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Abstract: The fusion of multimodal medical images, particularly CT and MR, is driven by the need
to enhance the diagnostic process by providing clinicians with a single, comprehensive image that
encapsulates all necessary details. Existing fusion methods often exhibit a bias towards features
from one of the source images, making it challenging to simultaneously preserve both structural
information and textural details. Designing an effective fusion method that can preserve more
discriminative information is therefore crucial. In this work, we propose a Coupled Feature-Learning
GAN (CFGAN) to fuse the multimodal medical images into a single informative image. The proposed
method establishes an adversarial game between the discriminators and a couple of generators. First,
the coupled generators are trained to generate two real-like fused images, which are then used
to deceive the two coupled discriminators. Subsequently, the two discriminators are devised to
minimize the structural distance to ensure the abundant information in the original source images is
well-maintained in the fused image. We further empower the generators to be robust under various
scales by constructing a discriminative feature extraction (DFE) block with different dilation rates.
Moreover, we introduce a cross-dimension interaction attention (CIA) block to refine the feature
representations. The qualitative and quantitative experiments on common benchmarks demonstrate

the competitive performance of the CFGAN compared to other state-of-the-art methods.

Keywords: image fusion; CT/MRI image; generative adversarial network; coupled network

1. Introduction

Medical images have been widely employed in healthcare systems as these have
notably facilitated the development of many medical applications, e.g., surgical navigation,
clinical diagnosis, and radiation surgery [1,2]. Therein, computed tomography (CT) and
magnetic resonance imaging (MRI) are two principal medical images. CT images provide
precise locations of the dense structures, such as skeletal tissues, while MRI images are
better at reflecting the soft tissue details, e.g., blood vessels [3]. However, relying on a single
modality often proves insufficient in providing comprehensive diagnostic information [4].
CT and MRI image fusion offers a promising solution to this limitation by harnessing the
strengths of both imaging techniques. Through the fusion process, the complementary
information from CT and MRI images can be effectively integrated, resulting in a more
informative and comprehensive fused image. This synergistic combination of structural and
soft tissue details provides clinicians with a powerful tool to enhance diagnostic accuracy
and support precise treatment planning and guidance [5].

Various schemes have been exploited for image fusion in the literature, including three
main categories: traditional methods, CNN-based methods, and GAN-based methods [6-9].
Traditional methods [10-12] are usually time-consuming due to the complex fusion strate-
gies that are designed manually. Recently, CNN-based methods [13-19] have been proposed
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for image fusion, owing to their superior ability to extract high-level features and generate
high-quality fused images. However, the absence of ground-truth fused images impedes
the direct optimization of CNNs using conventional supervised learning techniques. The
generative adversarial network (GAN) [20] has been widely employed to generate im-
ages with favorable visual effects without the need for ground truth of the fusion image.
Nonetheless, the fusion results of some GAN-based approaches tend to overemphasize
one source image while neglecting the other, thereby resulting in the loss of valuable
details [21,22]. Zhou et al. [5] indicate that this is due to the instability inherent in the
single adversarial learning process. Ma et al. [21] built the dual-discriminator conditional
GAN (DDcGAN), which utilized a generator and dual-discriminators to establish a genera-
tive adversarial relationship and expects the fused image to retain the most crucial feature
information from various source images. Yang et al. [23] proposed a structure similar to
DDcGAN, utilizing image differences as inputs for two discriminators, while simultane-
ously enhancing the ability of both the generator and the discriminators. Although these
methods have achieved good results in terms of visual perception, the instability inherent
in the single adversarial learning process still results in information loss or texture blurring.

In this paper, we propose a Coupled Feature-Learning GAN (CFGAN) model to fuse
multimodal medical images with rich information. The proposed CFGAN is expressed
as a specific adversarial process within a coupled neural network, comprising two gen-
erators and two discriminators, which guarantee that the fused image simultaneously
retains significant information in CT and MRI images. Specifically, the coupled generators
extract details to fuse meaningful information by sharing the same high-level information
and utilizing the diverse underlying details. We embedded the discriminative feature
extraction (DFE) block and the cross-dimension interaction attention (CIA) block in the
generators to enable generators to preserve their robustness against various scales. The DFE
block employs three dilated convolutional filters to enlarge scale diversity and receptive
fields, while the CIA block extracts salient information from the feature tensor across the
dimensions. In addition, we employ pre-fused images as guidance for coupled generators
during the training phase. The coupled discriminators pull each other on the distribution
of the generated data attained by the generators so that the fused image saves the most
prominent features from both CT and MRI images. The proposed CFGAN is an end-to-end
model without requiring any pre-defined fusion rules or ground truth fused images. All in
all, the contributions of the paper are as follows:

1.  We propose an end-to-end deep learning-based fusion model termed Coupled Feature-
Learning GAN (CFGAN) for preserving the locational information of dense structures,
as well as soft tissue details in multi-source images.

2. We introduce the discriminative feature extraction (DFE) block with various dilation
rates to improve the robustness of generators at diverse scales.

3. We design a cross-dimension interaction attention (CIA) block for the coupled gener-
ators, integrating the salient information of cross-dimensional features to refine the
feature representations.

The remainder of this paper is structured as follows. Section 2 presents the relevant
work in image fusion. Section 3 introduces the details of CFGAN. Comparative experiments
are conducted in Section 4. The conclusion is derived in Section 5.

