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Abstract: The growing need for effective object detection models on mobile devices makes it essential
to design models that are both accurate and have fewer parameters. In this paper, we introduce a
YOLOv8 Res2Net Extended Network (YOLOv8-CGRNet) approach that achieves enhanced precision
under standards suitable for lightweight mobile devices. Firstly, we merge YOLOv8 with the Context
GuidedNet (CGNet) and Residual Network with multiple branches (Res2Net) structures, augmenting
the model’s ability to learn deep Res2Net features without adding to its complexity or computational
demands. CGNet effectively captures local features and contextual surroundings, utilizing spatial
dependencies and context information to improve accuracy. By reducing the number of parameters
and saving on memory usage, it adheres to a ‘deep yet slim’ principle, lessening channel numbers
between stages. Secondly, we explore an improved pyramid network (FPN) combination and employ
the Stage Partial Spatial Pyramid Pooling Fast (SimPPFCSPC) structure to further strengthen the
network’s capability in processing the FPN. Using a dynamic non-monotonic focusing mechanism
(FM) gradient gain distribution strategy based on Wise-IoU (WIoU) in an anchor-free context, this
method effectively manages low-quality examples. It enhances the overall performance of the detector.
Thirdly, we introduce Unifying Object Detection Heads with Attention, adapting to various input
scenarios and increasing the model’s flexibility. Experimental datasets include the commonly used
detection datasets: VOC2007, VOC2012, and VisDrone. The experimental results demonstrate a 4.3%
improvement in detection performance by the proposed framework, affirming superior performance
over the original YOLOv8 model in terms of accuracy and robustness and providing insights for
future practical applications.

Keywords: object detection; YOLO; deep learning

1. Introduction

With the evolution of computer technology and the widespread application of princi-
ples of computer vision, research on target detection and tracking using computer image
processing technology is gaining popularity. Object detection [1] plays a pivotal role in
applications such as autonomous driving and unmanned vehicles [2], security and surveil-
lance [3], medical imaging [4], robotics [5], and agriculture [6], with image segmentation [7]
and object tracking [8]. Pedestrian re-identification [9] often relies on it. Object detection
typically involves two primary steps: locating an object’s position and classifying its type.
Early methods employed the sliding window technique, sliding windows of various sizes
across the image and running a classifier at each window position to identify targets. With
technological advancements, region-based Convolutional Neural Networks (R-CNN) [10]
gained popularity, initially using selective search to extract candidate regions and then
classifying these regions using CNNs. The introduction of a faster r-cnn [11] containing
a region suggestion network (RPN) [11], which automatically suggests areas of an image
that may contain objects, can improve efficiency. However, YOLO [12] further streamlined
the process by treating object detection as a regression problem, predicting bounding boxes
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and class scores for all categories simultaneously, thereby circumventing multiple forward
propagations. These advancements have facilitated faster and more accurate real-world
applications of object detection.

Object detection methods can be combined with evaluation algorithms. Deep architec-
tures with a region proposal network (DeepRPN-BIQA) [13] proposed a deep architecture
incorporating a region proposal network (RPN) for blind image quality assessment (BIQA)
of natural-scene and screen-content images. The RPN extracts important regions that affect
image quality by computing visual saliency. These regions are then fed into a Convolutional
Neural Network (CNN) to predict the quality score. Object detection can be enhanced by
integrating it with the DeepRPN-BIQA approach proposed in this paper, thereby improving
the performance and efficiency of object detection. For instance, DeepRPN-BIQA could be
used as a preprocessing step to perform quality assessment on the input image. Based on
the quality score, the best image can be selected, or image enhancement can be performed
before feeding it into the object detection model. Alternatively, DeepRPN-BIQA could
serve as a postprocessing step to assess the quality of the output results from the object
detection model. The best detection results can be selected, or result optimization can be
performed based on the quality score.

Object detection can be integrated with other algorithms. In the fields of pedestrian
re-recognition [14] and computer vision in medical image analysis [15], object detection
is used in smart video surveillance systems to provide deeper insights and automated
responses. In robotics, object detection is combined with path planning [16] and obstacle
avoidance algorithms [17], aiding robots in better navigation and interaction with their
environment. In multimodal learning systems, object detection can be integrated with
NLP [18] (natural language processing) technologies to process complex data containing
both visual and textual information, such as extracting information from social media posts.

Despite significant progress in identifying and locating objects in images, challenges
remain concerning computational resources, small object detection, and real-time require-
ments. The rapid increase in demand for object detection models on mobile devices faces
the limitations of processors and GPUs, which are generally less powerful than those on
desktops or servers. This limitation affects the complexity of models that can run on devices
in real time. Moreover, the typically lower RAM on mobile devices implies stringent con-
straints on model size and runtime memory usage. Thus, designing models that are both
memory-efficient and highly accurate is imperative and challenging. Although improved
versions like YOLOv8 provide higher accuracy and detection outcomes, considering the
model’s generalization and adaptability to ever-changing application scenarios and dataset
characteristics remains crucial for ensuring stability and efficacy under diverse conditions.

Inspired by these considerations, this research introduces a framework for object detec-
tion, the YOLOv8 Res2Net Extended Network (YOLOv8-CGRNet). YOLOv8 represents a
popular model in the object detection domain, exemplifying one of the latest advancements
in the YOLO [12] series, showcasing performance on par or better than other models in
public datasets while maintaining rapid inference speed. In its latest iteration, an attempt
to amalgamate the backbone network of the YOLO series with the Residual Network with
multiple branches (Res2Net) [19] structure has been made, introducing the learning capa-
bility of ResNet’s deeper features for object detection tasks, thereby enhancing the model’s
recognition of complex scenes and multi-scale objects. The integration of the downsampling
module from Context GuidedNet (CGNet) [20] has fortified the learning of local contextual
information, offering improved performance in detail and context understanding.

