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Abstract: This paper proposes a novel camera–LiDAR calibration method that utilizes an iterative
random sampling and intersection line-based quality evaluation using a foldable plane pair. Firstly,
this paper suggests using a calibration object consisting of two small planes with ChArUco patterns,
which is easy to make and convenient to carry. Secondly, the proposed method adopts an iterative
random sampling to make the calibration procedure robust against sensor data noise and incorrect
object recognition. Lastly, this paper proposes a novel quality evaluation method based on the
dissimilarity between two intersection lines of the plane pairs from the two sensors. Thus, the
proposed method repeats random sampling of sensor data, extrinsic parameter estimation, and
quality evaluation of the estimation result in order to determine the most appropriate calibration
result. Furthermore, this method can also be used for the LiDAR–LiDAR calibration with a slight
modification. In experiments, the proposed method was quantitively evaluated using simulation
data and qualitatively assessed using real-world data. The experimental results show that the
proposed method can successfully perform both camera–LiDAR and LiDAR–LiDAR calibrations
while outperforming the previous approaches.

Keywords: extrinsic calibration; camera; LiDAR; quality evaluation; random sampling; intersection line

1. Introduction

Recent increases in societal demand for autonomous vehicles and mobile robots have
led to active research in using various sensors to perceive their surroundings automati-
cally [1–3]. Specifically, research focusing on the fusion of multiple heterogeneous sensors
is gaining attention to ensure stable performance [4,5]. A representative example of sensor
fusion used for environmental perception uses a camera and Light Detection And Ranging
(LiDAR) together. Cameras can provide detailed appearance and color information of
objects but require additional sophisticated algorithms to extract 3D information. On the
other hand, LiDAR has the advantage of directly providing precise 3D information of
objects but does not provide detailed appearance and color information. Therefore, by
combining a camera and LiDAR, detailed shape, color, and 3D information of surrounding
objects can be simultaneously acquired to improve recognition performance [6,7].

To effectively integrate and use cameras and LiDARs, it is essential to conduct extrin-
sic calibration, which estimates the geometric relationship between sensors installed at
different positions and facing different directions. Various methods have been proposed
for extrinsic calibration. However, most of the previous methods have the limitation of
being vulnerable to noise occurring in sensor data or calibration object recognition. Thus,
calibration errors occur when sensor data are incorrectly acquired or calibration objects are
poorly recognized. Previous methods mostly solve these problems by manually removing
noisy data or poor recognition results [8–16]. However, this manual approach has a critical
limitation that prevents the calibration process from being fully automatic. To overcome
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this limitation, this paper proposes a method in which the calibration process is performed
entirely automatically and is robust to errors in sensor data or calibration object recognition
results. To this end, this paper proposes a method that iteratively conducts a random selec-
tion of sensor data, calibration of extrinsic parameters, and evaluation of the calibration
result. In particular, the proposed method uses a novel evaluation criterion based on the
dissimilarity of 3D lines to select the most appropriate calibration result. Additionally,
previous methods have the limitation that the shape of the calibration object is challenging
to manufacture [16–23]. To mitigate this limitation, this paper proposes a simple calibration
object that is easy to make and convenient to carry because it consists of two small planes
with ChArUco (Checkerboard + ArUco) patterns on them. When using the proposed object,
the quality of the calibration result can be evaluated based on the intersection lines of the
two planes of the object. Besides the above advantages, the proposed method and object
can be used not only for camera–LiDAR calibration but also for LiDAR–LiDAR calibration.

In detail, the proposed method is performed as follows. First, images and point clouds
are acquired from the camera and LiDAR, respectively, while changing the poses of the
calibration object. After that, 3D plane pairs are detected from the data of each sensor. In
the case of the camera, corners are detected from images, intrinsic and extrinsic parameters
of the camera are obtained, and 3D plane pairs are estimated by applying the least squares
method to three-dimensionally reconstructed corners. In the case of the LiDAR, 3D plane
pairs are estimated by applying Random Sample Consensus (RANSAC) to point clouds.
Once 3D plane pairs are obtained from the two sensors, extrinsic parameters (rotation and
translation) that match the plane pairs of the camera and LiDAR are iteratively estimated
by randomly selecting 3D plane pairs. The extrinsic parameters are first estimated by the
least squares method and then refined by the nonlinear optimization. Iteratively estimated
extrinsic parameters are evaluated based on the dissimilarity between 3D intersection lines
of the plane pairs from the camera and LiDAR. Finally, the one that provides the smallest
dissimilarity is selected as the most appropriate calibration result. In the experiments,
the proposed method was quantitatively evaluated using simulation data and quantita-
tively evaluated using real-world data. The experimental results show that the proposed
method accurately determines the extrinsic parameters of two sensors and outperforms
previous approaches.