2. Related Work
2.1. Traditional-Based Methods

Traditional fusion methods can be classified into two types: transform domain-based
and spatial domain-based methods [24,25]. In transform domain-based methods, Zhang
et al. [26] introduced an idea based on the non-subsampled contourlet transform to solve
the fusion problem of multifocus images. Chen et al. [27] presented the Intensity-Hue-
Saturation model, which uses the log-Gabor wavelet transform method to fuse high-
frequency and low-frequency sub-bands. For spatial fusion methods, Li et al. [10] separated
the source images into two scales and combined spatial-domain context for image fusion.
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Kumar et al. [11] proposed fusing the source images by weighted average, where the
weights are calculated from the detail images extracted from the source images with cross
bilateral filters. Li et al. [12] described a spatial domain method to solve the problem of
multimodal image fusion using the structure-preserving filter. However, decomposing the
transform and spatial domain components in the traditional fusion methods mentioned
above is time-consuming. Besides, these methods rely on considerably intricate manually-
designed fusion regulations. As a result, it is challenging to convert them into practical
application tools [8].

2.2. CNN-Based Methods

CNN has succeeded extensively in image processing and gradually established a
critical branch of image fusion due to its powerful feature expression capability [28-31].
CNN-based methods are widely adopted to extract image features for image fusion. For
example, Liu et al. [13] built a deep CNN to generate activity level measurement and fusion
rule jointly. Li et al. [14] utilized an encoder to extract the grayscale feature, and the decoder
is utilized to generate a fused image. Zhang et al. [15] employed a fully convolutional
neural network to reconstruct the input image, named IFCNN. This method combined an
applicable fusion rule to select the type of input images. Xu et al. [16] utilized a unified
densely connected network combining weight blocks to obtain retention degrees of features
in different source images. Xu et al. [17] trained the U2Fusion network to maintain the adap-
tive similarity between the fused result and the source images. Liu et al. [32] employed a
coupled contrastive constraint and a multi-level attention module to simultaneously retain
complementary features from both modalities. Mu et al. [33] proposed an Auto-searching
Light-weighted Multi-source Fusion network (ALMFnet), which incorporates both soft-
ware and hardware knowledge in a network architecture searching manner. Li et al. [34]
proposed a flexible semantically guided architecture network with a mask optimization
framework to efficiently preserve unique features from different modalities.

The existing CNN-based image fusion methods heavily rely on the supervised learning
of the network, with the strong assumption that the ground truth has been provided.
Although the ground truth is well-defined for multimodal medical image fusion, it is not
realistic to define such criteria (both dense structure and soft tissue) for fusing images in
the task of CT and MRI image fusion. For example, while multimodal image fusion tasks
such as pansharpening requires a crisp image with no dim parts or a multispectral image
with the same resolution as the panchromatic image, CT and MRI image fusion relies on
the manual design of complex fusion rules. The existing CT and MRI CNN-based methods
assess the smoothness of each patch in the source images by learning a depth model and
compute the corresponding weight map to produce the ultimate fused image.

2.3. GAN-Based Methods

The conception of Generative Adversarial Networks (GAN) was proposed by Good-
fellow et al. [20]. The original GAN comprises two adversarial networks: a generator and a
discriminator. The generator learns the data distribution and constructs a simulated image
that looks real. The generator aims to minimize the data distribution gap between the
generated and real images until the discriminator is unable to distinguish them.

Mathematically, the generative model G is designed to generate images with a distri-
bution that attempts to approximate the distribution of the real training data (Py,,). The
generator G and discriminator D build a minimax two-player game, formulated as:

minmax V(D, G) =E,._p, . (x)l0g(D(x))] )
+E.op o log(1 — D(G(2))].

GAN has been extensively adopted in image fusion and has achieved remarkable
results. For instance, Ma et al. presented FusionGAN [35], in which the generator can
directly generate a fused image with prominent structures and plentiful textures.
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Xu et al. [36] adopted the self-attention scheme in the generator to retain and fuse
local details. Fu et al. [22] designed a generator network based on a convolutional network
with dense blocks to enrich the characteristic information. However, the fused images of
the GAN-based methods often suffer from image blur, loss of details, and poor perception.
We hypothesize that some valuable source image features are missing during the fusion
process, and we need a more rational architecture to preserve those features.

3. Proposed Method
3.1. Overview

The diagram of the CFGAN is illustrated in Figure 1, which consists of coupled gen-
erators and discriminators to effectively assemble the typical information in CT and MRI
images. Initially, the multimodal medical images I, are fed into a pair of generators.
The generator G; is devoted to intensifying the dense structure information of the CT
image in the generated image Gi (L ). The discriminator D; is designed to distinguish
the relative offset of the generated image from the CT image. Similarly, the second gen-
erator G, attempts to inject gradient information from the MRI image into the generated
image Gy (Ium ). The discriminator D, measures the offset of the second generated image
relative to the MRI image. With training iterations, the two coupled generators are able to
attain reliable images that preserve both structural information of CT images and textural
information of MRI images.

However, in the dual-branch structure, each generated image may be biased toward
its corresponding specific source image. To mitigate this bias, the two generated images are
averaged to form the fused image. The final fused image compensates for the limitations of
the two generated images while leveraging their respective strengths. Additionally, the
training phase incorporates pre-fused images I,r as guidance for the coupled generators to
avoid blurring and detail loss [8]. The overall learning process is depicted in Algorithm 1.
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Figure 1. Diagram of the CFGAN for CT and MRI image fusion.
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Algorithm 1: Training algorithm for CFGAN.