YOLOv8-CGRNet retains the downsampling module from CGNet while incorporating
efficient modules like Stage Partial Spatial Pyramid Pooling Fast (SimPPFCSPC) [21] and
Wise-IoU (WIoU) [22]. It merges various modules such as skip-path, Fused Convolution,
and CIOU loss to optimize model performance and enhance recognition, further refining the
model’s feature extraction and representation capabilities. With CGblock downsampling
and deep Res2block structures alternating within the network, they work collaboratively,
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ensuring that while deep features are extracted, context information is effectively preserved
and utilized, thereby enhancing performance on object detection tasks.

The experimental datasets comprise two widely utilized object detection sets, Pascal
VOC2007 [23], VOC2012 [24], and VisDrone [25], provided by the Visual Geometry Group
(VGG) of the University of Oxford, including 20 object categories encompassing everyday
items from vehicles to domestic goods, animals to humans. VOC2007 contains approx-
imately 9600 images with about 27,000 object annotations. VOC2012 includes around
11,500 images with roughly 35,000 object annotations. Pascal VOC sets the standard eval-
uation metrics for various tasks, employing mean Average Precision at IoU threshold
0.5 (mAP50) [26] for object detection assessment. The contributions of this research are
outlined as follows: First, an exploration of the combination of the YOLOv8 series with
Context GuidedNet and the Res2Net architecture has been conducted, which leverages the
depth feature learning capabilities of Res2Net. This fusion facilitates enhanced object detec-
tion against complex backgrounds and a wide range of object scales, delivering superior
recognition capabilities. Second, the incorporation of the SimPPFCSPC structure further
augments the network’s proficiency in handling the Feature Pyramid Network (FPN) [27].
This model employs FPN and integrates contextually enhanced feature extraction tech-
niques with adaptive strategies for depth and width tailored to varying computational
and performance demands. Third, this network amalgamates the advantages of various
modules and, notably, introduces the novel Detect DyHead (dynamic head) [28], which
possesses the aptitude to adapt to different input scenarios, significantly increasing the
model’s versatility. To further advance detection effectiveness, a clever mechanism utilizing
dynamic non-monotonic focusing mechanism (FM) [22] gradient boosting allocation has
been adopted. This mechanism effectively processes low-quality examples and elevates the
overall performance of the detector.

As demonstrated in Figure 1, through a series of innovations and enhancements, the
proposed model manifests substantial improvements over the baseline YOLOv8, especially
in intricate scenarios and multi-scale object detection tasks. These modifications not only
significantly boost the model’s performance but also manage to maintain a balance between
the number of parameters and inference speed. Testing across multiple datasets has shown
that, in comparison to the original YOLOv8, our model achieves an approximate 4%
increase in accuracy.
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The remainder of this document is organized as follows: Section 2 delineates the
methodology, Section 3 discusses the experimental results, and Section 4 concludes by
summarizing the findings and suggesting potential avenues for future research. Section 5
deliberates on the model’s strengths, weaknesses, and application discussions.

2. Materials and Methods

The framework utilized in this study is depicted in Figure 2. A noted limitation
of lightweight models is the potential compromise between model accuracy and gener-
alization capability. Hence, it is challenging to strike an appropriate balance between
performance, speed, and accuracy when designing and selecting lightweight models.
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Figure 2. Overall framework.

As shown in Figure 2, the model employs a Feature Pyramid Network (FPN) [27].
Initially, the integration of a Context-Guided Block (CG) is undertaken: The Context
GuidedNet (CGNet) [20] efficiently captures local features and the surrounding context,
leveraging spatial dependencies and contextual information to enhance accuracy. It reduces
the number of parameters and saves on memory usage, adhering to the “deep and thin”
principle to diminish channel count across stages. Secondly, the fusion of a Res2Net
block is implemented, constructing hierarchical-like residual connections within a single
residual block. This approach augments multi-scale representation at a finer granularity
and expands the receptive field for each network layer. Thirdly, the employment of a
SimPPFCSPC structure further amplifies the network’s capacity to process the feature
pyramid effectively. Fourthly, the integration of a dynamic attention mechanism from
DyHead, which encompasses scale awareness, spatial awareness, and task awareness, is
reported. By dynamically combining information from multiple scales, the scale-aware
attention mechanism enhances the ability to recognize things of various sizes. In addition
to attending to attention at each spatial location, the spatial-awareness attention module
adaptively combines various feature levels in order to acquire a representation that is more
discriminative. In order to adaptably handle a variety of tasks, including classification,
box regression, and center-keypoint learning, task awareness distributes attention across
many channels.

2.1. Overall Structure

As depicted in Figure 3, the network’s head starts with a Conv layer for initial feature
extraction. The Conv part includes a 2D convolutional layer, 2D batch normalization,
and a Sigmoid activation function. The CGD Block and Res2Block modules then work
in concert to capture and enhance multi-scale features. The integration of SimPPFCSPC
is finalized to achieve enhanced performance with fewer parameters. At the detection
head, a decoupled head structure prevalent in current research is utilized, separating
classification and detection tasks using an anchor-free approach. Initially, the dynamic head
(DyHead) is employed for unifying scale, spatial, and task awareness within the detection
head. Subsequently, the features extracted from the DyHead are refined and augmented
through successive convolutional operations. After feature extraction by the Conv layer,
a two-dimensional convolution operation generates an output of appropriate size. The
difference between the predicted bounding boxes is quantified by the Bounding Box Loss,
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and the discrepancy between the predicted class probabilities and the actual class labels is
measured by the Class Loss.
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Figure 3. The specific network architecture characterized. In the image, “k” stands for Kernel size.
“s” stands for Stride. “p” stands for Padding. Depth: 0.33, width: 0.25; and MaxChannels: 1024.