The rest of this paper is organized as follows. Section 2 describes related research.
Section 3 introduces the suggested calibration object and describes the proposed calibration
method in detail, and Section 4 presents experimental results and discussion. Finally, this
paper is concluded with a summary in Section 5.

2. Related Works

Extrinsic calibration is the task of estimating the rigid body transformations between
multiple sensors. According to the need for target objects (calibration objects), extrinsic cal-
ibration methods can be divided into target-based and targetless. Since this paper focuses
on proposing a target-based method, this literature review will only introduce target-based
methods. Target-based methods have been widely used because they provide reliable cali-
bration results, and various target objects have been suggested. These target-based methods
can be categorized into the 2D object-based approach and 3D object-based approach.

2.1. Two-Dimensional Object-Based Approach

Most 2D object-based methods use a checkerboard, rectangular plane, or plane with
holes for the camera–LiDAR extrinsic calibration. The top row of Figure 1 shows examples
of 2D objects used in previous methods. Zhang et al. [8] proposed a method that calibrates
a 2D LiDAR and camera using a checkerboard. This method estimated extrinsic parameters
based on the planar constraint using the least squares method followed by nonlinear opti-
mization based on point-to-plane distance. Unnikrishnan et al. [9] suggested a calibration
method similar to [1], but this method deals with a 3D LiDAR rather than a 2D LiDAR.
Rodriguez et al. [10] utilized a plane with a single circular hole. This method finds the
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center of the circular hole from two sensors, and it estimates extrinsic parameters using the
least squares method with the point correspondences followed by nonlinear optimization
based on Euclidean distance between corresponding centers. Geiger et al. [11] proposed a
method that utilizes multiple checkerboards. This method finds checkerboard planes in
point clouds and images, and it estimates extrinsic parameters by aligning normal vectors
of checkerboard planes and minimizing point-to-plane distance. Kim et al. [12] suggested
a similar approach to [11]. The major difference from [11] is that this method estimates
translation between two sensors by minimizing the distance between two planes: one from
the camera and the other from the LiDAR. Sui et al. [13] proposed a calibration method
based on a plane with four circular holes. This method finds circles in point clouds and
images and roughly estimates extrinsic parameters based on the centers and radiuses of
detected circles. It then refines them by minimizing distances between depth discontinuities
of point clouds and edge pixels of images. Zhou et al. [14] suggested a calibration method
based on four checkerboard edges. This method estimates the extrinsic parameters through
the geometric correspondence between four edges of the plane in point clouds and planar
parameters in images, and it optimizes them by minimizing point-to-plane and point-to-line
distances. Tu et al. [15] utilized a planar checkerboard for finding 2D–3D point correspon-
dences. This method extracts 2D corners of the checkerboard in images and corresponding
3D points in point clouds by finding the checkerboard vertexes. It estimates extrinsic
parameters using the efficient Perspective-n-Points (PnP) and minimizing the reprojection
errors. Xie et al. [16] proposed a method that uses a checkerboard with square holes, as
shown in Figure 1 (top second image). This method extracts corresponding points in two
sensors, and it calculates a linear alignment matrix as extrinsic parameters by minimizing
the distance between 2D points in images and projected 3D points. Huang et al. [24] sug-
gested a method based on a 2D diamond-shaped plane with a visual marker. This method
extracts corresponding plane vertices in images and point clouds, and it estimates extrinsic
parameters using the standard PnP and intersection over union (IoU)-based optimization.
Mishra et al. [25] utilized a marker-less planar target. This method finds edges and corners
in images and boundary points in point clouds, and it estimates extrinsic parameters using
a nonlinear least squares method based on point-to-plane and point-to-back-projected
plane constraints. Xu et al. [26] proposed a triangular board-based calibration method.
This method extracts a 3D plane and edges of the triangular board to obtain its 3D vertex
locations. Extrinsic parameters are estimated based on the 3D vertexes in point clouds and
2D corners in images after removing 3D vertexes whose angles differ from their actual
values. Beltrán et al. [17] used a plane with four circular holes as well as four ArUco
markers, as shown in Figure 1 (top third image). This method detects the centers of four
holes in point clouds and finds planar parameters and the centers of four holes in images.
It estimates extrinsic parameters based on point-to-point distance using the least squares
method. Li et al. [18] suggested a method based on a checkerboard with four circular holes.
In this method, the centers of the holes are designed to be the same as the centers of the
checkerboard rectangles. It finds the centers of the holes in point clouds and the centers of
the rectangles in images. Extrinsic parameters are estimated by minimizing the projected
distance. Liu et al. [19] utilized a circular plane with a checkerboard printed on it, as shown
in Figure 1 (top right image). This method finds the circle centers and the plane normal
vectors in both point clouds and images. It estimates extrinsic parameters based on these
correspondences using the standard PnP and nonlinear optimization with the reprojection
error. Yan et al. [20] proposed a method that uses a checkerboard plane with four circular
holes similar to [18]. This method detects the centers of the four holes in point clouds
based on depth discontinuities and those in images based on the calibration board size. It
estimates the extrinsic parameters by minimizing the reprojection error of the hole centers.
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Figure 1. Calibration objects used for camera–LiDAR extrinsic calibration in previous methods. Top
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respectively.