Input: The multimodal medical images I(CT, MRI)
Output: Fusion images.
for 1:epoch number do

1
2 for 1:iteration number do
3 Train the coupled discriminators
4 Sample 1 images generated by first generator G1(I.,,), ..., G1(I%,,).
5 Sample n CT images I, ..., I..
6 Update the first discriminator with Adam optimizer.
7 Sample 1 images generated by second generator Gy (I},,), ..., Ga(I,,)-
8 Sample n MRI images I} ..., I" ..
9 Update the second discriminator with Adam optimizer.
10 Train the coupled generators
1 Sample 1 images generated by first generator Gy (I},,), - - ., G1(IL,)-
12 Sample n pre-fused images I; e IZ 2
13 Sample n CT images I, ..., I'.
14 Update the first generator with Adam optimizer.
15 Sample 1 images generated by second generator Go(I},,,), ..., Go(Il,,,)-
16 Sample n MRI images I ... I" .
17 Update the second generator with Adam optimizer.
18 end
19 end

3.2. Generators Architecture
3.2.1. Network Design

Figure 2 depicts the architecture of the coupled generators. It is based on a siamese
convolutional neural network combined with a discriminative feature extraction (DFE)
block and cross-dimension interaction attention (CIA) block. The first three convolutional
blocks have shared weights, where the 5 x 5 filters are utilized in the first and second blocks,
and the 3 x 3 filters are set in the third block. The large convolutional filters obtain large
receptive fields directly from feature maps of input multimodal image pairs, and the small
convolutional filters optimize the feature maps efficiently. Then, the DFE block is utilized to
sample the varied scale information densely. Next, we combine a CIA block to capture the
different spatial directions and precise positional information. The convolution kernels of
the last two layers are 3 x 3 and 1 x 1, respectively. The 3 x 3 kernel condenses the output
feature, while the 1 x 1 filter reduces the dimension to achieve feature fusion, enabling
end-to-end generation of the fused image. In addition, the convolutional block contains:

e A Batch-Normalization (BN) layer follows each layer.
* A LReLU [37] activation function in the first four layers.
* A Tanh activation function in the fifth layer.
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Figure 2. Architecture of the generator. Conv(k-n) indicates the convolutional layer with k filter sizes
and n channels. BN represents the Batch Normalization, and FC indicates fully connected layer.

The stride is set to 1, and the padding is set to the 'SAME’ for all convolution operations.
The number of channels is set to 256, 128, 64, 32, and 1, respectively. The two generators
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share the weights of the first three convolution blocks for the coupling design. This shared
structure allows the shallow layers to extract preliminary information common to the multi-
modal images, facilitating the learning of joint distributions while reducing the number
of parameters.

3.2.2. Discriminative Feature Extraction Block

The discrimination of multi-scale features is an essential factor in image fusion. No-
tably, a convolutional kernel of a single size is limited to capturing information within
a fixed receptive field. Thus, the contextual information across different ranges cannot
be effectively extracted. To address this limitation, we design a discriminative feature
extraction (DFE) block to enlarge the diversity and receptive field. The architecture of the
DEFE block is illustrated in Figure 3.

Convl, Dilation rate=1

Conv3, Dilation rate=1

_ s 4’@ il B N i:ﬁ‘TW‘ . Conv3, Dilation rate=2

Figure 3. Architecture of the discriminative feature extraction (DFE) block.

Conv3, Dilation rate=3

The DFE block contains three 3 x 3 dilated convolutional filters with various dilation
rates of 1, 2, and 3 to increase the receptive field and maintain robustness at various
scales. We insert a 1 x 1 convolutional filter before each dilation layer as a refinement
unit for parameter efficiency. Furthermore, we adopt the channel concatenation to fuse
multi-scale feature maps of different dimensions. Each dilated layer in the block is tightly
integrated with the other layers in the DFE block, so each layer can communicate with all
subsequent layers and provide information that needs to be retained. The combination
of dilated convolutions and network structure offers two key advantages. First, the top
layer considers all pixels in the original feature map. Second, we use the DFE block to
avoid irrelevant information across large distances caused by large expansion rates in the
middle layer. The design retains dense-scale information, which is critical for image fusion
to extract the available multimodal features.

3.2.3. Cross-Dimension Interaction Attention Block

To improve the performance of the network, we adopt an attention mechanism to
extract salient features. The structure of the proposed cross-dimension interaction atten-
tion (CIA) block is depicted in Figure 4.

_.:g: m % g _,w3

1

Figure 4. Architecture of the cross-dimension interaction attention (CIA) block.

The input block follows the output of the DFE block with the dimension of I €
RH*XWXC The CIA block contains three branches to capture dependencies between the
(H,C),(W,C), and (W, H) dimensions of the input tensor, respectively. In the first branch,
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we establish correlations between the height H and channel dimensions C. It is formulated
as follows:

wi = 0(C7(Pool(Py(I)))), 2

where Py () denotes the position of the permuted C and H. This output M; is of the shape

RWxH*C The Pool operation represents the concatenation of max pooling and average

pooling along the channel dimension. The feature map dimension is R?*H*C. C; presents

a convolution filter with the kernel size of 7 x 7, which provides the intermediate output

of dimensions R*H*C. The attention weights are then obtained via a sigmoid function o.

