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Abstract: Wireless power transfer (WPT) has become a crucial feature in numerous electronic devices,
electric appliances, and electric vehicles. However, traditional design methods for WPT suffer from
numerous drawbacks, such as time-consuming computations and high error counts due to inaccurate
model parameters. As artificial intelligence (AI) continues to gain traction across industries, its
ability to provide quick decisions and solutions makes it highly attractive for system optimizations.
In this paper, a method for optimizing WPT parameters based on machine learning is proposed.
The convolutional neural network is adapted for training and predicting the performance of a pair
of coupled coils under a set of input parameters. The performance parameters include the spatial
magnetic field distribution map, quality factor, inductance value, and mutual inductance value, which
are critical in determining the efficiency and selecting optimal coil parameters such as the number of
turns and wire diameter. Moreover, the spatial magnetic field distribution map is also helpful for
identifying design compliance with the electromagnetic field safety standards. The training results
reveal that the proposed method takes an average of 3.2 ms with a normalized image prediction
error of 0.0034 to calculate the results to calculate one set of parameters, compared to an average of
23.74 s via COMSOL. This represents significant computational time savings while still maintaining
acceptable computational accuracy.

Keywords: parameter optimization; machine learning; wireless power transfer

1. Introduction

Wireless power transfer (WPT) technology is gaining increasing attention from academia
and industry [1]. At present, this technology is widely used in various wireless power
supply applications, including IoT batteryless sensors or devices [2,3], portable consumer
electronics such as wearable devices and mobile phones [4–6], and automation equipment
such as electric vehicles and robots [7,8], as well as electrical equipment in implantable
biomedicine, underwater, mining, and aerospace applications [9–12]. The terminals of the
WPT systems cover electrical loads ranging from microwatts to megawatts. Traditional
methods for optimizing inductors for WPT include full analytical models, semi-numerical
models, and numerical models [13]. Sometimes, however, these three methods cannot
meet all the requirements, so it is necessary to propose an optimal wireless power supply
parameter selection method based on machine learning (ML).

In recent years, the three traditional methods for circuit parameter optimization [14]
have shown some drawbacks. As for the first method, full analytical models [15,16], these
models are based on analytical equations and feature closed-form analytical solutions.
These models are too simple to fully express the circuit properties of a circuit, so the
disadvantage is that they are not accurate for prototyping. Semi-numerical models [17,
18] are based on analytical equations but do not feature an explicit solution. Obtaining
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the optimal design is accomplished by numerical optimization methods (e.g., gradient
optimization and brute force). This numerical optimization is accurate and fairly fast.
However, the mechanisms that lead to optimal designs are difficult to define. In addition,
the results obtained are specific to a given specification and cannot be easily generalized.
When it comes to numerical models [16,19,20], the WPT parameters are extracted from
numerical field simulations (e.g., finite element method simulations). This method is
relatively accurate, but modeling and model computation are time-consuming and offer
only limited advantages over semi-numerical methods [21].

Fortunately, artificial intelligence (AI) has become increasingly popular [22,23] and has
recently been applied to some fields of power electronics design, showing the future devel-
opment trend of AI in power electronics, such as modeling B-H loops of power magnetics
with sequence-to-sequence LSTM encoder–decoder architectures [24], deep reinforcement
learning for DC-DC converter parameter optimization [25], and machine learning estima-
tors for power electronics design and optimization [26]. These successful examples inspired
us to employ the AI approach for the design of a WPT optimal parameter analysis method.

Therefore, applying machine learning methods to resolve the challenge of WPT param-
eter optimization presents great potential. This paper proposes the parameter optimization
of WPT based on machine learning (POWPTML). The principal contributions of this paper
are outlined below:

(1) The computational efficiency in selecting WPT circuit parameters is significantly
enhanced, concurrently achieving a small error margin.

(2) The machine learning techniques are employed to rapidly generate a magnetic field
distribution map under the specific coil and current conditions, which is a crucial
factor for ensuring safety.

The organization of this paper is as follows: Section 2 introduces the parameter re-
quirements of magnetic field distribution and efficiency optimization for WPT. The machine
learning framework and training configurations are described in Section 3. The results of
COMSOL and POWPTML and their comparison are shown in Section 4. The feasibility
of the method proposed in this paper is verified through the experiments described in
Section 5. The Discussion and Conclusions are presented in Sections 6 and 7, respectively.
Codes for our implementation are available at GitHub (accessed on 20 December 2023).

