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Abstract: With the rise of Industry 4.0, control systems have taken on increasing importance in
industrial processes, and ensuring their security has become a pressing issue. While recent research
has focused on cybersecurity threats, the security risks inherent to industrial processes themselves
have been overlooked. Additionally, existing tools cannot simultaneously analyze both cyber vulnera-
bilities and processes anomaly in industrial settings. This paper aims to address these issues through
two main contributions. First, we develop a knowledge graph to integrate information on security
risks across cybersecurity and industrial processes, providing a foundation for comprehensively
assessing threats. Second, we apply the link prediction task to the knowledge graph, introducing
an embedding-based approach to unveil previously undiscovered knowledge. Our experiments
demonstrate that the proposed method exhibits comparable performance on link prediction and is
capable of mining valuable and diverse potential risks in industrial processes.

Keywords: industrial process security; cybersecurity; knowledge graph; link prediction

1. Introduction

Control systems play a pivotal role in the process industry by ensuring the smooth
operation of complex production processes. These systems typically consist of several key
components, each serving a specific purpose. Monitors, for instance, provide real-time
data visualization and process status information, giving operators critical insights into
the ongoing processes. Another crucial component is the controller, which oversees and
regulates individual devices and process variables, ensuring that they function optimally.
Additionally, network switchers are instrumental in facilitating seamless communication
and data exchange among the various components of the control system. The significance
of control systems extends across various application domains, including the chemical
industry [1], oil and gas production [2], and the power industry [3]. Consequently, the
security of control systems has gained increased and more extensive attention.

Existing work on security insurance of control systems has focused on protecting them
from cyberattacks. Jarmo Alnen et al. [4] introduced a cybersecurity risk analysis method
that relies on the proposed ontology. This method provides a structured data repository
aimed at bolstering the assessment process and establishing traceability between the gener-
ated artifacts. Angelo Corallo et al. [5] delved into the cybersecurity challenges encountered
in the realm of the Internet of Everything during the Industry 4.0 era. Certainly, the in-
creased efforts in terms of cybersecurity to protect control systems are indeed noteworthy;
however, the broad issue of security throughout the entire production process often remains
inadequately addressed. For instance, in 2018, Tesla faced significant challenges with its
highly automated production line for the Model 3. The company employed an extensive
fleet of robots equipped with sensors to aid in component assembly. Unfortunately, a few
robots experienced sensor failures or misalignment issues, leading to production delays.
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These disruptions stemming from sensor-related issues caused production bottlenecks,
resulting in a slower output of Model 3 vehicles—a pivotal product for Tesla. Consequently,
these setbacks led to delivery delays for customers and carried financial implications for the
company. The reality is that sensor failures in industrial processes can result in substantial
loss of both human life and property.

Therefore, a more comprehensive strategy should not only focus on strengthening
control system defenses, but also prioritize the implementation of robust security measures
throughout the entire process industry.

In order to aptly represent the comprehensive protection of critical infrastructure, we
have coined the term ’dual-security’ to encompass both the security of cyberspace and
the industrial process. Since a substantial portion of prior research has concentrated on
cybersecurity, the challenge of simultaneously addressing dual-security risks within the
process industry has remained an uncharted territory.

Recently, knowledge graphs (KGs) have emerged as a fundamental technique for
incorporating knowledge from diverse fields. It provides a structured representation of
knowledge, i.e. factual triples in the form of (h, r, t), denoting the head and tail entities and
the relationship between them [6]. For instance, in a KG, we may encounter entities like
“Albert Einstein” and “Theory of Relativity” connected by the relationship “developed”.
These KGs are constructed by combining information from various sources, including
structured databases, unstructured text, and linked open data [7]. The structured nature of
KGs ensures semantic consistency, enabling machines to not only retrieve information, but
also understand the context and perform sophisticated reasoning tasks. KGs have found
applications in a wide range of domains, from natural language processing [8–10] and
information retrieval to recommendation systems [11,12] and medical healthcare [13–15].

Link prediction is a fundamental subfield within knowledge representation and rea-
soning, dedicated to the task of inferring missing facts and relationships within the graph.
Addressing the link prediction challenges has led to the development of various distinct
approaches, among which the primary category is embedding-based methods. This kind of
method is designed to acquire distributed low-dimension vector representations, commonly
referred to as embeddings, for entities and relations within the KG. Most representative ap-
proaches within this research paradigm encompass TransE [16], DistMult [17], ConvE [18],
TuckER [19], etc.

Link prediction on knowledge graphs serves as an effective and transparent approach
for revealing hidden knowledge within knowledge graphs. In this paper, we study the
problem of protecting the process industry in terms of dual-security. Specifically, we
collect knowledge from both security aspects and build a dual-security knowledge graph.
Then, we propose to discover potential security risks through inference on the KG with
an embedding-based link prediction method. Empirical experiments substantiate the
efficacy of our method, as it achieves good performance on the real-world dataset and
mines meaningful dual-security risks. In addition to conducting comprehensive dataset
experiments, we also performed an analysis of the risk prediction capability of existing
models using experiments conducted on crack hydrogenation industrial processes. Our
analysis showed that the employed approach is more accurate in predicting the potential
risks of unitary industrial processes compared to other methods.