FPN serves as a feature fusion mechanism that enhances the detection of multi-scale
targets with minimal computational cost. The main issue addressed by the FPN is the need
for more handling of multi-scale variations in object detection. The downsampling ratios
of the CGD blocks, numbered (1, 3, 5, and 7), are {4, 8, 16, and 32}, respectively, with each
subsequent layer outputting a smaller feature map than the preceding one. These feature
maps are employed within the FPN to construct a richer multi-scale feature representation.
The top-down pathway begins at the last (and most profound) layer of the network, where
feature maps are upsampled to increase resolution. Each upsampled feature map is laterally
connected with the corresponding resolution feature map from the bottom-up pathway
to merge high-level semantic information with low-level detail information. This process
continues until it reaches the original image resolution. Anchor-free object detection
provides an efficient alternative to tackle the complexity and limitations associated with
traditional anchor-based methods by predicting key points or bounding boxes of objects
directly on feature maps, simplifying the detection process while enhancing flexibility and
efficiency. Center-based methods identify the center point and dimensions of each object.
This framework predicts the distances to the left, top, right, and bottom edges of the target
box from its center point.

2.2. Main Blocks

As shown in Figure 4, it is mainly divided into three blocks. First, the CGDBlock
learns the joint features of local features and surrounding context and further improves the
joint features with global context while maintaining low memory usage and improving
accuracy. Secondly, Res2block can effectively utilize the hierarchical residual connection
within a residual block to improve the multi-scale feature representation ability and thus
improve the performance of various visual tasks. Finally, SimPPFCSPC is used to extract
and process features at different scales to adapt to various tasks and data.

Res2block [19] processes detection in a multi-scale manner, which helps to extract
global and local information. To better integrate information from different scales, we split
the input features into 4 features and passed them through a 1 × 1 convolution. Each subset
is processed by a 3 × 3 convolution group to obtain the output feature map. To reduce
the number of parameters, the first split convolution is omitted, which can also be viewed
as a form of feature reuse. A hierarchical residual connection is established between each
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convolution group, yi = ci(yi−1) + yi, y0 = x1. Finally, all the output feature maps are
concatenated together to form the final output feature map.
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The CGDblock for downsampling and the simulation of spatial dependencies and
semantic context information are improved by CGNet [20]. It consists of four sub-modules:
local feature extractor floc(), surrounding context extractor fsur(), joint feature extractor
f joi(), and global context extractor fglo(). It first learns the joint features of the local features
and surrounding context and then uses the global context for the channel-level weighting
of joint features. It also adopts residual learning to enhance information flow.

Downsampling: the conv1x1 layer initially reduces the spatial dimension of the input
by half and adjusts the number of channels.

Feature integration: Local (F_loc) and surrounding (F_sur) features are connected and
further processed to effectively merge these features. Then, the spatial dimension of the
input is reduced by half through downsampling; the conv1x1 layer and the number of
channels are adjusted. Finally, the F_glo layer is used to refine these combined features.

f ∗joi = f joi( f ∗loc, f ∗sur) = BN(PReLU([ f ∗loc, f ∗sur])) (1)

Herein, f ∗loc and f ∗sur, respectively, represent local features and surrounding context
features, and f ∗joi represents joint features. [ f ∗loc, f ∗sur] represents the connection operation be-
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tween local features and surrounding context features. PReLU represents the parameterized
linear rectification unit, and BN represents batch normalization.

f ∗glo = fglo( f ∗joi) = FC(FC(GAP( f ∗joi))) (2)

This formula describes how to obtain global context features from joint features. Here,
f ∗joi represents joint features, and f ∗glo represents global context features. GAP represents
global average pooling, and FC represents a fully connected layer.

f ∗out = f ∗glo ⊙ f ∗joi (3)

This formula describes how to weigh the joint features at the channel level with global
context features to obtain the output features. Here, f ∗glo represents global context features, f ∗joi
represents joint features, and f ∗out represents output features. ⊙ represents element-wise
multiplication. This design reflects an intention to balance detailed local feature extraction
with more global contextual information, which is usually beneficial for object detection and
for enhancing spatial hierarchy structures in visual deep learning models.

In SimPPFCSPC, different input features are first extracted through conv1, conv3,
and conv4. Then, dimensionality reduction is performed through the max-pooling layer.
Next, the dimensionality-reduced features are further processed by conv5 and conv6 to
extract features. Meanwhile, the original input is also processed by conv2 to extract input
features. Finally, the outputs of these two parts are concatenated together and mapped to
the target space through conv7. Speed improvement is achieved while maintaining the
same receptive field.

2.3. FusionDetect–ModuleHead

The design principle of the DyHead [28] is to combine multiple attention mecha-
nisms, each of which focuses on a different dimension: scale, space, and task. The de-
tailed design and working principles of scale-aware attention, spatial-aware attention, and
task-aware attention.

By cooperatively combining multiple self-attention mechanisms between feature levels,
spatial positions, and output channels, the proposed method significantly improves the
representation ability of the object detection head without increasing any computational
overhead. Formula (4) represents the general form of applying the self-attention mechanism
to the feature tensor, where π(·) is an attention function.

W(F) = π(F) · F (4)

Formula (5) decomposes the attention function into three sequentially applied atten-
tion functions, each acting on different dimensions of the feature tensor.

W(F) = πC(πS(πL(F)) · F) · F · F (5)

Formula (6) represents the scale-aware attention module, which uses a 1 × 1 convolu-
tional layer to learn the relative importance of different level features and normalizes the
weights using a hard Sigmoid function.

πL(F) · F = σ( f (∑
S,C

F)) · F (6)

Formula (7) represents the spatial-aware attention module, which uses deformable
convolution to sparsely sample and aggregate features at different levels and spatial
positions and adjusts the sampling position and importance using self-learned offsets
and weights.

πS(F) · F =
1
L

L

∑
l=1

K

∑
k=1

wl,k · F(l; pk + ∆pk; c) · ∆mk (7)
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Formula (8) represents the task-aware attention module, which uses a dynamic ReLU
function to activate features on different channels and learns the activation threshold using
two fully connected layers and a normalization layer.

πC(F) · F = max(α1(F) · Fc + β1(F), α2(F) · Fc + β2(F)) (8)

The meanings of the symbols are as follows:
F is the input feature tensor with dimensions L × S × C, where L represents the

number of levels, S represents the number of spatial positions, and C represents the number
of channels.