2.2. Three-Dimensional Object-Based Approach

Most 3D object-based methods perform extrinsic calibration using polyhedrons or
spheres. This approach has been less actively researched than the 2D object-based approach
due to the difficulties in making calibration objects. The bottom row of Figure 1 shows
examples of 3D objects used in previous methods. Gong et al. [28] proposed a method
that uses an arbitrary trihedron. This method estimates planes of the trihedron in point
clouds using 3D information and those in images using the planarity constraint established
between two frames. It estimates extrinsic parameters using the least squares method
followed by nonlinear optimization based on the relation between corresponding planes.
Pusztai and Hajder [29] suggested a method based on a cuboid with a known size. This
method estimates three perpendicular planes of the cuboid and calculates its corners in
point clouds. It also finds the corresponding corners in images using the Harris corner
detector. Extrinsic parameters are estimated by applying the Effective-PnP to the corre-
sponding points. Cai et al. [21] utilized a calibration object composed of a checkerboard
and four triangular pyramid shapes on it, as shown in Figure 1 (bottom left image). This
method finds vertexes of the triangular pyramids in point clouds and corresponding points
in images by detecting corners of the checkerboard. It calculates the transformation between
3D vertexes and 2D corners and estimates extrinsic parameters based on the transformation.
Kümmerle et al. [30] proposed a spherical object-based method. This method finds sphere
centers by fitting 3D spheres in point clouds and calculates the corresponding sphere cen-
ters in images by fitting ellipses based on edge pixels. Extrinsic parameters are estimated by
finding the rigid transformation that minimizes the sum of squared point-to-ray distances.
Tóth et al. [27] suggested a similar method to [30] based on a spherical object. This method
estimates extrinsic parameters by calculating the rigid transformation between the corre-
sponding sphere centers based on the least squares method. Erke et al. [31] utilized three
orthogonal planes with a checkerboard printed on one of them. This method finds extrinsic
parameters by separately conducting LiDAR–robot and camera–robot calibrations. The
former is based on normal vectors of three orthogonal planes, and the latter is based on the
checkerboard on one of the planes. Bu et al. [22] proposed using a triangular pyramid with
three checkerboard patterns on its three planes, as shown in Figure 1 (bottom third image).
This method estimates the LiDAR’s extrinsic parameters based on the fitting result of the
three planes and the camera’s extrinsic parameters based on the detection result of the
three checkerboards. It combines these parameters to obtain the initial extrinsic parameters
between two sensors and finds the optimal parameters by minimizing the point-to-plane
distance. Fang et al. [23] suggested a method based on a panoramic infrastructure built by
covering a room with circular markers, as shown in Figure 1 (bottom right image). This
method reconstructs the 3D structures of the infrastructure using a stereo camera before
the calibration. During the calibration, it localizes the LiDAR based on lines and corners
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and localizes the camera based on the PnP using marker centers. Extrinsic parameters are
estimated based on the localization results of two sensors. Agrawal et al. [32] utilized a
triangular pyramid of silver reflecting foil on a rectangular plane with a red boundary. This
method finds the triangular centers by clustering the points with high reflectivity in point
clouds and corresponding centers in images using a deep-learning-based object detector. It
estimates extrinsic parameters by applying the PnP to these 2D–3D correspondences.

Table 1 shows that the previous methods are classified according to the calibration
object, the creation difficulty of the calibration object, and the calibration quality evaluation
method. In addition, this table shows that the proposed method utilizes an easily producible
calibration object compared to the previous methods and includes a method for evaluating
calibration results.

Table 1. Summary of the related works.