This paper contributes to two main aspects. Firstly, it innovatively integrates cyberse-
curity and industrial process security, extracting knowledge from both dimensions, into a
knowledge graph. Secondly, it employs a relatively efficient method for link prediction,
enabling it to mine undiscovered knowledge from the knowledge graph and effectively
mitigate potential risks in industrial processes.

2. Related Work

Cybersecurity knowledge graphs (CSKG) [20] represent a specialized category of
knowledge graphs tailored for the cybersecurity domain. They comprise entities and
relations extracted from a myriad of attack and defense scenarios within the cybersecurity
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landscape [21,22]. Furthermore, abstract concepts such as ‘attacker’, ‘attack pattern’, and
‘vulnerability’ can be seamlessly represented as entities, while the paths of attacks and
other connections are aptly captured as relations. CSKG adeptly employs knowledge
graph construction techniques to extract and effectively integrate pre-existing knowledge
from various security data sources, ensuring a comprehensive and unified understanding
of the cybersecurity landscape. The link prediction of CSKG has three major applica-
tions in cybersecurity, namely the attack prediction [23], threat hunting [24] and intrusion
detection [25–27]. However, there is an inadequate focus on process safety.

The application of knowledge graphs in the industry can be partitioned into two dis-
tinct phases, namely the construction and deduction periods, as indicated by Li et al. [28].
In the construction phase, the primary objective revolves around the integration of mul-
tiple text mining and machine learning tools to process raw data, yielding triples of the
form (h, r, t) for the knowledge graph. As a result, Natural Language Processing (NLP)
techniques [29–31] and associated toolkits are frequently harnessed to automatically extract
entities from various unstructured knowledge resources. Notably, the utilization of knowl-
edge graphs in industry transcends the conventional dissemination of existing knowledge
items; instead, it caters to the elevated demands for synthesis and innovation within the
industrial domain. Consequently, the deduction phase of industrial knowledge graphs
strives to meet these requirements. Knowledge deduction can be further subcategorized
into attribution prediction [32] and link prediction [33–35]. More specifically, the deduction
process can be effectively reformulated into a series of matrix manipulations [36–38]. This
transformation is achieved by vectorizing the entities and relations, aligning them accord-
ing to their semantic and topological features within the KG. Such an approach not only
enhances the computational efficiency, but also leverages the inherent structural properties
of the KG for knowledge deduction. Nonetheless, the majority of the domain-specific
knowledge graphs primarily focus on industrial products and services, and they often fall
short in addressing the crucial aspect of industrial security.

Our work is related to the task of link prediction in dual-security KG; previous efforts
in link prediction can be divided into two main aspects, embedding-based prediction
and rule-based prediction. Former approaches focused on learning low-dimension rep-
resentation for entities and relations. Related methods include TransE [16], TransH [39],
ComplEx [40], etc., and detect facts by projecting entities and relations into a semantic
space and conduct algebraic operations on the space. Specifically, TransE [16] represents
the triples into d-dimensional space, h, r, t ∈ Rd and generates embeddings following the
translational principle h + r ≈ t. TransH [39] assigns a hyperplane for each relation to
satisfy the N-to-N relationship scenarios. ComplEx [40] firstly uses complex vector space
to generate embeddings. Through the space, we can capture both symmetric and antisym-
metric relations, h, r, t ∈ Cd, h can be formulated as h = R(h) + iI(h) where R(h) and I(h)
are real and imaginary parts of h, respectively. On the other hand, the latter(rule-based)
approaches do not encounter these issues, including NeuralLP [41], DRUM [42]. They
leverage first-order logic and rule-based approaches to infer missing relationships and
facts. NeuralLP [41] combines neural networks with logical rules and utilizes a differ-
entiable framework to learn the rules from data, allowing for the incorporation of prior
domain knowledge. The key idea behind NeuralLP is to bridge the gap between symbolic
reasoning and neural network learning, making it an attractive approach for rule-based
knowledge graph completion. DRUM [42] integrates rules into an end-to-end differen-
tiable neural network. This approach facilitates rule-based reasoning while benefiting
from the learning capabilities of neural networks and extends the knowledge graph with
rule-instantiated triples, enabling the incorporation of logical rules in the knowledge graph
completion process.

3. Methodology

In this section, we will commence by presenting essential background knowledge, en-
compassing key concepts such as knowledge graphs, link prediction, and the fundamental
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steps involved in embedding-based methods for link prediction. Subsequently, we will
delve into an extensive exposition of the best-performing model, namely PairRE.