The first branch output is subsequently permuted to match the same shape as the input I.
In the same way, the second branch’s attention weight is denoted as follows:

wy = 0(C7(Pool(Pw(1)))), 3)

where Py (+) represents the position of the permuted C and H. The shape M, is updated
to RIXCXW - After the Pool operation, the dimension of the feature map becomes R?*H*C,
The convolutional filter 7 x 7 is utilized to generate a tensor of the shape R!*C*H A
sigmoid function ¢ generates the second branch attention weights. The second branch
output is subsequently permuted to maintain the same shape as the input I.

For the last branch, the channels of the input tensor are reduced to two-dimension
Mz € R?>*H*XW The 7 x 7 kernel size can reduce the channel dimension. The output is
passed through a sigmoid function to generate the attention weights w3 € R*H*W which
is applied to the input I. It is formulated as follows,

w3 = 0 (C7(Pw(I))). 4)

To sum up, the process to obtain the refined attention map O from the CIA block for
an input tensor I € RF*WXC can be formulated as

1. ,
0= g[PH(MWl) + Py (Mowy) + Iws), (5)

Wgeﬁ; PC/H() and P;,v() indicate permutation to recover the original input dimension
REXWXE,

3.3. Discriminator Architecture

The discriminators D; and D, share the same architecture, which is simpler than
the generator architecture as depicted in Figure 5. The discriminators are intended to be
adversarial to the generators. The input images of these discriminators are the generated
images by the coupled generators G; and G,.

) D (G 1y

niay
|
Ng
nay
|
Nga
ny
|
Ng
nidy
|
oF |

npy
|
Ng
npy
|
Ng
nay
I
Ng
npy
I
o4

> D 5(G 3 Lyari)

| Zg-gAu0y | | 2E-€Au0) |

| ¥9-g€Auod | | ¥9-€Au0d |
| 8Z1-gAu0d | | 8Z1-gAuod |
| 9G2-gAu0d | | 9GZ-gAuod |

Figure 5. Architecture of the discriminator. Conv(k-n) denotes the convolutional layer with a k filter
size. BN is short for batch normalization, and FC denotes the fully connected layer.

Each discriminator includes four convolutional blocks and one fully connected layer.
The convolution blocks utilize 3 x 3 convolution filters with padding operation. The
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number of channels is set to 32, 64, 128, and 256, respectively. In the first four convolutional
layers, we use the LReLU activation function, and in the final layer, we use the Tanh
activation function. The batch normalization layer is embedded into the middle three-layer
convolutional blocks. To reduce the parameter count, the weights of the third and fourth
convolutional blocks and the fully connected layer are shared. The stride is set to 2 to
reduce the feature map size. The final linear layer converts the flattened feature map into
one output that indicates the discriminator’s assessment of the authenticity of the image
generated by G.

3.4. Loss Function
3.4.1. Generator Loss Function

The first generator G; learns the dense structure (e.g., bones and implants) characteris-
tic of the CT image derived from the pre-fused image. The loss function L, consists of the
adversarial loss ®(G1) and the content loss L.on1 with a weight A controlling the trade-off.
It is formulated as follows:

‘CGl = (D(Gl) +ALcont - (6)

The ®(G) stands for the adversarial loss between generator G; and discriminator D .

It is denoted as

1 ¥ 2
(G1) = 7 L (Du(Gi(T), Te) — )", )
n=1
where N denotes the number of fused images. a is the target value that the generator aims
to make the discriminator believe as true for generated images.
Leon1 indicates the content loss for the first generator

1 Y 2
Leomt = iy L (W1 (Th) — 1B+ G 1) — 1

n=1

2
2>, ®)

where ||-||, denotes the matrix 2-norm. The width and height of the input image are
indicated by W and H, respectively. The first term of the £ .1 maintains bone structure
information of the CT image I in the generated image Gi(Ium), and the second term
preserves the pre-fused information contained in the pre-fused image I ;. p is utilized to
coordinate the trade-off between the ®(G1) and L.on1 - Through the loss function L1, the
first generator G; can learn the dense structure information of the CT image I;; and retain
the details of the pre-fused image If.

In the second generator G,, we aim to integrate the gradient information of the MRI
image I,,,,; into the generated image Gy (Ium ). The loss function L, of the second generator
is defined as

£G2 = qD(GZ) + AﬁconZ ’ (9)

where A is applied to coordinate the trade-off between ®(G;) and Lqony -
The ®(G,) stands for the adversarial loss between generator G, and discriminator Dj.
It is formulated as,
1

N
®(G2) = 5 Lo (D2(Gallfun), L) — ) (10)
n=1

The second term content denotes the content loss L.on2 and it is formulated as follows:

2
)

where 5/ represents the gradient operator. The first term of the L onp preserves the gradient
information of the MRI image I,,,,; in the generated image G, (I}},,) by the second generator
Gy, and the second term keeps the pre-fused information contained in the pre-fused image

1 N
Leon2 = gy L

n=1

(BIVGaltfn) — V1313 + [Gatig) — 1y
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I,¢. B is utilized to control the trade-off between the two terms. Consequently, G, can learn
the gradient characteristics of the MRI image derived from the pre-fusion image.