Calibration Object Method
Calibration

Object Creation
Difficulty

Calibration Quality
Evaluation Method

2D

Checkerboard [8,9,11,12,14,15] Easy No

Planar board
with holes [10,13,16–18,20] Medium No

Planar board
in special shapes [19,24–26] Medium No

3D

Spherical object [27,30] Hard No

Polyhedron
[21–23,28,29,31,32] Hard No

Proposed method Easy Yes

3. Proposed Method
3.1. Proposed Calibration Object

In this paper, we propose a calibration object consisting of two small-sized planes,
designed in this way to be easy to manufacture, convenient to carry, and automatically
perform object recognition. Figure 2 shows the proposed calibration object. The size of
the two planes that make up this object are each 50 × 50 cm, and the object was made
to be foldable for convenient portability. The two planes are composed of a ChArUco
board [33] to make it easy to automatically recognize the corner positions and indices.
ChArUco is an integrated marker that combines a checkerboard with an ArUco marker.
By detecting the corner of the checkerboard and recognizing the ArUco marker around
the detected corner, location and index information can be obtained simultaneously. At
this time, in order to facilitate automatic distinction between the two planes, ChArUco
markers of different sizes are printed on the two planes. The proposed calibration object
uses 6 × 6 ArUco markers on the left plane and 5 × 5 ArUco markers on the right plane to
distinguish between two planes automatically. Once images and point clouds are obtained
from the two sensors while changing the position and orientation of the calibration object,
LiDAR–camera calibration is performed by detecting 3D plane pairs. During the calibration,
the proposed method uses the intersection of the two planes (green line in Figure 2) to
select the most appropriate calibration result. Detailed information is provided starting
from Section 3.2.
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3.2. Overview of the Proposed Method

The overall structure of the proposed method is presented in Figure 3. First, the
proposed method uses the camera’s images and LiDAR’s point clouds acquired by changing
the calibration object in Figure 2 to different positions and postures as inputs. At this time,
the calibration object must be located where the field-of-view (FOV) of the two sensors
overlap. After acquiring data from the two sensors, two planes constituting the calibration
object are estimated from the image and point cloud. This process is called two-plane
estimation, and the two planes estimated from the image and the two planes estimated
from the point cloud are called a two-plane pair (TPP). Several TPPs are obtained from the
data acquired by changing the position and direction of the calibration object, and a group
of these TPPs is called a TPP set. The extrinsic parameter estimation method takes the TPP
set as input and estimates the rotation and translation, which are external relationships
between two sensors. The proposed method can also be used for LiDAR–LiDAR extrinsic
calibration by only changing the two-plane estimation for the camera into the two-plane
estimation for the LiDAR in Figure 3.
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Figure 4 shows the flowchart of the extrinsic parameter estimation step in Figure 3.
When the TPP set is input, some TPPs are randomly selected for the TPP set in the next
step. The i-th randomly selected TPP subset is indicated as TPPi

sub, and the rotation and
translation estimated from TPPi

sub are indicated as Ri and ti, respectively. The rotation
and translation estimation consists of the least squares method based on the coincidence of
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planes and nonlinear optimization that minimizes point-to-plane distances. Once Ri and
ti are estimated, their quality is evaluated based on the Intersection Line Difference (ILD)
after aligning the coordinate systems of the two sensors. ILD is calculated based on the
angle and distance differences between the intersection line of the two planes estimated
from the image and the intersection line of the two planes estimated from the point cloud.
The ILD is calculated from all TPPs included in the TPP set, and the mean ILD (mILD) is
obtained by taking the average of the top 80%. The proposed method repeats the above
process for a predetermined number and selects the rotation and translation that yield the
smallest mILD as the final result. The number of TPP subsets used in the proposed method
was 5, and the max iteration was set to 700. Details on these steps will be introduced in the
following sections.
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3.3. Three-Dimensional Plane Estimation
3.3.1. Camera-Based 3D Plane Estimation

The proposed method estimates the two planes of the calibration object three-
dimensionally from images acquired by the camera. This process consists of three steps:
corner detection, camera calibration, and 3D plane estimation. First, the corners of the
ChArUco board squares are detected, and then the ArUco patterns are recognized to iden-
tify the corner IDs. OpenCV is used to perform ChArUco board creation, corner detection,
and identification [34]. Figure 5a shows an example result of the corner detection and
identification. Red and blue dots indicate the corner locations on the left and right planes,
respectively, and the yellow numbers indicate the corner IDs. After that, camera calibration
is performed based on the corner detection results. The camera calibration is conducted
by Zang’s method [35], which is a representative method that estimates the intrinsic and
extrinsic parameters of the camera based on the corners of the checkerboard taken from
various angles. Finally, the 3D locations of the corners are calculated, and the 3D planes are
estimated based on them. The 3D locations of the ChArUco board corners are calculated
by Equation (1) using the rotation (RC) and translation (tC) between the ChArUco board
coordinates and camera coordinates.Xc

Yc
Zc

 = RC

XB
YB
0

+ tC (1)

where
[
Xc Yc Zc

]T and
[
XB YB 0

]T are the 3D locations of the corner in the camera
coordinates and ChArUco board coordinates, respectively. Because the ChArUco board is
flat, the Z-axis value of

[
XB YB 0

]T is zero.
[
XB YB 0

]T can be determined from the
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predetermined geometry of the ChArUco board, and RC and tC are obtained through the
camera calibration. In Figure 5b, red and blue dots show the reconstructed 3D corners of the
left and right ChArUco boards, respectively. After that, the least squares method is applied
to the 3D corners of each plane to estimate the parameters of the 3D plane. Figure 5c shows
two 3D planes estimated by the 3D point in Figure 5b.
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Figure 5. Example result of the camera-based 3D plane estimation. (a) Corner detection and
identification result. (b) Three-dimensional reconstruction result. (c) Three-dimensional plane
estimation result.