3.1. Preliminaries

Knowledge graph G = {E ,P} is a structured representation of knowledge, where
E and P denote the set of entities and relations, respectively. It functions as a semantic
network that organizes information into triples, denoted as (s, p, o), where s, o ∈ E and

p ∈ P . These triples take the form of s
p→ o, presenting a graph-like structure.

Link prediction task refers to a key task in knowledge graph completion. It involves
predicting missing triples by identifying the most plausible tail entity t∗ from the set of
entities E for a given incomplete triple (h, r, ?). During inference, when provided with h and
r as inputs, the model computes a ranked list of all entities, with higher scores indicating
higher rankings. In essence, link prediction is a supervised learning technique that aims to
minimize the dissimilarity between the predicted entity and the ground truth provided in
the available data.

Embedding-based methods for link prediction generally consist of three key steps.
In the first step, we initialize embeddings for all entities and relations. To achieve this,
we establish an index table, wherein the indexes are associated with entity and relation
IDs, and the table’s entries comprise stochastic vectors that represent the embeddings.
The second step involves the formulation of an objective function designed to assess the
score of a triple (h, r, t) within a low-dimensional space. This objective function can be
realized through various methods, such as TransE, ComplEX, TuckER, and others. The final
step is training and inference. During training, the model is trained, often using negative
samples to ensure its robustness and accuracy. Negative samples are essentially fictitious
triples constructed at random. These fictive triples share the same h and r with the factual
triple, but the t is substituted with a different entity. We anticipate that the scores of true
triples will be higher than those of the negative samples. Adhering to this principle, the
model iteratively optimizes the embedding tables until convergence is achieved. During
inference, the process typically entails taking the embeddings of h and r as inputs, followed
by the computation of the score for (h, r, t′) across all potential entities t′ ∈ E . Higher scores
indicate a higher probability of a connection between entities h and t′ through the relation
r. This approach enables effective predictions and assessments.

3.2. The Link Prediction Model

We now advocate the utilization of PairRE [43] for augmenting the dual-security
knowledge graph. This choice is motivated by two primary factors: Firstly, the data in
the graph encompass diverse complex relations, including N-to-1, 1-to-N, and N-to-N
relationships. Secondly, the data exhibit various relation patterns, including symmetry
and antisymmetry. These intricacies pose a unique challenge that other existing methods
are ill-equipped to address simultaneously. However, PairRE stands out by employing
paired embedding vectors for each relation representation, allowing for adaptable margin
adjustments in the loss function. This adaptability is pivotal in effectively accommodating
complex relations and addressing the challenges presented by the dual-security knowl-
edge graph.

PairRE adopts a unique approach by acquiring paired representations for each relation.
For a given training triple (h, r, t), the model learns vector embeddings for entities and
relations within real space. Specifically, it treats relation embedding as a pair of vectors,
denoted as (rh, rt). These paired vectors are responsible for projecting the head entity
h and the tail entity t into the Euclidean space, with the projection operation being an
element-wise product between the two vectors. Furthermore, the method calculates the
distance between these two embeddings to gauge the plausibility of the triple. The desired
outcome is that h ◦ rh ≈ t ◦ rt when the triple (h, r, t) holds true. According to the calculated
measure, the scoring function is defined as follows:
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Sr(h, t) = −||h ◦ rh − t ◦ rt|| (1)

where h, rh, rt, t ∈ Rd with h and t subject to specific constraints, such as ||h||2 = ||t||2 = 1.
To further optimize the model, we employ a contrastive learning measure, specifically

adopting the self-adversarial negative sampling loss [44] as the training objective:

L = −log(σ(γ − Sr(h, t)))−
n

∑
i=1

p(h′i, r, t′i)log(σ(Sr(h′i, t′i)− γ)) (2)

In this equation, γ represents a fixed margin, and σ denotes the sigmoid function.
(h′i, r, t′i) corresponds to the ith negative triple, while p(h′i, r, t′i) signifies the weight assigned
to this negative sample. The weight, p(h′i, r, t′i), is calculated using the softmax function:

p((h′i, r, t′i)|(h, r, t)) =
exp(Sr(h′i, t′i))

∑n
j=1 exp(Sr(h′j, t′j))

(3)

An illustration depicting the structure of this paper is presented in Figure 1. First,
we extract entities and relations from the extensive documentation of industrial processes
through manual annotation. Next, we employ this information to construct a dual-security
knowledge graph, incorporating data from a vulnerability database. Finally, we utilize the
PairRE method for the link prediction task, enabling the prediction of potential risks in the
dual-security domain.

Industrical document
...The circulating hydrogen
coming out of the top of D-
2102 enters the liquid
collector D-2204 ....

Entities

Relations

Dual-Security KG

(h,r,t)

Embedding

loss

Element-wise product

Vulnerability
database

Triples

Human


Annoatation

Figure 1. The construction of dual-KG and PairRE model.