The coupled generators can be regarded as optimizing the pre-fusion image along
various orientations. The final result image retains both CT dense structure and MRI texture
information. Hence, the fused outcome F is the mean value of the two generated images as
follows:

F= (Gl(Imm) +G2(Imm))~ (12)

NI~

3.4.2. Discriminator Loss Function

The coupled discriminators D; and D; play a role in distinguishing the source images
and the generated fused image. Furthermore, through backpropagation, the fusion images
incorporate the information of the corresponding opposite image. The Lp, represents a
measurement of the relative proximity of the image generated by the generator G; to the
CT image. The loss function formula for the first discriminator D; is formulated as

Lp, = E[~10g Dy (I)] + E[~10g(1 = D1(Gi (Lum)))]- (13)

The Lp, is dedicated to calculating the correlation of the image generated by the
generator G, to the MRI image. The loss function of the second discriminator D; is
formulated as

’CDZ =E[- log D2<Imri)] +E[- log(l — Dz(Gz(Imm)))}. (14)

4. Experimental Results and Analysis
4.1. Dataset and Training Details

In the experimental section, the CT and MRI medical images are obtained from
publicly available datasets provided by the Whole Brain Atlas database of Harvard Medical
School [38] and other online sites [39,40]. All the acquired data are pre-registered to ensure
spatial correspondence between the CT and MRI images. We employ 50 pairs of CT and
MRI scan images for the experiment, which are transformed to grayscale and resized to
256 x 256. Among these, fifteen pairs of images are presented as a test set in Figure 6.

Figure 6. Fifteen pairs of CT-MRI images for evaluation. In each pair, the left is the CT image, and the
right is the MRI image.

During the training procedure, to ensure a sufficient number of training samples for
CFGAN, the training images are cropped to patches of size 120 x 120, and randomly flipped
horizontally and vertically. The depth and width of feature maps are constricted because
the coupled generator does not use padding operations. In order to maintain the output
size at 120 x 120, all patch images need to be zero-padded to 132 x 132. The CT and MRI
image patches are combined in a dual channel and delivered to the coupled generators. The
network is trained for 100 epochs using the Adam optimizer [41], and the batch size is set to
32 by default. All the experiments are implemented in PyTorch equipped with an NVIDIA
RTX 3090Ti GPU. In this study, we use the fused results of IFCNN [15] as pre-fused images.



Electronics 2024, 13, 3491

10 of 18

4.2. Experiments and Analysis

In this section, comparative experiments are conducted in subjective and objective
assessments to verify the effectiveness of the proposed CFGAN. The subjective map in-
dicates the sensory quality of the fused image and the degree of retention of significant
information in the source image. The objective assessment utilizes evaluation metrics to
further differentiate between images with analogous sensory quality. In this work, six
metrics, i.e., entropy standard deviation (SD) [42], peak signal-to-noise ratio (PSNR) [43],
correlation coefficient (CC) [44], structural similarity index measure (SSIM) [45], visual
information fidelity (VIF) [46], and Mutual information (MI) [47] are used for objective
evaluation. Notably, these metrics are obtained by comparing the fused image with each
of the source images separately and then averaging the results. The proposed CFGAN
is contrasted with twelve state-of-the-art image fusion methods, i.e., GFF [10], CBF [11],
CNN [13], SAIF [12], FusionGAN [35], Densefuse [14], IFCNN [15], DDcGAN [21], Fu-
sionDN [16], MEF-GAN [36], PerceptualFusion [22], and U2Fusion [17]. First, four typical
case studies are presented in detail. Then, the objective evaluations of the competitors in
the whole dataset are discussed.

4.2.1. Case Study

Case 1: Acute stroke presenting as speech arrest. The experimental data were
obtained from a patient who was a 63-year-old right-handed male with a history of
Micronase-treated adult-onset diabetes mellitus and arterial hypertension ([Online]. Avail-
able: http://www.med.harvard.edu/aanlib/cases/case2/case.html, accessed on 15 May
2023). The subjective comparison results of the first case are depicted in Figure 7. The
CT image is commonly negative during the acute period of stroke, and the MRI image
reveals acute cerebral infarction involving the left pre-central gyrus. Preferably, the fused
image retains the bone part from CT and the textural information from MRIL Although
the traditional methods (e.g., GFF [10], CBF [11], and SAIF [12]) perform well in perse-
vering soft tissues from images, they exhibit poor results in maintaining the illumination
intensity of images. The white contour in the CT image shows the skull, but the fusion of
GFF and CBF results in the loss of a majority of the skull information. The CNN-based
methods (e.g., CNN [13], IFCNN [15], FusionDN [16], and U2Fusion [17]) and GAN-based
methods (e.g., DDcGAN [21] and PerceptualFusion [22]) have lower contrast in the skull
part. The details of brain tissue are sufficiently clear, except for FusionGAN [35] and MEF-
GAN [36]. Densefuse [14] and PerceptualFusion [22] lack some tissue information in the
boundary between encephalic tissue and the skull in the red box, close-up. DDcGAN [21]
and CFGAN retain the skeletal information of CT images more than other competitors.
DDcGAN [21], FusionDN [16], and CFGAN have high contrast, as well as preserving soft
tissue information. The objective results are depicted in Table 1. It illustrates that the
proposed CFGAN performs best in the other four objective indicators except for the CC
indicator, in which the CFGAN ranks fourth place.