W is the output feature tensor with the same dimensions as F.
π is the attention function, which can have different forms.
σ is the hard Sigmoid function, defined as σ(x) = max(0, min(1, (x + 1)/2)).
f is a linear function implemented by a 1 × 1 convolutional layer.
wl,k are the weight parameters of the deformable convolution learned from the

input features.
pk is the original sampling position, and ∆pk is the self-learned offset.
F (l; pk + ∆pk; c) represents the feature value at the position pk + ∆pk on the l-th level

and the c-th channel.
∆mk is the self-learned importance scalar, learned from the input features.
α1, α2, β1, and β2 are the parameters of the dynamic ReLU function, learned from the

super function θ(·). θ(·) consists of a global average pooling layer, two fully connected
layers, and a normalization layer, and it applies a shifted Sigmoid function to normalize
the output to the interval [−1, 1].

Fc represents the feature slice on the c-th channel.
The proposed method solves the problem of improving the performance of various

object detection heads without providing a unified perspective, which was attempted by
previous works. By cooperatively combining multiple self-attention mechanisms between
feature levels, spatial positions, and output channels, the representation ability of the object
detection head is significantly improved. Although this method enhances the representation
ability of the object detection head, it does not bring a large computational overhead.

3. Experiments

In this section, we demonstrate the superiority of YOLOv8-CGRNet by evaluating its
effectiveness in recognizing voc2012 and voc2007 and show the improvement of each step
in recognition performance through ablation experiments.

3.1. Introduction to the Dataset

As shown in Table 1, the research utilized the VOC2007 and VOC2012 datasets, re-
leased by the PASCAL (Pattern Analysis, Statistical Modeling, and Computational Learning)
Network Organisation, funded by the European Union. The VOC2007 dataset comprises
9963 images taken in diverse environments, including both indoor and outdoor scenes. An-
notations for the 24,640 objects depicted within these images are provided, with each object
delineated by a bounding box. The dataset encompasses 20 categories, such as persons,
animals, vehicles, and household furniture. The VOC2012 dataset includes 17,125 images,
with a total of 27,450 annotated objects, and features similar environmental conditions and
object annotations as VOC2007.

VisDrone was collected by the AISKYEYE team at the Lab of Machine Learning and
Data Mining, Tianjin University, China. It includes 288 video clips formed by 261,908 frames
and 10,209 static images. The data were captured using various drone-mounted cameras.
Each image has a corresponding annotation file that contains the location, category, and
occlusion degree of each object.
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Table 1. Dataset attributes.

Dataset Images Number of Class Objects

Voc2012 [24] 11,540 20 27,450
Voc2007 [23] 9963 20 24,640

VisDrone [25] 10,209 10 2,645,719

3.2. Detailed Implementation

The full VOC2012 dataset, alongside the VOC2007 training and validation subsets,
was employed for training, with evaluations conducted on the VOC2007 test set. The model
was configured for mobile application compatibility, with depth and width multipliers set
at 0.33 and 0.25, respectively, and a channel limit of 1024. A consistent training regime
of 200 epochs was maintained across all experiments. Ablation studies indicated that,
while certain frameworks may enhance efficiency individually, their performance can
diminish when integrated. Various fusion methods were trialed before establishing a
synergy of YOLOv8 with Context GuidedNet, Res2Net, SimPPFCSPC, DyHead, and WIoU
structures that yielded improved compatibility. An NVIDIA 3080 GPU with 10 GB of
memory facilitated the computational process.

The first step entailed configuring the baseline model, YOLOv8n, optimized for mobile
devices, and training it on the combined VOC datasets for 200 epochs. Evaluating this
model on the VOC2007 test set provided a benchmark for subsequent refinements. In the
second step, Res2Net structure integration augmented the baseline model’s expressive
capacity for feature representation. This modified model underwent identical training
processes, validating Res2Net’s contributions through performance comparisons pre- and
post-integration. Upon confirming Res2Net’s effectiveness, the third step incorporated the
SimPPFCSPC structure to enhance complex feature learning capabilities. The fourth step
involved integrating Context GuidedNet and DyHead structures to bolster contextual com-
prehension and detail resolution in target detection, respectively. The inclusion of the WIoU
structure aimed to refine the model’s locational accuracy, culminating in a comprehensive
model fusion. Each integration step’s impact was meticulously documented through key
performance metrics such as detection precision, model size, and operational speed, ensur-
ing a thorough multidimensional performance evaluation. The experimental methodology
prioritized repeatability and the stability of structural combinations. This progression of
experimental steps aimed to provide researchers with a definitive framework for assessing
the specific impact of various architectures on model performance. Comparisons were also
drawn with other models, including YOLOv5 and YOLOv6 variants scaled to equivalent
depth and width, with a channel limit of 1024.

3.3. Experimental Results

In the PASCAL VOC dataset, object categories exhibit distinct shapes, sizes, and
contextual variances. For instance, the “cat” category tends to occupy larger image areas
with rich texture information, facilitating effective learning and recognition by the model.
Conversely, objects such as “bottles” and “plants” are typically smaller and more challeng-
ing to discern against complex backgrounds, highlighting the significance of structural
enhancements for such categories.

As demonstrated by Table 2, Fast R-CNN reported an overall mean Average Precision
at the IoU threshold of 0.5 (mAP50) [26] of 68.4%, with exceptional performance in the
“aeroplane” category at 82.3%. Faster R-CNN achieved a higher overall mAP50 of 70.4%,
with an “aeroplane” category precision of 84.9%. YOLO models registered lower perfor-
mance in detecting “bottle” category objects, with YOLOv3-tiny achieving a notable mAP of
72.3% and displaying superior performance in the “motorbike” and “train” categories. The
YOLOv5n and YOLOv6n iterations exhibited consistent improvements across all categories,
with mAP50s of 76.5% and 78.7%, respectively.
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Table 2. The mAP50 for the PASCAL VOC2007 test dataset, utilizing a union of VOC2007 and VOC2012 trainval data. Herein, “R” stands for Res2Net, “C” for
CGNet, “S” for SimPPFCSPC, “D” for DyHead, and “W” for WIoU. In the table, the bolded values represent the highest mAP among these methods.