4. Experiments

This section is organized into three subheadings. Firstly, we provide a detailed
overview of our experimental setup, which includes a description of the dataset, eval-
uation metrics, and other relevant details. Secondly, we present a concise and accurate
analysis of the experimental results. Finally, we draw insightful interpretations from these
results, offering our conclusions based on the experiments.

4.1. Experiment Setting

Datasets, we culminated in the construction of our knowledge graph, which is founded
on real-world resources and encompasses impressive 37,000 triples. We can find detailed
statistics about the dataset in Table 1. Additionally, to showcase the model’s proficiency in
predicting potential risks within specific industrial processes, such as crack hydrogenation,
we generated a focused sub-KG. This sub-KG encapsulates the knowledge related to
the crack hydrogenation process alongside all relevant cybersecurity information. Refer
to Table 2 for detailed statistics about this sub-KG. To optimize the data for our link
prediction task, we meticulously partitioned it into three distinct subsets, ensuring a
balanced division. Specifically, we allocated the data into a test set, a training set, and a
validation set, maintaining a proportional split ratio of 1:8:1.
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Table 1. Statistics of dual-Security knowledge graph dataset.

Entity Relation Triples Train Validation Test

2247 45 37,000 29,600 3700 3700

Table 2. Statistics of sub-KG about crack hydrogenation and cybersecurity information.

Entity Relation Triples Train Validation Test

104 25 10,686 8544 1068 1074

Evaluation metric, in the case of each query of the form (h, r, ?) or (?, r, t), we calculate
a score for every entity while simultaneously assessing the rank of the correct answer. To
evaluate the performance of our models, we employ two widely-used metrics, namely the
Mean Reciprocal Rank (MRR) and Hit@k. MRR is computed as the mean of the reciprocal
ranks for the answer entities. Hit@k, on the other hand, measures the percentage of the
desired entities correctly ranked within the top k positions. Furthermore, it is important
to note that these metrics exclude the scores of all known true triples in the training,
validation, and testing sets. This exclusion allows for a more robust evaluation of our
models, providing valuable insights into their effectiveness.

Comparison of models, in our experiments, we applied our dataset to various models,
primarily focusing on comparing their performance. Given the substantial scale of our
dataset, we employed embedding-based methods to conduct our experiments. These
methods employ various embedding techniques to represent entities and relations in low-
dimensional spaces, which include methods such as TransE [16], TransR [45], TransH [39],
HAKE [46], PairRE [43]. We finally compared their performance with each other.

Hyperparameters, we maintained consistent hyperparameter settings during training.
These settings entailed a dimension of embedding vectors set to 512 and a maximum of
1000 training epochs. Concurrently, other methods like TuckER [19], which decomposes a
tensor into a core tensor with three-factor matrices, and ConvE [18], founded on the graph
neural networks framework, we carefully selected the most suitable hyperparameters
through multiple experiments. In this scenario, we set the number of graph convolutional
network layers to 1, fixed the dimension of embedding vectors to 200, and established the
maximum number of training epochs as 2000, among other key parameters.

4.2. Results on Link Prediction

All methods were evaluated across evaluation metrics on the dual-security dataset,
and the results are presented in Table 3. Notably, these evaluations yield clear observa-
tions on the performance of these methods. It is apparent that the graph convolutional
network method (ConvE) excels and outperforms some of the traditional embedding-based
methods, including TransE, TransR, TransH, and TruckER. This observed superiority can
be attributed to the incorporation of graph structures, allowing these models to harness
a more comprehensive understanding of the training data—a critical aspect for effective
link prediction tasks. However, it is worth mentioning that recently proposed methods,
such as HAKE and PairRE, manage to outperform even the graph convolutional network
methods. This superior performance may be attributed to the adoption of more intricate em-
bedding techniques and measures, underscoring the benefits of sophisticated embedding
approaches in addressing dual-security link prediction challenges.

While PairRE demonstrates outstanding overall performance on the dual-security
dataset, achieving a commendable level of accuracy, its direct hit rate remains relatively
modest at just 22.8%. This observation prompts a vital question regarding the ability
of existing models to effectively absorb and adapt to the security data within the dual-
security dataset. The dual nature of the KG, incorporating both cybersecurity and industrial
process security knowledge, results in a semantic space that is notably vast, rendering it
challenging to learn comprehensively. It is imperative to acknowledge that this dataset
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inherently represents the confluence of two distinct dimensions. Therefore, we deduce that
the existing models’ deficiencies arise from their failure to adequately learn the knowledge
encompassed by both aspects in the dual-KG.

Table 3. The performance of the dominant model on the link prediction. Hit@k is in %.

MMR Hit@1 Hit@3 Hit@10

TransE 0.164 0.059 0.204 0.374
TransR 0.199 0.087 0.234 0.439
TransH 0.270 0.159 0.312 0.492
TuckER 0.219 0.131 0.200 0.242
ConvE 0.326 0.218 0.368 0.545
HAKE 0.331 0.215 0.381 0.569

PairRE 0.352 0.228 0.414 0.593
The bold in the table indicates the best performance of the corresponding item.