Case 2: Acute stroke presenting as right body weakness. This case is from a 45-year-
old female with a sudden onset of right body weakness and trouble speaking ([Online].
Available: http:/ /www.med.harvard.edu/aanlib/cases/case20/case.html, accessed on 15
May 2023). The subjective comparison results of the second case are depicted in Figure 8.
These methods (e.g., GFF [10], SAIF [12], Densefuse [14], and IFCNN [15]) preserve some
tissue texture information, but the fused images have lower contrast, resulting in missing
cephalometric information. The comparison between CNN [13] and FusionGAN [35] has
higher contrast, but the edges are blurred, and some information about brain tissue is lost.
The MEF-GAN [36], U2Fusion [17], and PerceptualFusion [22] are unable to attain distinct
textures or boundaries. The superior colliculus of the fused results in the red box (e.g.,
DDcGAN [21], FusionDN [16], and CFGAN) has higher brightness and richer details,
but the bone information of DDcGAN [21] lacks details, including edges and texture.
Our proposed method can reserve more significant information, particularly gradient
information, contrast, boundary, and textural details. The objective comparison results are
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denoted in Table 2. It illustrates that the proposed CFGAN ranks first in SD, PSNR, SSIM,
and ML For the CC and VIF indicators, the CFGAN ranks third and second, respectively.

Table 1. The objective comparison results for the first case. The most prominent results are highlighted
in bold.

Methods SD PSNR CC SSIM VIF MI

GFF [10] 10.5126 15.7217 0.7924 0.6542 0.5450 3.0995
CBF [11] 10.4616 15.2092 0.7695 0.6506 0.4582 3.2984
CNN [13] 10.5146 15.3438 0.7643 0.6614 0.5721 3.3877
SAIF [12] 10.6046 14.8446 0.7587 0.6575 0.5750 3.3796
FusionGAN [35] 8.9678 12.4935 0.7900 0.2610 0.4436 3.2101
Densefuse [14] 9.7168 14.1000 0.7258 0.1653 0.2010 2.5983
IFCNN [15] 10.6539 16.0550 0.8132 0.6584 0.4731 3.1806
DDcGAN [21] 10.5925 12.2912 0.7916 0.2341 0.3456 3.0899
FusionDN [16] 10.5334 11.5345 0.7938 0.2742 0.4315 3.2145
MEF-GAN [36] 10.5422 14.1312 0.7878 0.6377 0.4211 3.0332
PerceptualFusion [22] 10.6509 12.5574 0.8209 0.2889 0.4393 3.2912
U2Fusion [17] 10.4145 16.2216 0.8094 0.3732 0.3993 3.1125
Ours 10.6910 16.5646 0.7953 0.6836 0.5759 3.4058

{

() MEF-GAN (m) PerceptualFusion (n) U2Fusion (0) Ours

(k) FusionDN

Figure 7. The subjective comparison results of the first case. (a,b) represent the CT and MRI images.
(c—n) denote the fused results of the competitors. (o) is the result of CFGAN. In this and following
figures, at the bottom right of each subfigure, we show the highlighted image in red box.

Case 3: Multiple infarctions. The third case is a 55-year-old male who suffered mul-
tiple refractory focal seizures in the setting of pulmonary empyema ([Online]. Available:
http:/ /www.med.harvard.edu/aanlib/cases/case34/case.html, accessed on 15 May 2023).
The fused results of the subjective comparison for the third case are illustrated in Figure 9.
The source MRI has more clarity and more tissue detail than the CT image, and it makes
sense for both of the above pieces of information to be retained in the fused image. Never-
theless, these methods (e.g., GFF [10], CBF [11], and FusionGAN [35]) have weak visual
contrast. There are distortions in the contours of images (e.g., SAIF [12], DDcGAN [21],
IFCNN [15], and MEF-GAN [36]). In general, SAIF [12], DDcGAN [21], and CFGAN
achieve superior perceived quality. Viewing the atrium in the red box, we can observe
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that CBF [11], SAIF [12], IFCNN [15], DDcGAN [21], U2Fusion [17], and CFGAN reserve
more texture details. The six objective evaluation indicators are presented in Table 3. The
proposed method CFGAN is proved to show better performance compared to the other
twelve methods.

Table 2. The objective comparison results for the second case. The most prominent results are
highlighted in bold.

Methods SD PSNR CC SSIM VIF MI

GFF [10] 9.4583 14.8625 0.8124 0.7089 0.6221 2.7335
CBF [11] 9.2601 13.8956 0.7903 0.7014 0.4652 2.7443
CNN [13] 9.2192 18.2652 0.7777 0.7408 0.5749 3.2288
SAIF [12] 9.2985 13.6398 0.7526 0.7253 0.6994 2.9468
FusionGAN [35] 8.0180 13.1487 0.8258 0.1782 0.4517 2.7466
Densefuse [14] 9.3583 11.6880 0.6073 0.0601 0.0659 1.8011
IFCNN [15] 9.4512 15.7070 0.8453 0.6850 0.5271 2.8248
DDcGAN [21] 9.4113 10.4151 0.8007 0.1418 0.2751 2.5835
FusionDN [16] 9.1808 10.0367 0.7838 0.2000 0.4092 2.6537
MEF-GAN [36] 9.2921 14.8140 0.8339 0.6550 0.4572 2.8217
PerceptualFusion [22] 9.5938 12.9201 0.8544 0.2183 0.4480 2.7561
U2Fusion [17] 9.2378 15.1122 0.8453 0.2495 0.4489 2.7753
CFGAN (Ours) 9.5857 15.9410 0.8350 0.7410 0.6541 3.0756

(d) CBF

(f) SAIF (g) FusionGAN (h) Densefuse

(k) FusionDN (1) MEF-GAN (m) PerceptualFusion (n) U2Fusion (o) Ours

Figure 8. The subjective comparison results of the second case. (a,b) represent the CT and MRI
images. (c—n) denote the fused results of the competitors. (0) is the result of CFGAN.