3.3.2. LiDAR-Based 3D Plane Estimation

As with the camera, the proposed method estimates the two planes of the calibration
object three-dimensionally from point clouds acquired by the LiDAR. Unlike the camera,
the LiDAR provides 3D location directly, so there is no need for a 3D location calculation.
However, since the point cloud generally includes 3D points of objects other than the
calibration object, as shown in Figure 6a, it is necessary to estimate the 3D planes robustly
against these objects. For this purpose, this paper first selects the points within the region
of interest (ROI) and then uses random sample consensus (RANSAC)-based 3D plane
estimation [36]. Figure 6b shows an example result of the ROI-based point selection. This
paper simply selects the points inside the predetermined area. If no other planar objects
are around the LiDAR, the ROI is set based only on distance. In this case, the ROI is set to
2.0 m around the LiDAR. If other planar objects, such as walls, exist around the LIDAR,
the ROI is set based on both distance and angle. The angular ROI is set using the rough
angle at which the fields of view of the two sensors overlap. As shown in Figure 6b, the
points after the ROI-based point selection still include objects other than the calibration
object. Therefore, in this paper, 3D plane estimation is performed based on RANSAC, a
representative estimator robust against outliers. To estimate two planes of the proposed
calibration object, this paper first estimates one plane using RANSAC and removes all
points close to the estimated plane. After that, RANSAC is used again for the remaining
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points to estimate the other plane. Figure 6c shows the 3D plane estimation result based on
the point cloud in Figure 6b.
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3.4. Extrinsic Parameter Estimation
3.4.1. Initialization and Optimization

Once the TPP (two-plane pair) set is obtained from the camera and LiDAR using
the 3D plane estimation methods in Section 3.3, the proposed method randomly selects
TPP subsets from the TPP set as described in the flowchart of Figure 4. This subsection
explains how the proposed method estimates the extrinsic parameters of two sensors
using the TPP subset. This process consists of two steps: parameter initialization and
nonlinear optimization.

First, initial extrinsic parameters are estimated based on the relation between the
corresponding 3D planes acquired by the two sensors. The corresponding 3D planes satisfy
the relation in Equation (2). [

nC
i

dC
i

]
=

[
R 0

−tTR 1

][
nL

i
dL

i

]
(2)

where R and t indicate the rotation and translation between the camera and LiDAR.[(
nC

i
)T dC

i

]T
and

[(
nL

i
)T dL

i

]T
are parameters of the corresponding i-th 3D planes esti-

mated from the camera and LiDAR, respectively. nC
i and nL

i are 3 × 1 normal vectors of
the two planes. dC

i and dL
i are scalar values that indicate distances between the two planes

and the origin, respectively. When N pairs of planes are detected, R can be calculated by
Equation (3) as a least-squares solution [11].

R = argmax
R

N
∑

i=1

(
nC

i
)TRnL

i = VUT

N
∑

i=1

(
nL

i
)(

nC
i
)T

= UDVT
(3)
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Once R is obtained, t can be calculated by Equation (4), which is derived from Equation (2).

dC
i = −tTRnL

i + dL
i

t = pinv
(

LRT
)

d

L =


(
nL

1
)T

...(
nL

N
)T

, d =

 dL
1 − dC

1
...

dL
N − dC

N

 (4)

where pinv indicates the pseudo inverse, L is a N × 3 matrix, and d is a N × 1 vector.
After estimating the initial R and t, nonlinear optimization is utilized to find R and

t that minimize the point-to-plane distance (c) in Equation (5). To this end, Levenberg–
Marquardt (LM), one of the representative nonlinear optimization methods, is used [37].

c =
N
∑

i=1

[
1

ML
i

ML
i

∑
j=1

dist
(

HxL
i,j,π

C
i

)
+ 1

MC
i

MC
i

∑
k=1

dist
(

H−1xC
i,k,πL

i

)]
H =

[
R t
0T 1

] (5)

where dist indicates the function for calculating the point-to-plane distance. H is a 4 × 4
matrix representing projective transformation that converts points in the LiDAR coordinates
to the camera coordinates. xL

i,j is the j-th point belonging to the i-th plane estimated from

the LiDAR and xC
i,k is the k-th point belonging to the i-th plane estimated from the camera.