The link prediction results for the sub-KG are presented in Table 4. Notably, PairRE
demonstrates efficient prediction of potential risks, with over half of the test data producing
accurate predictions. In addition, 77.4% of the test data achieves a top-three ranking, and
nearly all test data predictions secure a spot within the top ten. Consequently, focusing on
the crack hydrogenation process, obtaining the top three predicted results for all devices
would thwart three quarters of potential attacks. Moreover, achieving the top ten predicted
results would provide comprehensive protection for almost all devices.

Table 4. The performance of the dominant embedding-based model on sub-KG. Hit@k is in %.

MMR Hit@1 Hit@3 Hit@10

TransE 0.249 0.087 0.32 0.567
TransR 0.367 0.195 0.477 0.679
TransH 0.26 0.123 0.305 0.551
TuckER 0.539 0.392 0.615 0.854
ConvE 0.649 0.505 0.744 0.934
HAKE 0.502 0.343 0.577 0.858

PairRE 0.673 0.533 0.774 0.938
The bold in the table indicates the best performance of the corresponding item.

After comparing the sub-KG performance with the whole dataset, we found that
PairRE is excellent at predicting potential risks in a single scenario. This approach enables
full absorption of knowledge within the sub-KG. So, we could generate suitable sub-KG
for various specific industrial processes that can be safeguarded against potential security
risks by applying this approach.

4.3. Mined Knowledge

By utilizing the best-performing model, PairRE, we have achieved successful predic-
tions of various cybersecurity attacks and industrial process anomalies, as evidenced in
Table 5. This approach allows us not only to identify diverse cyber virus attack patterns,
but also to access various methods for mitigating cyber risks in the field of cybersecurity.
Additionally, we can extend our capabilities to complete the industrial process knowledge
graph, enabling us to uncover potential risks within this domain.

To demonstrate the risk prediction ability of our approach, we generate a sub-KG
representing the crack hydrogenation process and all cybersecurity knowledge. Further-
more, we present the mined knowledge regarding the crack hydrogenation process and
Industroyer attacks, as depicted in Figure 2 and summarized in Table 6. The approach suc-
cessfully identified vulnerable devices, specifically D-2106, D-2104, and K-2102A/B, under
Industroyer attacks. These devices are classified as power supply equipment. Given that In-
dustroyer primarily targets power systems, our approach can precisely identify potentially
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vulnerable devices. In addition, Industroyer primarily employs remote system discovery to
detect a list of devices. Hence, remote system discovery, which includes malicious emails,
the office network system, and external O&M terminals, has been predicted for all devices.
Subsequently, it identifies target devices and executes various attacks. Depending on the
function of different devices, the focus of Industroyer attacks varies. Therefore, the potential
risks predicted by the approach differ, as shown in Table 6. However, these identified
risks strongly correlate with the devices’ functionality. For example, the K-2102A/B serves
as the backbone node of the power network. Consequently, attacks against it primarily
concentrate on the control aspect, encompassing actions like blocking serial COM, stopping
services, and obstructing command messages. In summary, the approach excels in not only
identifying vulnerable devices in the industrial process, but also mining potential risks
based on the functions of the devices and the adversaries’ targets.

Table 5. The mined knowledge from the dual-security by PairRE.

Pattern Mined Triples

Virus Use−−→ AttackPattern

Stuxnet Use−−→ I/OImage
LockerGoga Use−−→ LossO f View
Industroyer Use−−→ DataDestruction
Nodeproperties Use−−→ LateralToolTrans f er

Action
Mitigate−−−−−→ AttackPattern

Encrypt
Mitigate−−−−−→ Network

NetworkSegmentation
Mitigate−−−−−→ BruteForceI/O

NetworkAllowlists
Mitigate−−−−−→

BlockCommandMessage

Controller control−−−−→ Device

1021FV0101 control−−−−→ 1021PdIC0101
1031HV0051 control−−−−→ Gasi f ierLevel
Loadcontroller control−−−−→ Gasi f ierPressure
Levelcontroller control−−−−→ Gasi f ierWaterFlow
Circuit1031LIC0001 control−−−−→ 1031LV0001A

Device reaction−−−−−→ ReactionType
Reboiler(F-2102) reaction−−−−−→ Heat
Pump(P-2103A/B) reaction−−−−−→ Supercharge
Tower(T-2568A/B) reaction−−−−−→ Desul f urization

Table 6. Potential risks in crack hydrogenation and Industroyer attacks.