Case 4: Fatal stroke. The experimental case was collected from a patient who devel-
oped a sudden onset of left-sided hemiparesis, muteness, and bilateral ptosis ([Online].
Available: http://www.med.harvard.edu/aanlib/cases/case37/case.html, accessed on
15 May 2023). The cerebral infarct lesion showed abrupt contrast variation in both CT
and MRI images as illustrated in Figure 10a,b. GFF [10], CBF [11], and SAIF [12] have
inferior performance in retaining the profile information of the CT image. IFCNN [15],
Densefuse [14], and U2Fusion [17] show lower contrasted images. MEF-GAN [36] and
CFGAN preserve more cranial information from CT images and more tissue information
from MRI images compared with U2Fusion [17]. Still, some illumination information is
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lost at the contour by MEF-GAN [36]. The objective comparison results are tabulated in
Table 4. It demonstrates that the CFGAN performs best in the SD, PSNR, SSIM, VIF, and
MI indicators.

Table 3. The objective comparison results for the third case. The most prominent results are high-
lighted in bold.

Methods SD PSNR CC SSIM VIF MI

GFF [10] 10.3692 14.3832 0.7663 0.6704 0.5638 3.0355
CBF [11] 10.3748 13.9841 0.7378 0.6702 0.4505 3.2002
CNN [13] 9.8755 14.0121 0.7290 0.6909 0.4346 3.3365
SAIF [12] 9.6132 13.1604 0.7198 0.6771 0.5445 3.2127
FusionGAN [35] 8.0868 12.2890 0.7386 0.1762 0.4057 3.0279
Densefuse [14] 9.6829 12.4549 0.6183 0.0708 0.1048 2.3603
IFCNN [15] 10.4489 14.6458 0.7562 0.6482 0.4790 3.1004
DDcGAN [21] 10.5841 11.4985 0.7390 0.1692 0.3079 2.8855
FusionDN [16] 10.3115 11.0779 0.7782 0.2351 0.4106 3.0387
MEF-GAN [36] 10.2738 12.8709 0.7750 0.5986 0.4383 3.1169
PerceptualFusion [22] 10.6757 12.2461 0.7912 0.2437 0.4488 3.0562
U2Fusion [17] 9.9803 14.9898 0.7804 0.2786 0.3976 3.0455
CFGAN (Ours) 10.5600 15.2686 0.7650 0.6931 0.5838 3.3411

(g) FusionGAN

(h) Densefuse

(k) FusionDN

(0) Ours

Figure 9. The subjective comparison results of the third case. (a,b) represent the CT and MRI images.
(c-n) denote the fused results of the competitors. (o) is the result of CFGAN.
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Table 4. The objective comparison results for the fourth case. The most prominent results are
highlighted in bold.

Methods SD PSNR CC SSIM VIF MI

GFF [10] 10.2951 14.8623 0.8270 0.7053 0.4982 2.9309
CBF [11] 9.9778 14.0533 0.7987 0.7050 0.4317 3.2012
CNN [13] 10.1570 15.0837 0.7961 0.7254 0.5409 3.2684
SAIF [12] 9.9229 13.5342 0.7783 0.7139 0.5776 3.2500
FusionGAN [35] 9.2530 13.5302 0.8135 0.2090 0.4482 3.0701
Densefuse [14] 9.4289 11.4488 0.6030 0.0730 0.0791 2.0421
IFCNN [15] 10.3208 15.2448 0.8529 0.6836 0.4638 3.0585
DDcGAN [21] 10.2889 11.7470 0.8019 0.1795 0.2906 2.8856
FusionDN [16] 10.1830 11.8313 0.8305 0.2442 0.3776 2.9502
MEF-GAN [36] 10.2693 13.4217 0.8490 0.6324 0.4237 3.0947
PerceptualFusion [22] 10.3464 13.3984 0.8571 0.2551 0.4208 3.0005
U2Fusion [17] 10.1849 15.2428 0.8521 0.2948 0.3827 2.9726
CFGAN (Ours) 10.3870 15.7633 0.8353 0.7330 0.5850 3.3249

() MEF-GAN (m) PerceptualFusion (0) Ours

(k) FusionDN

Figure 10. The subjective comparison results of the fourth case. (a,b) represent the CT and MRI
images. (c—n) denote the fused results of the competitors. (0) is the result of CFGAN.

4.2.2. Qualitative Comparisons

Figure 11 provides the quantitative comparisons on 15 test image pairs. The proposed
scheme has the most prominent values regarding the four evaluation metrics (i.e., SD, PSNR,
SSIM, and VIF) for pairs 7, 13, 13, and 7 of the 15 test set image pairs. Moreovet, the proposed
method also shows competitive results in the CC and MI metrics. The experimental results
indicate that the CFGAN can retain the source image pair feature information to the maximum
extent. This means that the fused images have high contrast, rich edges, and detailed information
so that the results of CFGAN are considerably similar to the source image.
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Figure 11. Quantitative comparison with SOTA competitors.