2. Parameter Requirements and Optimization of WPT

In the design of WPT, electromagnetic environmental issues or efficiency issues need
to be considered in a variety of cases.

2.1. Magnetic Field Distribution

The distribution of changing magnetic fields has bad effects on the human body and
mechanical or electronic devices. Therefore, the International Commission on Non-Ionizing
Radiation Protection (ICNIRP) was established in 1992 to study the biological effects of
various types of non-ionizing radiation. In 1998 “Guidelines for limiting exposure to time-
varying electric, magnetic, and electromagnetic fields (up to 300 GHz)” was issued [27].
As the most representative electromagnetic wave radiation standard in the world, it refers
to a large number of literature studies on the biological effects of exposure to static and
low-frequency electromagnetic fields. In 2010, the “Guidelines for limiting exposure to
time-varying electric and magnetic fields (1 Hz to 100 kHz)” [28] was promulgated, which
revised the safety guidelines for the electromagnetic protection of the human body exposed
to low-frequency electric and magnetic fields.

In addition, WPT is one of the most promising technologies for electric vehicle (EV)
charging applications [29]; thus, the Society of Automotive Engineers (SAE) published the
SAE J2954 standard for the better development of WPT in EV [30]. SAE J2954 recommends
limiting electromagnetic field emissions below the limits established in the ICNIRP-2010
guidelines, as given in Table 1. Therefore, the prediction of magnetic field distribution

https://github.com/ZHANGHengEE/Machine-Learning-for-WPT


Electronics 2024, 13, 103 3 of 13

is crucial to ensuring the safety of humans and devices when AI performs parameter
optimization design.

Table 1. ICNIRP 2010 limits on the low-frequency electromagnetic field.

Field Type General Public Reference Limit

Magnetic 27 µT RMS or 38 µT peak
Electric field RMS 83 V/m

In the wireless transmission of electrical energy, the magnetic field generated by the
transmitting coil plays a pivotal role in charging efficiency. As the distance between the
transmitting and receiving coils increases, the magnetic field strength diminishes, resulting
in reduced energy reception for a given set of coil parameters. Therefore, the analysis of
magnetic field distribution serves as an indicator for assessing wireless charging perfor-
mance at different locations. Additionally, the distribution diagram of alternating magnetic
fields can be employed to delineate the safety boundaries of the magnetic field.

2.2. WPT Efficiency

The circuit topologies used in a two-coil magnetically coupled resonant WPT system
can be divided into four types [31,32]: primary-side and secondary-side capacitor–inductor
series resonance (SS type); primary-side capacitor–inductor series, secondary-side capacitor–
inductor parallel resonance (SP type); primary-side capacitor–inductor parallel, secondary-
side capacitor–inductor series resonance (PS type); and primary-side and secondary-side
capacitor–inductor parallel resonance (PP type). Based on several studies, the most popular
circuit topology is SS [33]. An SS-type topology circuit diagram is shown in Figure 1.

R1

L1

C1

RS

AC

*

R2

L2

C2

RL

*

M

Figure 1. Capacitor–inductor series resonance. (‘*’ representing the dotted terminal of mutual
inductance).

When the two coils L1 and L2 perform magnetic coupling resonant wireless power
transmission, the transfer efficiency η can be expressed [34] as

η = RL
(RL+R2)

(ωM)2

(ωM)2+(RS+R1)(RL+R2)

= RL
(RL+R2)

k2Q1Q2
(1+k2Q1Q2)

,
(1)

where RS is the internal resistance of the power supply; R1 is the internal resistance of the
transmitting coil; R2 is the internal resistance of the receiving coil; RL is the load resistance;
M is the mutual inductance value between the transmitting and receiving coils; ω is the
resonant angular frequency; Q1 is the quality factor of L1; and Q2 is the quality factor of L2.
The coupling coefficient k can be expressed as

k =
M√
L1L2

. (2)

In most cases, RL is much larger than R2, so η can be abbreviated as

η ≈ k2Q1Q2

1 + k2Q1Q2
=

1
1 + 1

k2Q1Q 2

. (3)

It can be seen from Equation (3) that the highest efficiency can be obtained by finding
the maximum value of k2Q1Q2.
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3. Machine Learning for WPT

We apply machine learning to learn the distribution of magnetic fields. A deep neural
network [35] is well known for its strong function approximation ability. It is widely
applied in fields like computer vision and natural language processing. In our framework,
we transform the intensity of magnetic fields into gray images. The neural network takes
as input the parameters of coils. Then, it predicts the image representation of magnetic
field distribution and the coil parameters.