Device Mined Risk

D-2106

Industroyer Use−−→ Remote System Discovery Attack−−−−→ D-2106
Industroyer Use−−→ Device Restart/Shutdown Attack−−−−→ D-2106
Industroyer Use−−→ Manipulation o f Control Attack−−−−→ D-2106

D-2104

Industroyer Use−−→ Remote System Discovery Attack−−−−→ D-2104
Industroyer Use−−→ Connection Proxy Attack−−−−→ D-2104
Industroyer Use−−→ Denial o f Control Attack−−−−→ D-2104
Industroyer Use−−→ Network Connection Enumeration Attack−−−−→ D-2104

K-2102A/B

Industroyer Use−−→ Remote System Discovery Attack−−−−→ K-2102A/B
Industroyer Use−−→ Block Serial COM Attack−−−−→ K-2102A/B
Industroyer Use−−→ Service Stop Attack−−−−→ K-2102A/B
Industroyer Use−−→ Block Command Message Attack−−−−→ K-2102A/B
Industroyer Use−−→ Loss o f Protection Attack−−−−→ K-2102A/B
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Figure 2. The part of dual-security KG. (a) Crack hydrogenation process KG. (b) Industroyer attacks KG.

5. Conclusions

In this paper, we begin with constructing a dual-security knowledge graph, which
innovatively integrates industrial process security information, a domain often overlooked
by researchers, into the cybersecurity knowledge graph, a domain that has garnered
widespread attention. Subsequently, we employ an embedding-based method (RairRE)
capable of learning the underlying semantics in the knowledge graph, allowing us to
predict the occurrence of novel cybersecurity attack patterns or potential security issues in
the industrial process. The experimental results suggest that this method can effectively
mine potential risks in some industrial process. However, the overall potential risk pre-
diction accuracy on the dual-KG is not very satisfactory, as existing models struggle to
comprehensively grasp the knowledge embedded in both aspects of the whole dataset.

In light of these insights, our proposed model currently used has the potential for
improved performance in fully tapping into the rich, interrelated data contained within the
knowledge graph.

Our future endeavors will be dedicated to the development of a more tailored dual-
security mining model, specifically designed to extract and integrate all knowledge with
greater precision from both the realms of cyber and industrial process security. The ultimate
goal is to enhance the accuracy of predicting potential risks in industrial processes.

Author Contributions: Conceptualization, L.W. and H.L.; methodology, W.W.; software, L.W. and
H.L; validation, L.W., G.X. and Y.W.; formal analysis, W.W.; investigation, G.X.; resources, Y.W.;
data curation, Y.W.; writing—original draft preparation, L.W.; writing—review and editing, H.L.;
visualization, L.W.; supervision, Y.W.; project administration, W.W.; funding acquisition, Y.W. All
authors have read and agreed to the published version of the manuscript.



Electronics 2024, 13, 214 10 of 11

Funding: This research was funded by the National Natural Science Foundation of China (NSFC
No.2021YFB2012400).

Data Availability Statement: Source codes and desensitized datasets are available in the GitHub
repository, and the link is https://github.com/Faker-lz/Dual-safety-knowledge-graph-completion-
for-process-industry.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lee, W.; Weekman, V.W., Jr. Advanced control practice in the chemical process industry: A view from industry. AIChE J. 1976,

22, 27–38. [CrossRef]
2. Lu, H.; Guo, L.; Azimi, M.; Huang, K. Oil and Gas 4.0 era: A systematic review and outlook. Comput. Ind. 2019, 111, 68–90.

[CrossRef]
3. Schrotenboer, A.H.; Veenstra, A.A.; uit het Broek, M.A.; Ursavas, E. A Green Hydrogen Energy System: Optimal control strategies

for integrated hydrogen storage and power generation with wind energy. Renew. Sustain. Energy Rev. 2022, 168, 112744.
[CrossRef]

4. Alanen, J.; Linnosmaa, J.; Malm, T.; Papakonstantinou, N.; Ahonen, T.; Heikkilä, E.; Tiusanen, R. Hybrid ontology for safety,
security, and dependability risk assessments and Security Threat Analysis (STA) method for industrial control systems. Reliab.
Eng. Syst. Saf. 2022, 220, 108270. [CrossRef]

5. Corallo, A.; Lazoi, M.; Lezzi, M. Cybersecurity in the context of industry 4.0: A structured classification of critical assets and
business impacts. Comput. Ind. 2020, 114, 103165. [CrossRef]

6. Noy, N.F.; McGuinness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology; Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05; Knowledge Systems Laboratory: Stanford, CA, USA, 2001.

7. Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data—The Story So Far. Int. J. Semant. Web Inf. Syst. 2009, 79, 637–638. [CrossRef]
8. Yu, D.; Zhu, C.; Yang, Y.; Zeng, M. Jaket: Joint pre-training of knowledge graph and language understanding. In Proceedings of

the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22 February–1 March 1 2022; Volume 36, pp. 11630–11638.
9. Lin, Q.; Mao, R.; Liu, J.; Xu, F.; Cambria, E. Fusing topology contexts and logical rules in language models for knowledge graph

completion. Inf. Fusion 2023, 90, 253–264. [CrossRef]
10. Bakhshi, M.; Nematbakhsh, M.; Mohsenzadeh, M.; Rahmani, A.M. SParseQA: Sequential word reordering and parsing for

answering complex natural language questions over knowledge graphs. Knowl.-Based Syst. 2022, 235, 107626. [CrossRef]
11. Gogleva, A.; Polychronopoulos, D.; Pfeifer, M.; Poroshin, V.; Ughetto, M.; Martin, M.J.; Thorpe, H.; Bornot, A.; Smith, P.D.;

Sidders, B.; et al. Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small
cell lung cancer. Nat. Commun. 2022, 13, 1667. [CrossRef]

12. Yang, Y.; Huang, C.; Xia, L.; Li, C. Knowledge graph contrastive learning for recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022;
pp. 1434–1443.