πC
i and πL

i are the parameters of the i-th plane estimated from the LiDAR and camera,
respectively. ML

i and MC
i are the numbers of the 3D points in the i-th planes of the LiDAR

and camera, respectively.

3.4.2. Quality Evaluation for Extrinsic Parameters

As shown in the flowchart of Figure 4, the proposed method repeats the process
that randomly selects a TPP subset, estimates extrinsic parameters, and evaluates the
quality of the estimation result. The extrinsic parameter estimation is described in the
previous section, and this section explains the quality evaluation method for the estimated
extrinsic parameters.

The proposed method evaluates the quality of extrinsic parameters based on the
dissimilarity between the intersection lines of two planes. The suggested dissimilarity
measure is called mean Intersection Line Difference (mILD), which is calculated as follows:
First, the intersection line between the two planes of the proposed calibration object is
calculated from the camera and LiDAR in the whole TPP set. After that, intersection lines
in the camera coordinates are converted to the LiDAR coordinates based on the estimated
extrinsic parameters. In Figure 7a,b, magenta and green lines are the intersection lines
estimated from the camera and LiDAR, respectively. The left side of Figure 7c shows the
result of overlapping Figure 7a,b. The Intersection Line Difference (ILD) is calculated based
on the dissimilarity between the intersection line from the camera and that from the LiDAR,
as shown on the right side of Figure 7c. In detail, the ILD consists of two types of difference:
distance difference (ILD_distance) and angle difference (ILD_angle).

Figure 8 along with Equations (6) and (7) describe how ILD_distance and ILD_angle
are calculated. In Figure 8, the magenta line (linecam) and green line (linelidar) are the
intersection lines from the camera and LiDAR, respectively. ILD_distance is calculated by
Equation (6), which takes an average of di. di is a distance between a point (pi

cam) on linecam
and the projected point of pi

cam onto linelidar, as shown in Figure 8.

ILD_distance = 1
n

n
∑

i=1
di

di =
∥vi×l∥
∥l∥

(6)
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In Figure 8 and Equation (6), c and l are direction vectors of linecam and linelidar, re-
spectively. pi

cam and pi
lidar are randomly selected points on linecam and linelidar, respectively.

vi is a vector between pi
cam and pi

lidar. n is the number of sample points and is set to 100 in
this paper. ILD_angle is obtained by measuring the angle between the directional vectors
of linecam and linelidar as in Equation (7).

ILD_angle = cos−1 c·l
∥c∥∥l∥ (7)
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ILD (ILD_distance and ILD_angle) is calculated for all TPPs included in the TPP set.
mILD (mILD_distance and mILD_angle) is calculated by averaging the smallest 80% of
the ILDs in all TPPs. By excluding a certain percentage of ILDs with large values, mILD
becomes more robust against situations where the sensor data or calibration object detection
are erroneous. The ratio of TPPs included in the mILD calculation may change depending
on the noise situation of the sensor or the performance of the object detection.

Finally, mILD is used to measure the quality of the estimated extrinsic parameters. In
detail, as shown in the flowchart of Figure 4, the proposed method repeatedly estimated
extrinsic parameters by randomly selecting TPP subsets, and it updates the extrinsic
parameters only when they simultaneously reduce both mILD_distance and mILD_angle.
Thus, this process selects the extrinsic parameters, which provide the smallest mILD as the
final calibration result.

4. Experiment Results and Discussion
4.1. Simulation-Based Quantitative Evaluation

The proposed method was quantitatively evaluated based on a simulation using
Gazebo [38]. In Figure 9, (a) shows the simulation environment, (b) indicates three dif-
ferent sensor configurations used in the simulation, and (c) presents example data acquired
from two sensors. The same sensors as the actual sensors were used for the simulation:
Intel RealSense D455 for the camera and Velodyne VLP-16 for the LiDAR. The camera and
LiDAR noises were measured using the actual sensors and applied to the simulated sensor
data: the standard deviation of the range noise was set to 0.0097 m for the LiDAR, and the
peak signal-to-noise ratio (PSNR) of the image to 42 dB. The simulation was conducted
with three different positions of the camera and LiDAR, as shown in Figure 9b. For each
configuration, 20 images and point clouds were acquired while changing the poses of the
calibration objects.