3.1. Machine Learning Framework

As shown in Figure 2, our proposed machine learning framework utilizes a U-Net-
based [36] structure to learn the magnetic field distribution and a multi-layer perceptron
(MLP) [37] branch to predict the optimal parameters.

U-Net was first proposed to solve semantic segmentation tasks [38] in computer
vision. The original form of U-Net translates an image into its semantic segmentation map.
The segmentation map consists of pixels indicating whether they belong to the same object
category or not. It could be regarded as a spatial distribution of categories, which resembles
our target spatial distribution of magnetic fields. One difference is that the magnetic field
distribution is continuous. The U-Net contains two sub-modules, namely, an encoder and a
decoder, both of which are built up with convolutional blocks. The encoder down-samples
the input image into a low-dimensional feature vector, whereas the decoder up-samples
the feature vector and constructs a high-dimensional segmentation map.

256 2048

Input Data
𝑁𝑁𝑇𝑇𝑇𝑇
𝑅𝑅𝑇𝑇𝑇𝑇
𝑟𝑟𝑊𝑊𝑇𝑇𝑇𝑇
𝑆𝑆𝑇𝑇𝑇𝑇
𝐷𝐷𝐿𝐿𝐿𝐿
𝐼𝐼𝑇𝑇𝑇𝑇
𝑓𝑓𝑇𝑇𝑇𝑇

MLP

Optimal parameters
𝑄𝑄1
𝑀𝑀
𝐿𝐿1
𝑅𝑅1
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

 
Magnetic field

1024 512
256 12864 32

Inverse convolution 4×4, stride 2
Convolution 1×1 & Flatten

Embed

Where TX is transmitter coil.

Feature map

Convolutional neural network

Figure 2. Diagram of our machine learning model structure.

In our framework, since the neural network maps numerical data into images, we
only use the decoder part of U-Net. Here, we adapt its ability to decode rich semantic
information in low-dimensional vectors to generate the spatial distribution of magnetic
fields. Specifically, the input and output of our model are shown in Figure 2. The input
is first linearly transformed (embedded) into a high-dimensional vector representation.
Then, two separate branches are followed to predict magnetic field distribution and optimal
parameters, respectively.

For field prediction, we up-sample the high-dimensional vector into an image-like
feature vector. The up-sampling procedure is performed using the inverse convolution
operations proposed in [39]. Batch normalization [40] and ReLU [41] activation is followed
after the deconvolution. The learning procedure is conducted in a supervised fashion.
Noteworthily, since it is almost impossible to learn a continuous spatial distribution mag-
netic field, we use a quantized version of the original distribution as a label. Technically,
we quantize the field distributions into 512 × 512 gray images, with 256 gray scales for
each pixel. The spatial distribution is characterized by the coordinates of pixels within
the image. The intensity of pixels reflects the strength of the magnetic field. The field
strength is normalized between pixel values of 0 and 255. In this sense, the continuous field
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prediction task is translated into image prediction. We use the mean absolute error as our
cost function, which is defined, for an N × M image, as follows

C1(p̂, p) =
1

N × M

N×M

∑
i=1

| p̂i − pi|, (4)

where p̂ stands for the pixels predicted via the U-Net model, and p is the corresponding
labels. In practice, we use the smooth mean absolute error introduced in [42], instead of the
original form, to smooth the gradients during the optimization procedure.

In terms of optimal parameter prediction, we use an MLP to simultaneously predict the
four parameters (Q1, M, L1, and R1) in Figure 2, together with the minimal and maximum
values (Bmax and Bmin) of the magnetic fields, which are used to estimate the actual intensity
of the fields. The cost function for our optimal parameter prediction is the mean squared
error (MSE)

C2(ŷ, y) =
1
R

R

∑
i=1

(ŷi − yi)
2, (5)

where ŷ represents the predicted parameters, and y is the ground truth. The overall cost
function for the whole task is the weighted sum of these two components

C = αC1 + βC2. (6)