13. Wu, X.; Duan, J.; Pan, Y.; Li, M. Medical knowledge graph: Data sources, construction, reasoning, and applications. Big Data Min.
Anal. 2023, 6, 201–217. [CrossRef]

14. Santos, A.; Colaço, A.R.; Nielsen, A.B.; Niu, L.; Strauss, M.; Geyer, P.E.; Coscia, F.; Albrechtsen, N.J.W.; Mundt, F.; Jensen, L.J.; et al.
A knowledge graph to interpret clinical proteomics data. Nat. Biotechnol. 2022, 40, 692–702. [CrossRef]

15. Li, M.M.; Huang, K.; Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 2022, 6, 1353–1369.
[CrossRef] [PubMed]

16. Bordes, A.; Usunier, N.; García-Durán, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data.
In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013.

17. Yang, B.; tau Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases.
arXiv 2014, arXiv:1412.6575.

18. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

19. Balazevic, I.; Allen, C.; Hospedales, T. TuckER: Tensor Factorization for Knowledge Graph Completion. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 5185–5194. [CrossRef]

20. Liu, K.; Wang, F.; Ding, Z.; Liang, S.; Yu, Z.; Zhou, Y. Recent Progress of Using Knowledge Graph for Cybersecurity. Electronics
2022, 11, 2287. [CrossRef]

21. Rastogi, N.; Dutta, S.; Gittens, A.; Zaki, M.J.; Aggarwal, C. TINKER: A framework for Open source Cyberthreat Intelligence.
In Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), Wuhan, China, 9–11 December 2022; pp. 1569–1574. [CrossRef]

22. Lin, S.C.; Tseng, S.S. Constructing detection knowledge for DDoS intrusion tolerance. Expert Syst. Appl. 2004, 27, 379–390.
[CrossRef]

https://github.com/Faker-lz/Dual-safety-knowledge-graph-completion-for-process-industry
https://github.com/Faker-lz/Dual-safety-knowledge-graph-completion-for-process-industry
http://doi.org/10.1002/aic.690220103
http://dx.doi.org/10.1016/j.compind.2019.06.007
http://dx.doi.org/10.1016/j.rser.2022.112744
http://dx.doi.org/10.1016/j.ress.2021.108270
http://dx.doi.org/10.1016/j.compind.2019.103165
http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.1016/j.inffus.2022.09.020
http://dx.doi.org/10.1016/j.knosys.2021.107626
http://dx.doi.org/10.1038/s41467-022-29292-7
http://dx.doi.org/10.26599/BDMA.2022.9020021
http://dx.doi.org/10.1038/s41587-021-01145-6
http://dx.doi.org/10.1038/s41551-022-00942-x
http://www.ncbi.nlm.nih.gov/pubmed/36316368
http://dx.doi.org/10.18653/v1/D19-1522
http://dx.doi.org/10.3390/electronics11152287
http://dx.doi.org/10.1109/TrustCom56396.2022.00225
http://dx.doi.org/10.1016/j.eswa.2004.05.016


Electronics 2024, 13, 214 11 of 11

23. Narayanan, S.N.; Ganesan, A.; Joshi, K.; Oates, T.; Joshi, A.; Finin, T. Early Detection of Cybersecurity Threats Using Collaborative
Cognition. In Proceedings of the 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC),
Philadelphia, PA, USA, 18–20 October 2018; pp. 354–363. [CrossRef]

24. Gao, P.; Shao, F.; Liu, X.; Xiao, X.; Qin, Z.; Xu, F.; Mittal, P.; Kulkarni, S.R.; Song, D. Enabling efficient cyber threat hunting with
cyber threat intelligence. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania,
Greece, 19–22 April 2021; IEEE: New York, NY, USA, 2021; pp. 193–204.

25. Kiesling, E.; Ekelhart, A.; Kurniawan, K.; Ekaputra, F. The SEPSES knowledge graph: An integrated resource for cybersecurity.
In Proceedings of the International Semantic Web Conference, Auckland, New Zealand, 26–30 October 2019; Springer: Cham,
Switzerland, 2019; pp. 198–214.

26. Garrido, J.S.; Dold, D.; Frank, J. Machine learning on knowledge graphs for context-aware security monitoring. In Proceed-
ings of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Virtual Conference, 26–28 July 2021;
IEEE: New York, NY, USA, 2021; pp. 55–60.