Method All Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

Fast [11] 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73 55 87.5 80.5 80.8 72 35.1 68.3 65.7 80.4 64.2
Faster [29] 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5
YOLO [12] 57.9 77 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8
SSD300 [30] 72.4 85.6 80.1 70.5 57.6 46.2 79.4 76.1 89.2 53 77 60.8 87 83.1 82.3 79.4 45.9 75.9 69.5 81.9 67.5
SSD512 [30] 74.9 87.4 82.3 75.8 59 52.6 81.7 81.5 90 55.4 79 59.8 88.4 84.3 84.7 83.3 50.2 78 66.3 86.3 72

YOLOv3-tiny 72.3 72.2 84.7 65.6 65.6 57.4 81.4 85.1 76.7 53.1 75.4 66.1 73.4 84.3 84.1 83.9 45.8 73.8 65 77.3 75
YOLOv5n 76.5 84.3 87.1 72.5 69.2 62.3 84.8 89.1 81.1 58.2 76.7 75.8 79.6 86.7 83.8 85.8 45.3 74.3 72.4 84 76.3
YOLOv6n 78.7 83.6 89.1 74.3 68.9 66.3 86.4 90.2 85.5 63.1 77.7 77.9 83.7 89.4 86.9 87 47.7 74.9 77.2 86.8 76.5
YOLOv8n 78.8 85.8 88.7 73.8 69.4 65.2 85.7 90.3 84.3 61.4 81.2 76.8 81 88.3 85.8 87.1 50.8 78.5 76.1 89.3 77.1

YOLOv8n-W 79.1 86.2 88.8 74.6 69.2 66.1 85.3 90.8 86 61.8 80.9 78.5 82.4 89.9 86.1 87.1 53.1 78 74.5 86.4 75.5
YOLOv8n-C 79.9 87 89.8 77.2 70.7 67.8 85.9 90.8 85.3 62.4 83.8 79.1 81.3 89.9 85.9 87.9 49.3 79.5 76 88.7 78.9
YOLOv8n-S 80 87.6 89.6 76.7 71.6 66.1 86.1 90.6 86.5 62.7 80.7 76.7 84.9 90.1 87.3 87.6 50.6 79 77.9 88.4 79.2
YOLOv8n-R 80.1 86.3 88.1 76.9 70.4 66.7 86.8 91.6 87.8 62.7 81.8 78.8 83.5 90.5 87.3 88 53.8 76.6 77.7 89.9 77.2

YOLOv8n-R-C-W 80.5 88.3 90 76.1 73.7 68 86.7 91.1 86.3 63.9 80.2 78.8 84.6 89.5 88.4 88.4 52.7 77.5 79 88 78.3
YOLOv8n-D 80.6 88.4 88.9 76.4 71.9 68.3 88.6 91.7 87.1 62.7 80.9 79.3 81.9 90.5 87 88.4 52.1 81.1 78.2 89.8 78.3

YOLOv8n-R-S-W 81.3 88.5 89.8 78.6 74 67.9 88.2 92 88.2 64.5 80.8 81.6 86 91.3 89 88.7 52.2 79.3 78.2 88.5 78.7
YOLOv8n-R-S-C-D 81.7 89 89.9 77.5 75.7 69.8 89.7 91.9 88.6 65.8 80.7 77.9 85.3 90.5 87.8 89.3 52.4 79.7 81.5 90.9 80.3
YOLOv8- CGRNet 81.9 89.3 89.9 77.3 76.2 68.7 89 91.7 89.1 66.2 81.4 79 86.5 91.5 88 89.1 53.8 78.7 80.8 90.2 80.9
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The YOLOv8n’s enhanced understanding of small objects and large scene contexts
translated to over 70% mAP50 across multiple categories, attesting to its robustness as a
general-purpose object detection model. The performance in categories such as “aeroplane”,
“bicycle”, “boat”, and “bottle” was particularly notable, likely due to the optimized deep
learning architecture and effective training methodologies.

Through multi-scale feature extraction, the Res2Net structure provided the model with
refined feature representations, as evidenced by improved performance in the “vehicle”
and “aeroplane” categories. This scalability and the hierarchical connection approach
of Res2Net may also facilitate better local detail capture in object detection, benefiting
categories with intricate details such as “cats” and “dogs”.

The introduction of SimPPFCSPC, with its enhanced feature pyramid and pooling
strategy, supplied the model with richer scale information.

Figure 5 illustrates that the numerals along the main diagonal (extending from the up-
per left to the lower right corner) represent accurate predictions, signifying instances where
the model has correctly identified each category as such. Conversely, figures situated off
the main diagonal denote incorrect predictions where the model has erroneously assigned
a category to another.

The diagonal values within the confusion matrices of each model, as depicted in
Figure 5, correspond to the count of instances accurately classified. Higher values on this
diagonal indicate superior performance. By comparing these figures, one may determine
which model performs optimally for specific categories. Values off the diagonal reflect the
number of predictive errors a model makes within a particular category. A model exhibiting
lower numbers on the diagonal is deemed to yield more precise predictions for that specific
category. Within these confusion matrices, several observations can be made as follows:
Firstly, the yolo-tiny has an overall lower prediction count. Secondly, in distinguishing
between ‘chair’ and ‘sofa’, the yolov8n-Simppfcspc-Res2 emerges as the most accurate.
Thirdly, YOLOv8-CGRNet demonstrates a more balanced performance distribution across
various categories, rendering it robust for overall effectiveness. Furthermore, YOLOv8-
CGRNet registers minimal misclassifications in the ‘dog’ and ‘cat’ categories and exhibits
no misclassifications for ‘train’ and ‘aeroplane’.