Table 2 shows a performance comparison of the proposed method with two other
approaches. In this table, Method I estimates extrinsic parameters using all TPP sets
based on the method described in Section 3.4.1. Most calibration methods use this type of
approach based on the whole data. Method II uses the proposed sub-sampling method
shown in the flowchart of Figure 4. However, this method evaluates the quality of the
estimated parameters based on the point-to-plane distance instead of the proposed mILD.
In other words, the parameters providing the smallest distance between the point and the
plane are selected as the final result. In contrast, the proposed method performs the quality
evaluation of the estimated parameters based on the proposed sub-sampling method, and
the suggested mILD, as shown in Figure 4. This means that the parameters that provide
the smallest mILD are selected as the final result. Table 2 includes the means and standard
deviations of rotation and translation errors. These were calculated by applying the three
methods 30 times to the simulation data with three sensor configurations. The error refers
to the difference between the ground truth provided by the simulation and the result of the
method. The rotation error is obtained by calculating the average of the angle errors of the
three axes, and the translation error is also calculated in the same way.

Table 2. Quantitative comparison of three different camera–LiDAR calibration methods.

Method

Error Translation Error (cm) Rotation Error (deg)

Mean Std Mean Std

Method I
(Whole data set) 0.52 0.33 1.30 1.14

Method II
(sub-sampling and
point-plane distance)

0.37 0.17 0.26 0.10

Proposed method
(sub-sampling and mILD) 0.37 0.14 0.14 0.07
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In Table 2, the methods that use the proposed sub-sampling approach (Method II
and Proposed method) perform significantly better than the method that does not use it
(Method I). This is because the samples with erroneous data or incorrect plane estimation
can negatively affect the estimation result when all samples are used. However, when
using the proposed sub-sampling, these unfavorable samples are excluded during the
random subset selection, which enables more precise estimation. Comparing the two
methods using the suggested sub-sampling in Table 2, the proposed method evaluating
parameters based on the proposed mILD outperforms Method II, which uses the point-to-
plane distance-based quality evaluation. Upon closer examination of the errors between
these two methods, it is evident that while the translation errors are quite similar, there is
a relatively significant difference in the rotation errors. This difference can be attributed
to the point-to-plane distance failing to adequately capture changes when rotation occurs
in a direction perpendicular to the plane. In contrast, the proposed mILD considers not
only the difference in translations (mILD_distance) but also the difference in orientations
(mILD_angle), making it more robust to rotation compared to the point-to-plane distance.
Therefore, through Table 2, it can be confirmed that the most precise calibration result is
achieved when the proposed sub-sample method and mILD are used in conjunction.

Table 3 shows the performance comparison between the proposed method and the
previous method in [14] implemented by [39], which is one of the widely used methods.
The method in [14] uses a different type of calibration object (single rectangular checker-
board) from the proposed method. During the performance comparison, the three sensor
configurations in Figure 9b were set to be the same, and only the calibration object was
changed. Since the method in [14] performs calibration by detecting four sides of the
checkerboard, this method has a strict condition that the data of the two sensors simultane-
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ously contain all four sides of the checkerboard. Due to this, after acquiring the sensor data
while changing the poses of the checkerboard, we manually selected some data satisfying
the condition of the method in [14] for the performance comparison. This strict condition
for the data acquisition makes the calibration process difficult, so it is a significant practical
disadvantage of the method in [14].

Table 3. Quantitative comparison between previous and proposed methods.

Method

Error Translation Error (cm) Rotation Error (deg)

Mean Std Mean Std

Previous method in [14] 1.90 0.75 0.31 0.15
Proposed method
(sub-sampling and mILD) 0.37 0.14 0.14 0.07

In Table 3, the proposed method clearly outperforms the previous method in [14] in
terms of both translation and rotation errors. There may be two main reasons for this result.
One is that the method in [14] uses points located at the boundary of the checkerboard,
which may not correspond to the actual boundary due to the low resolution of the LiDAR.
Noise on these boundary points affects the performance of the line detection. The other
is that the method does not include a process to filter out noisy sensor data or inaccurate
detection results, unlike the proposed method.

4.2. Real-Data-Based Qualitative Evaluation

In order to check whether the proposed method operates correctly in a real-world
environment, we installed a camera and LiDAR on a robot-shaped jig and acquired sensor
data from them to perform the calibration. In Figure 10, (a) shows the two sensors attached
to the robot-shaped jig, and (b) presents example data acquired from the two sensors. In
this experiment, the same sensors as those in the simulation were used: Intel RealSense
D455 for the camera and Velodyne VLP-16 for the LiDAR. The calibration object was placed
1~2 m in front of the sensors, and 20 images and point clouds were acquired by changing
its pose. Figure 11 shows example images acquired by the camera while changing the pose
of the calibration object for the camera–LiDAR calibration.