3.2. Training Configurations

For training, we use stochastic gradient descent to minimize the cost function. The op-
timizer is Adam [43], with the learning rate 10−4, β1 = 0.5, and β2 = 0.999. By using
COMSOL, we have generated a dataset comprising 30,000 samples with random parametric
configurations of coils. Since the parameters take a wide range of values, it is difficult
for the neural network to learn. We normalize the values with the z-score normalization
defined in Equation (7), such that they are of mean 0 and standard deviation 1. There, µ
denotes the original mean value of the parameters and σ represents the original standard
deviation.

z =
x − µ

σ
. (7)

The dataset is then partitioned randomly, with 70% of it allocated for model training
and the remaining 30% used for validation. The model is trained for 200 epochs in total.
When the model is well trained, it can generate gray images of the magnetic field and the
optimal parameters given arbitrary unseen inputs within a reasonable time. Note that since
the predicted pixel values for magnetic fields are normalized, the minimal and maximum
values rmin and rmax of the strength of the actual field are therefore utilized to generate real
intensity. The mapping from pixel values p to actual values r is

r = rmin + (rmax − rmin)×
p

255
. (8)

4. Results of COMSOL and POWPTML

Investigations into wireless power delivery mechanisms for capsules have expanded
considerably over recent years as an active domain of inquiry [9,44]. Therefore, based on
our past work [45], this paper conducts research on the wireless power supply in wireless
capsule endoscopy as a scenario because it usually encounters the problem of insufficient
power and energy. WPT offers a viable solution to this problem, and machine learning can
be used for more efficient parameter optimization. However, this parameter optimization
of WPT based on the machine learning method used for WPT proposed by this paper is not
limited to this scenario. The application of the capsule is an example, and it can also be used
to find the optimal parameters of WPT in EVs, mobile phones, etc. The proposed method
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facilitates the identification of parameter values corresponding to maximum efficiency
or calculates the desired parameters, such as inductance and resistance, for a specific coil.

For the wireless power transfer scenario in capsule endoscopy applications, we config-
ured the receiving coil with a diameter of 13.0 mm, a wire diameter of 0.19 mm, and 200
turns. The diameter, wire diameter, and turns of the receiving coil were determined ac-
cording to recent references [9,46], ensuring the selected parameters are acceptable for the
human body. These parameters can determine the value of L2 and Q2. Therefore, they can
affect the transmission efficiency of the system, but due to the size of the capsule, only
parameters closer to the actual use can be chosen. After performing a COMSOL simulation
using the selected parameters, we obtained the results for the receiving coil on the capsule
endoscopy, which showed that the inductance L2 is 229.45 µH, and the quality factor Q2
is 15.69. The outer diameter, wire diameter, wire spacing, and number of turns of the
transmitting coil are all variable in order to solve the optimal transmitting coil parameters.
A sectional view of the 3D model in COMSOL can be seen in Figure 3.

Transmitting coil

Air

Receiving coil

x

z

NTX (Coil turns)

RTX (Coil radius)

rWTX (Wire radius)

STX (Wire spacing）

DLL (L1 L2 distance)

ITX (Current)

fTX (Frequency)

Where TX is transmitter coil.

STX
rWTX

RTX

Receiving

coil

DLL

(a) (b)

 Transmitting coil
-200

0
(mm)

200

-200

200

0

200

100

0

-100

Figure 3. (a) A 3D section model in COMSOL. (b) The definition of parameters in the section of the
X−Z plane.

After training a dataset containing a specific amount of data, which was automatically
generated via COMSOL with Matlab using random parameters, including NTX , RTX , rWTX ,
STX , DLL, ITX , and fTX , we were able to use machine learning to calculate the WPT circuit
parameters and magnetic field distribution.

4.1. WPT Efficiency

The trained model can be used for parameter optimization. For example, the wire
diameter, the distance between adjacent wires, and the outer diameter of the transmitting
coil are 1.9 mm, 0.1 mm, and 300 mm, respectively. When these parameters are determined,
we can use our trained model and COMSOL to find the optimal number of turns (N1) to
reach the highest efficiency. The relationship between efficiency and the number of turns
(N1) is calculated via COMSOL and POWPTML, as shown in Figure 4.

The above only compares a comparison of the optimal number of turns calculated via
COMSOL and the trained model when the number of turns is variable because the number
of turns has a critical effect on WPT. We can also find the optimal parameters of two or
more together, such as wire diameter and wire spacing. It is worth noting that the process
of finding the optimal parameters for WPT in COMSOL can be time-consuming, as the scan
for each circle is time-consuming. In contrast, the trained model provides a more efficient
approach to parameter optimization.
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1N

Figure 4. The relationship between efficiency and the number of turns.