As depicted in Figure 6, the model’s detection accuracy is evident through its overall
and category-specific F1 score performance. Within each subplot, lines of different colors
represent various categories, such as “person”, “car”, “dog”, and others. These curves illus-
trate the balance between the probability of correct predictions and the probability of false
predictions at various confidence thresholds, which serves to assess model performance.

Upon analysis of the F1 confidence curves, it is observed that the majority of the
models reach their peak between the confidence thresholds of 0.3 and 0.6. This peak
may represent the optimal balance point between accuracy in detection and the reduction
of false positives. Each model demonstrates significant variation in detection accuracy
across different categories. Lightweight models, specifically YOLOv3-tiny and YOLOv5n,
score relatively lower on the overall F1 score, highlighting the trade-off between speed
and accuracy inherent in lightweight models. YOLOv8-CGRNet, in particular, showcases
that each ablation study exhibits higher F1 scores, particularly in the medium confidence
threshold range. It suggests that structural improvements can significantly enhance model
detection performance.

Table 3 illustrates the progression of mean Average Precision (mAP50) for different
models with the increase in training epochs. mAP50, which employs an Intersection over
Union (IoU) threshold of 0.5 to calculate precision, shows a rapid ascent in the initial epochs
for all model variants, indicating an expedited learning process and improvement in target
detection accuracy. Variance is observed in the rate at which different model variants
converge. During the early training stages, the performance enhancements for these
variants are closely matched. Over time, however, models with more complex structures
may exhibit superior performance. As the number of epochs rises, the rate of performance
improvement for all models begins to plateau, suggesting a stabilization in learning efficacy.
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The YOLOv8-CGRNet model’s performance in later epochs exceeds that of other models,
which substantiates the assertion that YOLOv8-CGRNet’s strategic enhancements indeed
bolster the model’s generalization abilities in complex scenarios.
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Figure 6. The F1 score performance of the model across multiple categories at varying confidence
thresholds.

Table 3. The progress of mAP50 per 10 epochs.

Epochs Yolov5n Yolov6n Yolov8n Yolov8n-W yolov8n-C Yolov8n-S Yolov8n-R YOLOv8n-
R-C-W

YOLOv8n-
R-S-W

YOLOv8n-
R-S-C-D

Yolov8n-
CGRNet

1 0.258 0.099 0.592 0.592 0.127 0.338 0.385 0.116 0.089 0.381 0.333
11 39.104 34.854 47.921 47.921 44.188 47.449 46.333 45.993 45.215 41.167 41.449
21 54.421 55.094 61.498 61.498 59.795 62.95 62.202 61.874 62.111 60.095 62.101
31 62.427 63.847 67.648 67.648 67.672 69.514 69.123 69.131 70.09 68.609 70.142
41 66.522 68.487 71.573 71.573 72.259 73.328 73.171 73.351 74.205 73.211 74.006
51 68.908 71.127 73.732 73.732 74.34 75.611 75.036 75.859 76.012 75.576 76.195
61 70.365 72.662 74.848 74.848 75.645 77.034 76.173 77.001 77.37 76.968 77.253
71 71.33 73.599 75.57 75.57 76.363 77.675 76.974 77.588 78.125 77.948 78.136
81 72.019 74.118 76.073 76.073 76.904 78.027 77.471 78.032 78.645 78.578 78.617
91 72.571 74.7 76.434 76.434 77.314 78.445 77.874 78.412 79.108 79.009 79.044
101 73.026 75.251 76.831 76.831 77.711 78.829 78.218 78.743 79.531 79.453 79.484
111 73.483 75.844 77.155 77.155 78.022 79.144 78.507 79.144 79.834 79.739 79.875
121 73.905 76.355 77.498 77.498 78.256 79.418 78.851 79.466 80.16 80.101 80.193
131 74.28 76.745 77.775 77.775 78.531 79.597 79.096 79.657 80.364 80.389 80.553
141 74.704 77.215 78.048 78.048 78.797 79.722 79.362 79.893 80.59 80.688 80.865
151 75.044 77.501 78.29 78.29 78.944 79.812 79.596 80.113 80.804 80.983 81.139
161 75.391 77.768 78.469 78.469 79.154 79.966 79.796 80.206 81.067 81.214 81.308
171 75.718 78.05 78.686 78.686 79.319 80.019 79.962 80.292 81.14 81.344 81.527
181 76.002 78.208 78.893 78.893 79.411 80.016 80.119 80.383 81.186 81.492 81.68
191 76.291 78.478 78.952 78.952 79.63 79.979 80.125 80.482 81.213 81.637 81.824
200 76.46 78.645 78.986 78.986 79.81 80.001 80.139 80.476 81.258 81.701 81.91

Table 4 showcases the performance of various YOLOv6n and YOLOv8n model ver-
sions and variants in object detection on the VisDrone2019-DET dataset across different
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categories. These models incorporate several technological enhancements like Res2Net,
CGNet, SimPPFCSPC, DyHead, and WIoU, contributing to their performance. A general
trend of improvement is observed from YOLOv6n to YOLOv8-CGRNet in overall Average
Precision across all categories, with YOLOv8-CGRNet performing the best at 29.9%. In
specific categories, all models tend to perform relatively well in detecting cars and trucks
while showing lower effectiveness in categories like bicycles and people. The introduction
of technologies like Res2Net and CGNet generally correlates with performance enhance-
ment, especially in complex or dynamic scenes. The combination of multiple technologies,
as seen in models like YOLOv8n-R-S-C-D, often leads to further improvements. Compared
to YOLOv6n, the YOLOv8n series demonstrates superior performance in most categories,
likely due to differences in architecture and training methodologies. This data illustrates
that by employing various architectural enhancements and combined techniques, the
YOLO models significantly enhance their ability to detect objects in complex drone imagery,
particularly in common categories such as vehicles and pedestrians.

Table 4. The mAP50 for the VisDrone2019-DET. Herein, “R” stands for Res2Net, “C” for CGNet, “S”
for SimPPFCSPC, “D” for DyHead, and “W” for WIoU. In the table, the bolded values represent the
highest mAP among these methods.