4.3. Ablation Study

To comprehensively evaluate the effectiveness of the proposed DFE and CIA blocks, we
conduct a series of ablation experiments with the following detailed network configurations:

1.  “Baseline” refers to the vanilla generator model without any component.

2. “Baseline + DFE” denotes the baseline model with a single DFE block.

3. “Baseline + CIA” represents the baseline model with a single CIA block.

4 “Baseline + CIA_DFE” refers to the baseline model with the CIA block and DFE block
sequentially connected.

5. “Baseline + DFE_CIA” refers to the baseline model with the DFE block and CIA block
sequentially connected.

The objective comparison results are shown in Table 5. The results prove that the
DEFE block and CIA block in the generators contribute to substantial improvements in the
baseline method. The “Baseline” achieves the lowest performance. Compared with the
“Baseline”, the “Baseline + DFE”, and “Baseline + CIA” synergize multi-scale information
and salient information, which facilitates an improvement in the objective indicators of
the generated images. Specifically, the “Baseline + DFE” achieves 35.5%, 24.9%, 3.8%,
and 4.6% improvements in PSNR, SSIM, VIF, and MI, respectively. The “Baseline + CIA”
method achieves 31.7%, 18.4%, 4.4%, and 4.6% improvements in PSNR, SSIM, VIF, and M],
respectively. Meanwhile, when the DFE and CIA blocks are simultaneously incorporated
into the baseline, the improvement is more obvious. Between these two configurations,
the “Baseline + DFE_CIA” is better than “Baseline+CIA_DFE”. The final CFGAN with
“Baseline + DFE_CIA” boosts the baseline by 1.3%, 41.2%, 1.6%, 201.2%, 18.1%, and 7.1% in
terms of SD, PSNR, CC, SSIM, VIFE, and M, respectively.

The subjective results with different network configurations are illustrated in Figure 12.
The example images of four cases are illustrated in Figure 12. Figure 12a,b are the source
images of the CT and MRI, respectively. Figure 12c represents the fusion image generated by
the baseline method. The CIA block extracts the salient features, including dense structures
from CT images and soft tissue detail from MRI images as depicted in Figure 12d. The DFE
block can supplement the detailed features of the source image as shown in Figure 12e.
Both the compound modes of ‘Baseline + CIA_DFE’ (Figure 12f) and ‘Baseline + DFE_CIA’
(Figure 12g) can preserve more significant information, particularly skull information and
details of brain tissue.
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(a) CT (b) MRI (c) Baseli (d) Baseline+CIA  (e) Baseline+DFE  (f)Baseline+CIA_DFE (g)Baseline+DFE_CIA

Figure 12. The subjective comparison results of different network configurations.

Table 5. Ablation analysis on the key components in CFGAN. (The best results are marked in bold).

Methods SD PSNR CC SSIM VIF MI

Baseline 9.7235 12.0252 0.7976 0.2417 0.5585 3.0487
Baseline + DFE 9.7658 16.3007 0.8066 0.3019 0.5798 3.1881
Baseline + CIA 9.6916 15.8922 0.8023 0.2862 0.5828 3.1567

Baseline + CIA_DFE 9.8536 16.8894 0.8136 0.5758 0.6096 3.2192
Baseline + DFE_CIA 9.8524 16.9842 0.8105 0.7281 0.6597 3.2662

5. Conclusions

This paper proposes a Coupled Feature-Learning GAN (CFGAN) for CT and MRI
image fusion. The coupled generators and discriminators are designed to fully exploit the
discriminative information in CT and MRI images. The discriminators are trained to form
an adversarial relationship by distinguishing between real source images and fused images
generated by the generators based on a specifically designed content loss. Meanwhile, we
creatively develop a DFE block and a CIA block in the generators to expand the receptive
field and facilitate the extraction of salient features. Notably, the entire model is trained
in an end-to-end manner without the need for ground-truth images. Experimental results
prove that the proposed method achieves competitive performance compared to other
SOTA methods.

6. Future Work

The current study has demonstrated the potential of using GANs for multi-modal
image fusion. However, several challenges remain to be addressed in future research. One
key concern is the lack of explicit regularization to control the contributions of different
modalities. While ideally, the bone information from CT and soft tissue information from
MRI should be preserved in the fused image, it is not always the case, as not all CT and
MRI images necessarily contain such information. To address this limitation, future work
should focus on developing advanced regularization techniques and architectures that
can effectively guide the fusion process to preserve modality-specific information when
available. This may involve incorporating prior knowledge about the anatomical structures
and their corresponding modalities into the loss functions or network architectures. By
explicitly guiding the fusion process to preserve bone details from CT and soft tissue details
from MRI when available, the fused images can provide more accurate and comprehensive
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representations of the underlying anatomy. Furthermore, flexibly identifying and fusing
important information from source images remains a challenge. Future work should
explore advanced techniques for adaptively determining the relevant information to fuse
from each modality based on the specific characteristics of the input images. By addressing
these challenges, future studies can build upon the current findings and develop more
accurate and reliable multi-modal fusion methods.
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