

When searching for a solution over the network, we obtain the Kohonen index (48, 51)
and the corresponding Star index ({‘21’: 1}). The solution is identified with a confidence
level of 97.7% as being associated with the Star index 21. In this case, we can stop the search
and the LOS can be found by adding or subtract the angle of the star from the center of the
detector. The result is achieved in about 870 us.

Additional checks can be performed, e.g., the next neighbor N1, Star 423, can be taken
as the main star and the feature vector can be created (see Tables 7 and 8).

Table 7. Changing the main star, obtaining five new neighboring stars.

Main Star Index N1 N2 N3 N4 1

423 449 21 539 373
1 Neighboring star.

Table 8. Star index 423, angular distances [deg].

Star Index 423 Feature Vector [0–9]

3.1083 4.3947 4.6086 5.0128 5.4160 6.1670 8.0109 8.3438 9.2132 9.5359

As we can see, it requires two additional stars in the image, i.e., N3 and N4. The
Kohonen result for this input is three possible options: Kohonen Index (36, 47) and Star
Index ({‘423’: 1, ‘1822’: 1, ‘3125’: 1}). For a particular five-star structure, there is more than
one option. The more stars there are in the picture, the less likely the pattern will be the
same. From the last check, main star index 21 was marked as

−→
V1 , and stars index 423,
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1822, and 3125 as
−→
V2 ,
−→
V3 , and

−→
V4 , respectively, while (

−→
Vi ) is the unity vector represented by

[x, y, z] vector from the database:

−→
V1 = [0.4556,−0.5362, 0.7106]
−→
V2 = [0.5201,−0.4982, 0.6938]
−→
V3 = [−0.2666,−0.8688, 0.4172]
−→
V4 = [−0.0745,−0.4937, 0.8664]

(13)

Testing the results by constraint on the following equation:

7.5[deg] ≥ arccos(
−→
V1 ·
−→
Vi

T) (14)

shows that:
θ1 = arccos(

−→
V1 ·
−→
V2

T) = 4.39◦

θ2 = arccos(
−→
V1 ·
−→
V3

T) = 50.149◦

θ3 = arccos(
−→
V1 ·
−→
V4

T) = 32.17◦
(15)

From the database structure, we know that neighboring stars are within a 7.5 deg
radius; thus, θ2 and θ3 are rejected and the result is star index 423:

−→
V2 = [0.5201 , −0.4982 ,

0.6938].

4. Timing and Performance

The performance of star identification algorithms is typically evaluated based on two
key indicators: identification time and memory consumption. The algorithm proposed in
this study was implemented on a Cyclone V SoC FPGA and achieved the timing perfor-
mance described in Table 9. The platform’s end-to-end runtime is 27.64 ms, from the image
request to the Line of Sight (LOS) results, with most of the time spent on reading data
from both the sensor and DDR memory. Table 10 presents the average identification time
and memory consumption for several algorithms [6] (such as “Robust Star Identification
Algorithm Based on Neural Networks” [6], Optimized Grid algorithm [18], etc.) running on
a computer. The results show that the proposed algorithm has a significantly shorter identi-
fication time compared to other algorithms, with the self-organizing map (SOM) runtime
being approximately 870 microseconds. Additionally, using image sensors with high-speed
MIPI or LVDS interface can further reduce the read time to less than 1 millisecond. By
leveraging statistics from previous images, a total processing time of about 2 milliseconds
End2End can be achieved from the image request command to the LOS vector result, with
some compromises. Moreover, the proposed algorithm requires only 249 KB of memory,
which is smaller than the other algorithms.

Table 9. System timing.

Feature Performance 1

Exposure time Varies as needed 100 ms to 500 ms. Camera
dependent

Reading the image from the sensor (3 × 12 bit),
Performing image processing and memory retention

∼14 ms (Read image from sensor takes 13.6 ms Clk =
96 Mhz, Resolution 1280 × 1024)

Bayer To RGB-YCbC latency 166 us: done on the fly
Building a histogram & collecting statistics 0 delay, done on the fly, in parallel.

Nuc—Clear DEPs 78 us , Done by HPS processor
Threshold and Clusters Detection, save groups to

MeM
∼14 ms (reading image from memory takes 13.1 ms,

Clk = 100 Mzh, resolution 1280 × 1024)
AI Neural Network result 870 us

1 Can achieve 2 ms End2End, from image request to LOS vector results.
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Table 10. Comparison of identification time and memory consumption.

Algorithm Identification Time Memory Consumption

Proposed algorithm 870 us 249 KB
NN Based algorithm [6] 32.7 ms 1920.6 KB
Pyramid algorithm [19] 341.2 ms 2282.3 KB

Optimized Grid algorithm [20] 178.7 ms 348.1 KB
Modified LPT algorithm [21] 65.4 ms 313.5 KB

Expected Pointing Accuracy

In this subsection, we discuss the expected accuracy of the presented star tracker
system—assuming the identification of the stars was performed properly.

The camera used for the presented star tracking system has an angular field of view of
about 0.01 degree per pixel (as shown in Table 2). As a rule of thumb, one may assume that
the expected accuracy is on a pixel scale (say 0.01 degree). This is often the case when a
naive star coordinate is used (without any super-resolution). In the experiments conducted,
an error margin of ±4 pixels were used for the star position. However, once we determine
the star index we are pointing at, we can promptly mark the main star. The accuracy
primarily relies on the influence of the lens on the pixel FOV error and the correction of the
spread resulting from movement. The actual pointing accuracy depends on the number
of identified stars in the image and their location in the frame (which affects the pointing
errors related to lens imperfection calibration). As an overall conclusion, the presented
star-tracking framework was able to achieve a pointing accuracy better than two pixels
in most tested cases. Such accuracy (about 0.019 degrees, or about 0.33 milliradian) is
sufficient for low-resolution imaging and laser pointing applications. Improved accuracy
may be achieved by using “super-resolution”; recall that we compute the angular distance
in a sub-pixel calculation on the center of mass of the stars. Thus, an angular error on a
sub-pixel scale should be achievable. Moreover, by using a well-calibrated lens system,
the overall accuracy of the presented framework may allow sub-pixel accuracy even in
single-star image cases (“lost in space” scenarios).

5. Discussion and Conclusions

The major emphasis in the above work is on the use of self-organizing map and on the
ability to simplify the solution search, compared to other methods of pattern recognition.
The research shows a high-speed result with a confidence of about 98% in the star pattern
identification. The high confidence value does not guarantee that for each feature vector
entry, a single solution is obtained; this is due to the fact that there may be different clusters
with similar feature vectors. After obtaining the Kohonen match, it is good practice to
make some logical test to understand the relation between the results. FPGA technology
enables parallel processing across different design levels. This allows for efficient image
processing with multiple processors, displaying images on a monitor at a high frame rate
of 60 fps, and seamless communication with the GUI. Additionally, the use of different
camera interfaces, such as LVDS, can significantly reduce sensor readout time to just a few
milliseconds. By increasing the clock rate, the threshold and cluster extraction process can
be shortened by half or more, leading to faster processing times. The real-time star tracker
can be embedded as IP in existing hardware that contains FPGA and a camera, making it
suitable for integration into nanosatellites being built by the university. Future work plans
involve integrating convolutional neural networks (ConvNets) with landmark properties
to further enhance the system’s performance.
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