To illustrate how to automatically find the optimal parameters, we will present an
example using the optimization of the number of turns. The process for finding optimal
values for other parameters is similar to this example. First, we use the trained ML model
to compute all the circuit parameters of the transmitting coil turns from 1 to Nmax using
Python code, where Nmax is the specified maximum number of turns. Then, the efficiency
values for each number of turns from 1 to Nmax are computed. The program outputs the
number of turns with the maximum efficiency and generates a plot of the relationship
between efficiency and the number of turns. A flowchart for this process is shown in
Figure 5.

Start

Scan turns from 1 to Nmax at 

specified (RTX, rWTX, 

STX, DLL, ITX, fTX)

Compute the values of efficiency at 

all turns (1 to Nmax) and find the  

NTX value at maximum efficiency

End

Figure 5. Parameter optimization flow chart of the number of turns.

4.2. Magnetic Field Distribution

Obtaining accurate magnetic field distribution is crucial for ensuring the safety of
equipment or the human body in wireless power transfer (WPT) systems. Prior to fab-
ricating the WPT system, we can use COMSOL or POWPTML to calculate the magnetic
field distribution. The magnetic field distribution calculated via COMSOL is shown in
Figure 6a,c,e, and that calculated via POWPTML is shown in Figure 6b,d,f. The POWPTML
method was able to draw the curve of a safe magnetic flux density of 27 µT, indicating its
effectiveness in ensuring the safe operation of the WPT system.

The distribution error in the magnetic field calculation could be attributed to the
training process. Since the magnetic field is very weak far from the coil, the pixel values
may not be distinguishable, leading to inaccuracies in the calculation. This issue should be
further investigated to improve the accuracy of the magnetic field distribution.
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Figure 6. Magnetic field distribution. The current ITX = 0.2 A. (a,c,e) The results of COMSOL. (b,d,f)
The results of machine learning. In (a,b), NTX = 1. In (c,d), NTX = 16. In (e,f), NTX = 100.

4.3. A Time Comparison of Two Methods

It is crucial to evaluate the time required for each method to complete a given task,
as this directly affects the efficiency and practicality of the method. The ability of an
algorithm to perform calculations quickly without sacrificing accuracy is a significant
advantage in real-world applications. Therefore, computation time plays a critical role
in the performance evaluation of different computational methods. In the COMSOL
simulation, the CPU used is an Intel(R) Core(TM) I7-12700, and the calculation time is
related to the number of turns, as shown in Figure 7a. However, the computation time for
the proposed method (POWPTML) is almost unaffected by the number of coil turns, with a
calculation time of only about 3 ms each time, as shown in Figure 7b. We used a graphics
card, a GeForce RTX 2080 Ti, in our calculations using the POWPTML method.
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(b)

1N

(a)

1N

Figure 7. The relationship between calculation time and the number of turns. (a) Computed via
COMSOL. (b) Computed via POWPTML.

A time comparison can be seen in Table 2. It is obvious that POWPTML can save a
large amount of time when calculating the optimal parameters.

Table 2. Computation of the total time consumed for 20 sets of data between COMSOL and POWPTML.

Method Time (s)

COMSOL 474.884
POWPTML 0.064

5. Experiments

After acquiring the COMSOL-generated dataset and completing the data model train-
ing, the physical system was built and tested in this section.

5.1. Design of Experiments

To experimentally validate our proposed method, a resin bobbin for the capsule
receiving coil was fabricated using a 3D printer with an inner diameter of 11 mm, an outer
diameter of 13 mm, and a length of 50 mm. The bobbin for the transmitting coils was made
using acrylic sheets with an inner diameter of 290 mm, an outer diameter of 300 mm, and a
length of 30 mm. In order to verify the effectiveness of the method proposed in this paper,
a receiving coil with 200 turns and transmitting coils with different numbers of turns were
fabricated to compare the results with the machine learning and finite element methods.
In this experiment, we used a network analyzer (E5061B) to measure the inductance (L1,
L2), quality factor (Q1, Q2), mutual inductance (M), and resistance (R1, R2). The distance
between the transmitting coil and the receiving coil was set to 60 mm. The wire diameter
of the transmitting coil was 1.9 mm. When fabricating the coils, we tried to keep the
wire diameter, wire spacing, and winding exactly the same for both the simulation and
experiment. Figure 8 displays a photograph of the experimental setup.