Method All Pedestrian People Bicycle Car Van Truck Tricycle Awning
Tricycle Bus Motor

yolov6n 25.3 20 10.3 4.12 66 31 29.1 9.78 12.4 50.5 20.2
yolov5n 26.5 21.3 11.3 6.04 66.5 30.8 31.3 11.5 13.1 50.2 23.2
yolov8n 26.9 22.1 11.6 5.89 66.7 30.5 30.9 12.7 14.7 50.8 23.1

Yolov8n-S 27.1 22.9 11.4 7.36 66.8 30.8 29.9 12.4 15.1 50.9 24
yolov8n-W 27.5 23 12.7 6.49 67.2 31.3 31.6 11.6 14.9 52.6 23.8
yolov8n-C 27.8 22.7 12.2 5.56 67.5 32.5 32.2 13.3 16.6 52 23

yolov8n-R-S 28.2 23.2 12.8 7.27 68 32.1 33.2 13.1 15.7 52.5 24.3
yolov8n-R 28.2 23.4 12.4 6.31 68.1 32.5 32.9 13 16.3 52.7 24.2

yolov8n-R-C 28.5 23.8 13.3 7.5 68.1 32.3 31.9 13 16.6 53.3 25
yolov8n-D 28.7 23.5 12.5 7.44 68.3 32.9 33.8 14.4 15.7 53.2 24.7

YOLOv8n-R-S-C-D 28.8 22.7 12.4 6.98 68.6 33.9 35.6 12.7 17.6 53.1 24.4
yolov8- CGRNet 29.9 24.2 13.6 7.72 69.3 33.3 36.8 14.9 18 55.2 26.1

The combined preprocess and postprocess time on the RTX 3080 is only 2 ms. In con-
trast, the combined preprocess and postprocess time on the ARM Cortex-A57 is significantly
higher at 24 ms.

The data in Tables 5 and 6 display tests conducted on the NVIDIA GeForce RTX 3080,
showing that CGR-Net experiences negligible differences in terms of time, influenced by
preprocess and postprocess times.

Table 5. The test results of various object detection models when evaluated on the VisDrone dataset,
utilizing a NVIDIA GeForce RTX 3080 graphics card.

Yolov6n Yolov5n Yolov8n Yolov8n-S Yolov8n-W Yolov8n-C Yolov8n-
R-C Yolov8n-D YOLOv8n-

R-S Yolov8n-R YOLOv8n-
R-S-C-D

Yolov8-
CGRNet

FPS 175.44 153.85 161.29 151.52 153.85 119.05 112.36 99.01 109.89 131.57 85.47 84.03
Inference

(ms) 3.7 4.5 4.2 4.6 4.5 6.4 6.9 8.1 7.1 5.6 9.7 9.9
GFLOPs 11.8 7.1 8.1 9.4 8.1 9.1 9.9 9.7 11.2 8.8 12.8 12.8

Table 6. The VOC2007 test results of various object detection models when evaluated on the VisDrone
dataset, utilizing a NVIDIA GeForce RTX 3080 graphics card.

Yolov6n Yolov5n Yolov8n Yolov8n-S Yolov8n-W Yolov8n-C Yolov8n-
R-C Yolov8n-D YOLOv8n-

R-S Yolov8n-R YOLOv8n-
R-S-C-D

Yolov8-
CGRNet

FPS 72.46 109.89 99.01 87.72 99.01 90.09 84.03 85.47 75.76 92.59 67.57 67.57
Inference

(ms) 1.8 2.1 2.3 2.3 1.9 3.0 3.5 4.6 3.5 2.6 6.4 6.5
GFLOPs 11.8 7.1 8.1 9.4 8.1 9.1 9.9 9.7 11.2 8.8 12.8 12.8

The data from Tables 7 and 8, showcasing tests on the ARM Cortex-A57 CPU, a proxy
for mobile device performance, illustrate CGR-Net’s operational feasibility in a mobile
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environment. Although there is a noticeable drop in FPS and an increase in inference time
compared to high-end GPUs, CGR-Net still manages to function, suggesting its adaptability
to less powerful hardware.

Table 7. The test results of various object detection models when evaluated on the VisDrone dataset,
utilizing an ARM Cortex-A57cpu.

Yolov6n Yolov5n Yolov8n Yolov8n-S Yolov8n-W Yolov8n-C Yolov8n-
R-C Yolov8n-D YOLOv8n-

R-S Yolov8n-R YOLOv8n-
R-S-C-D

Yolov8-
CGRNet

FPS 1.07 1.02 1.10 1.00 1.01 0.76 0.62 0.52 0.61 0.99 0.42 0.41
Inference

(ms) 929 974 907 999 984 1310 1624 1931 1631 1011 2404 2458
GFLOPs 11.8 7.1 8.1 9.4 8.1 9.1 9.9 9.7 11.2 8.8 12.8 12.8

Table 8. The VOC2007 test results of various object detection models when evaluated on the VisDrone
dataset, utilizing an ARM Cortex-A57 graphics card.

Yolov6n Yolov5n Yolov8n Yolov8n-S Yolov8n-W Yolov8n-C Yolov8n-
R-C Yolov8n-D YOLOv8n-

R-S Yolov8n-R YOLOv8n-
R-S-C-D

Yolov8-
CGRNet

FPS 0.44 0.40 0.47 0.43 0.45 0.32 0.29 0.22 0.27 0.39 0.19 0.19
Inference

(ms) 2225 2440 2086 2254 2163 3083 3457 4506 3705 2510 5314 5321
GFLOPs 11.8 7.1 8.1 9.4 8.1 9.1 9.9 9.7 9.4 8.8 12.8 12.8

4. Discussion

According to the data in Table 2, the YOLOv8 series of models surpasses other models
in overall mAP50 performance on the PASCAL VOC2007 test set, particularly after the
integration of Res2Net (R), Context GuidedNet (C), SimPPFCSPC (S), DyHead (D), and
WIoU (W). YOLOv8-CGRNet, with its ensemble of sophisticated network modules and
mechanisms, exhibits increased precision and robustness.