27. Li, J.; Liu, Y.; Gu, L. DDoS attack detection based on neural network. In Proceedings of the 2010 2nd International Symposium on
Aware Computing, Tainan, Taiwan, 1–4 November 2010; IEEE: New York, NY, USA, 2010; pp. 196–199.

28. Li, X.; Lyu, M.; Wang, Z.; Chen, C.H.; Zheng, P. Exploiting knowledge graphs in industrial products and services: A survey of
key aspects, challenges, and future perspectives. Comput. Ind. 2021, 129, 103449. [CrossRef]

29. Chen, Y.; Qian, T. Relation constrained attributed network embedding. Inf. Sci. 2020, 515, 341–351. [CrossRef]
30. Gao, J.; Li, X.; Xu, Y.E.; Sisman, B.; Dong, X.L.; Yang, J. Efficient Knowledge Graph Accuracy Evaluation. Proc. VLDB Endow. 2019,

12, 1679–1691. [CrossRef]
31. Liu, W.; Liu, J.; Wu, M.; Abbas, S.; Hu, W.; Wei, B.; Zheng, Q. Representation learning over multiple knowledge graphs for

knowledge graphs alignment. Neurocomputing 2018, 320, 12–24. [CrossRef]
32. Tay, Y.; Tuan, L.A.; Phan, M.C.; Hui, S.C. Multi-task neural network for non-discrete attribute prediction in knowledge graphs.

In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017;
pp. 1029–1038.

33. Long, J.; Chen, Z.; He, W.; Wu, T.; Ren, J. An integrated framework of deep learning and knowledge graph for prediction of stock
price trend: An application in Chinese stock exchange market. Appl. Soft Comput. 2020, 91, 106205. [CrossRef]

34. Wang, Q.; Zou, D.; Ge, L. Multi-integrated Reform for the Course of Data Structure. In Proceedings of the 15th International
Conference on Computer Science & Education (ICCSE), Delft, The Netherlands, 18–22 August 2020; pp. 9–13. [CrossRef]

35. Zhang, Y.; Xu, H.; Zhang, X.; Wu, X.; Yang, Z. TRFR: A ternary relation link prediction framework on Knowledge graphs. Ad Hoc
Netw. 2021, 113, 102402. [CrossRef]

36. Wang, Q.; Hao, Y. ALSTM: An attention-based long short-term memory framework for knowledge base reasoning. Neurocomputing
2020, 399, 342–351. [CrossRef]

37. Ai, Q.; Zhang, Y.; Bi, K.; Croft, W.B. Explainable product search with a dynamic relation embedding model. ACM Trans. Inf. Syst.
(TOIS) 2019, 38, 1–29. [CrossRef]

38. Wang, Q.; Ji, Y.; Hao, Y.; Cao, J. GRL: Knowledge graph completion with GAN-based reinforcement learning. Knowl.-Based Syst.
2020, 209, 106421. [CrossRef]

39. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28.

40. Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex embeddings for simple link prediction. In Proceedings of
the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 2071–2080.

41. Yang, F.; Yang, Z.; Cohen, W.W. Differentiable learning of logical rules for knowledge base reasoning. In Proceedings of the 31st
Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

42. Sadeghian, A.R.; Armandpour, M.; Ding, P.; Wang, D.Z. DRUM: End-to-End Differentiable Rule Mining on Knowledge Graphs.
arXiv 2019, arXiv:1911.00055.

43. Chao, L.; He, J.; Wang, T.; Chu, W. Pairre: Knowledge graph embeddings via paired relation vectors. arXiv 2020, arXiv:2011.03798.
44. Sun, Z.; Deng, Z.; Nie, J.Y.; Tang, J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. arXiv 2018,

arXiv:1902.10197.
45. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.
46. Zhang, Z.; Cai, J.; Zhang, Y.; Wang, J. Learning hierarchy-aware knowledge graph embeddings for link prediction. In Proceedings

of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3065–3072.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CIC.2018.00054
http://dx.doi.org/10.1016/j.compind.2021.103449
http://dx.doi.org/10.1016/j.ins.2019.12.033
http://dx.doi.org/10.14778/3342263.3342642
http://dx.doi.org/10.1016/j.neucom.2018.08.070
http://dx.doi.org/10.1016/j.asoc.2020.106205
http://dx.doi.org/10.1109/ICCSE49874.2020.9201792
http://dx.doi.org/10.1016/j.adhoc.2020.102402
http://dx.doi.org/10.1016/j.neucom.2020.02.065
http://dx.doi.org/10.1145/3361738
http://dx.doi.org/10.1016/j.knosys.2020.106421

	Introduction
	Related Work
	Methodology
	Preliminaries
	The Link Prediction Model

	Experiments
	Experiment Setting
	Results on Link Prediction
	Mined Knowledge

	Conclusions
	References