27 μT

(a) (b)

Receiving 

coil

E5061B 

Network 

Analyzer

Transmitting coil
11636 2549

Figure 8. Experimental setup. (a) Transmitting coils with different turns. (b) Test scenario.
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5.2. Experimental Results

In the experiment, the parameters of the receiving coil were measured first. The in-
ductance of the receiving coil L2 was 231.06 µH, the quality factor Q2 was 36.94, and the
resistance was 8.57 Ω. We also measured the parameters of the transmitting coil with
turns 1, 4, 9, 16, 25, and 36. Then, the mutual inductance between the transmitting coil
and the receiving coil was measured at a center distance of 60 mm. A comparison of
these parameters is shown in Figure 9. The errors for POWPTML and experiments using
COMSOL, as reference values, are shown in Table 3.

(a) (b)

(d)(c)

1N

 (
μH

)
M

1
 

Q

1
 (
μH

)
L

1
 (

)
R


1N

1N 1N

Figure 9. Comparison under different calculation models. (a) Comparison of mutual inductance.
(b) Comparison of transmitting coil inductance. (c) Comparison of quality factor. (d) Comparison of
transmitting coil resistance.

Table 3. Experimental errors for POWPTML and COMSOL as reference values.

M (µH) L1 (µH) Q1 R1 (Ω)

POWPTML 0.224 77.05 2.62 1.026
Experiment 0.343 28.05 28.36 0.477

Figure 9 shows that there are discrepancies in the coil parameters measured using
the three methods, but their respective trends are consistent. This experiment confirms
the feasibility of using the ML method to determine the maximum number of turns for
efficiency, as well as obtaining quick approximations of the coil parameters. Discrepancies
between the experimental and simulated data may be attributed to differences in the
winding of the coil, as well as the external wiring used for measurements, which can affect
the values of inductance, resistance, quality factor, and mutual inductance. Additionally,
training errors may occur during machine learning.

6. Discussion

A magnetic field is an important parameter for energy transfer, and safety constraints
need to take the magnetic field into account; thus, the study of magnetic field distribution
is of great interest. In this paper, the training data in this paper were generated using a
COMSOL simulation, so the results of the proposed method are close to COMSOL data.
However, in the future, it is possible to use experimental data for model training to obtain
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higher model accuracy relative to experimental data. In addition, measuring the magnetic
field before training the model will also be extremely challenging, as mapping the magnetic
field distribution may require measuring the magnetic field at hundreds or thousands of
points. Therefore, during the experiment and training in this study, we did not experiment
with the practical magnetic field part. However, in the future, this part is worthy of being
studied. If we can obtain enough experimental data for training the model, our model will
be closer to practical application. In practical application, more accurate results will be
obtained in the trained model using practical measurement data.

As for the source of error in the magnetic field distribution, it may come from its own
computational or modeling errors in COMSOL or from inaccurate parameter tuning during
the training process. The tuning of training parameters needs to be adjusted according to
the training results to minimize the computational errors in the magnetic field distribution
and parameter output. The main limitation of COMSOL is that it is slow at computing and
does not automatically find the optimal parameters, while the proposed machine learning
method requires a large dataset. A larger dataset is required if a wider range of models is to
be applied. The parameters of the experiment and the simulation should be as consistent as
possible, but the specific parameters of the experiment cannot be the same as the simulation,
as there will always be errors in the wire diameter, coil diameter, and wire spacing.

7. Conclusions

A parameter optimization method for WPT based on machine learning (POWPTML)
was presented in this paper. The proposed method was successfully validated through
experiments, showing small discrepancies between the hardware measurement and pre-
dicted results. After training 30,000 sets of data, the error value of the obtained normalized
image prediction using the proposed method was 0.0034. Compared to a commercial tool
(i.e., COMSOL), POWPTML’s calculation time was much faster and largely independent
of the number of turns of the coupled coils, thus significantly speeding up the design
and optimization process. The predicted outcome using POWPTML was mostly similar
to COMSOL, confirming the accuracy of the proposed method. POWPTML serves as a
reliable tool for the rapid design and optimization of WPT systems.
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