The framework, however, is not without drawbacks. First, higher accuracy often comes
with an increase in computational costs, as indicated in Tables 5–8. Balancing accuracy with
computational expense remains a challenge in resource-constrained application scenarios.
Second, certain categories, like ‘bottle’ or ‘plant’, show lower detection accuracy, which
suggests that deficiencies remain in detecting small or irregularly shaped objects. Third,
the incorporation of new technologies significantly heightens model complexity, which
leads to prolonged training durations and heightened computational resource demands.

Based on the experimental comparisons shown in Tables 1–4, this study explores
various application scenarios, demonstrating how the adapted models perform across
different datasets. It is observed that while some models may excel in one dataset, their ef-
fectiveness diminishes when applied to another. Our integrated model, although increasing
computational demands, enhances adaptability and accuracy across diverse datasets. This
feature is particularly advantageous for mobile deployment, where processing capabilities
are limited.

The augmented model maintains efficacy on mobile platforms, as the camera capture
rate limits render the performance of the improved model nearly equivalent to the original
on standard computers or compute-capable boards. However, on lower-powered ARM
chips, while the speed may decrease, the accuracy significantly improves, making it suitable
for scenarios where precision is paramount.

This flexibility is crucial in a range of applications. For instance, in autonomous vehicle
systems where hardware limitations constrain processing power and speed, the model’s
high-precision object detection capabilities are vital for safety and reliability. It accelerates
the response to road conditions, obstacles, and traffic signs, promoting safer navigation and
decision making. Additionally, the model’s efficiency makes it ideal for real-time detection
applications such as Augmented Reality (AR), autonomous drone navigation, surveillance,
access control, and interactive marketing.

In summary, our fusion model balances increased computational demands with im-
proved adaptability and accuracy, making it a versatile solution for both power-constrained
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mobile devices and higher-capability computing platforms, catering to a wide range of
applications that require varying levels of accuracy and processing speed.

5. Conclusions

The advent of deep learning and computer vision has ushered in a new era of ana-
lytical capabilities, with model optimization and improvement taking center stage. This
progression necessitates a deeper exploration of algorithmic architectures and parameter
optimization, particularly in the context of object detection models on mobile devices. The
demand for models that balance a small memory footprint with high accuracy is rapidly
increasing, presenting a unique set of challenges given the parameter-heavy nature of
current leading-edge networks, which are ill-suited for mobile environments.

In this paper, we have proposed the YOLOv8-CGRNet method, which represents
a significant step forward in this domain. Our approach synergizes YOLOv8 with the
CGNet and the Res2Net structure, enhancing the model’s ability to learn deep features
from Res2Net. This integration provides a multi-scale representation at a more granular
level without adding to the model’s complexity or computational demands. The CGNet is
particularly adept at capturing local features and contextual information, leveraging spatial
dependencies to bolster accuracy.

Furthermore, we have delved into an improved pyramid network combination utiliz-
ing the SimPPFCSPC structure, which augments the network’s proficiency in managing
FPN. The innovative application of a dynamic, non-monotonic FM gradient gain distribu-
tion strategy, which operates on an anchor-free basis, effectively addresses the challenge of
low-quality samples, thereby enhancing the detector’s overall efficacy.

This head network amalgamates the strengths of various modules, with a particu-
lar emphasis on our Unifying Object Detection Heads with Attentions. This module is
designed to be versatile across a range of input scenarios, improving the model’s adapt-
ability. By integrating multiple self-attention mechanisms in a coordinated fashion across
feature levels, spatial positions, and output channels, we have succeeded in elevating
the representational power of the object detection heads without incurring a substantial
computational burden.

Our experimental evaluation of the VOC2007 and VOC2012 datasets has provided
a robust model for demonstrating the efficacy of YOLOv8-CGRNet. The results have
been promising, showcasing the model’s capability to achieve top-tier performance on
these well-established benchmarks. However, it is important to acknowledge the potential
limitations and avenues for future research. While our model excels in memory efficiency
and accuracy, the quest for an even smaller model footprint without compromising perfor-
mance continues. Additionally, the real-time application of YOLOv8-CGRNet in diverse
environments remains an area ripe for exploration.

In conclusion, YOLOv8-CGRNet stands as a testament to the potential of innovative
model design in the realm of mobile object detection. It paves the way for future research
aimed at refining and deploying lightweight, high-performance models across a spectrum
of real-world applications.

Future optimizations will focus on the following aspects: First, the exploration of
new lightweight model designs that do not compromise applicability in edge computing
and mobile devices. Second, the development of models capable of operating across
multiple domains and the enhancement of their adaptability to different data distributions.
Third, the employment of integrated learning approaches to enhance model robustness and
more research on dynamic adaptive networks that allow the model to adjust its structure
dynamically based on different inputs.

Performance can also be improved by expanding the training dataset. Recognizing
that a more diverse dataset, such as Pascal 2011, which includes the “Pascal Visual Object
Classes (VOC) Challenge”, can significantly improve the model’s robustness. Moreover,
integrating various databases, such as ImageNet and COCO (Common Objects in Context),
will further refine our model’s detection capabilities. This expansion not only provides
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young researchers with the opportunity to delve deeper into a broader range of data pro-
cessing and analysis techniques but also ensures the adaptability of the model in different
real-world scenarios. Simultaneously, we can explore integration with assessment-type
algorithms like DeepRPN-BIQA [13] or apply the structure to segmentation algorithms
similar to SegR-Net [31]. On the other hand, future iterations of YOLOv8-CGRNet can
benefit from exploring advanced machine learning techniques and cross-disciplinary appli-
cations, particularly in medical imaging, where increased accuracy and precision are crucial.
Therefore, future work on our model is not only aimed at enhancing its performance but
also at expanding its application spectrum in the fields of computer vision and medical
image analysis.
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