Figure 12 shows the updating process of the extrinsic parameters based on the sug-
gested mILD in real-world data. In this figure, (a–c) show consecutively resulting calibration
results as the parameter estimation and quality evaluation in Figure 4 are repeated. Ma-
genta and green lines indicate the intersection lines of the two planes from the camera and
LiDAR, respectively. It can be clearly seen that the magenta and green lines become closer
to each other as the iteration progresses. This means that the quality of the parameters
is improving. It can also be noticed that the red points, the projected 3D points of the
calibration object, are becoming more consistent with the image of the calibration object as
the iteration progresses. Figure 13 shows the results of projecting the LiDAR’s point clouds
onto the camera’s images using the final calibration result of the proposed method. Even
when objects with different shapes are located at various distances, it can be confirmed that
the point clouds of the LiDAR are correctly aligned with the images of the camera. This
result shows the proposed method can successfully calibrate the camera and LiDAR in
real-world situations.



Electronics 2024, 13, 249 15 of 20Electronics 2024, 13, x FOR PEER REVIEW 15 of 20 
 

 

 
(a) 

  
(b) 

Figure 10. Real-world experimental situation and acquired data. (a) Camera and LiDAR attached 
to the robot-shaped jig. (b) Example data (left: image from the camera, right: point cloud from the 
LiDAR) 

 
Figure 11. Example images acquired by the camera while changing the pose of the calibration object. 

Figure 12 shows the updating process of the extrinsic parameters based on the sug-
gested mILD in real-world data. In this figure, (a–c) show consecutively resulting calibra-
tion results as the parameter estimation and quality evaluation in Figure 4 are repeated. 
Magenta and green lines indicate the intersection lines of the two planes from the camera 
and LiDAR, respectively. It can be clearly seen that the magenta and green lines become 
closer to each other as the iteration progresses. This means that the quality of the param-
eters is improving. It can also be noticed that the red points, the projected 3D points of the 
calibration object, are becoming more consistent with the image of the calibration object 
as the iteration progresses. Figure 13 shows the results of projecting the LiDAR’s point 
clouds onto the camera’s images using the final calibration result of the proposed method. 

Figure 10. Real-world experimental situation and acquired data. (a) Camera and LiDAR attached
to the robot-shaped jig. (b) Example data (left: image from the camera, right: point cloud from
the LiDAR).

Electronics 2024, 13, x FOR PEER REVIEW 15 of 20 
 

 

 
(a) 

  
(b) 

Figure 10. Real-world experimental situation and acquired data. (a) Camera and LiDAR attached 
to the robot-shaped jig. (b) Example data (left: image from the camera, right: point cloud from the 
LiDAR) 

 
Figure 11. Example images acquired by the camera while changing the pose of the calibration object. 

Figure 12 shows the updating process of the extrinsic parameters based on the sug-
gested mILD in real-world data. In this figure, (a–c) show consecutively resulting calibra-
tion results as the parameter estimation and quality evaluation in Figure 4 are repeated. 
Magenta and green lines indicate the intersection lines of the two planes from the camera 
and LiDAR, respectively. It can be clearly seen that the magenta and green lines become 
closer to each other as the iteration progresses. This means that the quality of the param-
eters is improving. It can also be noticed that the red points, the projected 3D points of the 
calibration object, are becoming more consistent with the image of the calibration object 
as the iteration progresses. Figure 13 shows the results of projecting the LiDAR’s point 
clouds onto the camera’s images using the final calibration result of the proposed method. 

Figure 11. Example images acquired by the camera while changing the pose of the calibration object.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 20 
 

 

Even when objects with different shapes are located at various distances, it can be con-
firmed that the point clouds of the LiDAR are correctly aligned with the images of the 
camera. This result shows the proposed method can successfully calibrate the camera and 
LiDAR in real-world situations. 

 
(a) (b) (c) 

Figure 12. Visualization of the updating process based on the suggested mILD. Extrinsic parameters 
are being updated in the order (a–c). 

 
Figure 13. Example results of projecting the point clouds onto the images using the calibration result 
of the proposed method. The projected point clouds are displayed in different colors depending on 
the distance. 

4.3. LiDAR–LiDAR Calibration 
Since the proposed method is based on the relationship between 3D planes and the 

coincidence of the intersection lines, it can be used not only for camera–LiDAR calibration 
but also for LiDAR–LiDAR calibration. For this, we can simply change the two-plane es-
timation for the camera into the two-plane estimation for the LiDAR in Figure 3. To verify 
the ability of the proposed method for the LiDAR–LiDAR calibration, this paper conducts 
a quantitative evaluation based on Gazebo simulation as well as a qualitative evaluation 
using real-world data. The two LiDARs are Velodyne VLP-16. For both simulation and 
real-world experiments, the method of data acquisition is the same as that of the camera–
LiDAR calibration. 

Table 4 shows a performance comparison of the proposed method with two other 
approaches in terms of the LiDAR–LiDAR calibration. The results are similar to those of 
the camera–LiDAR calibration presented in Table 2. The methods that use the proposed 

Figure 12. Visualization of the updating process based on the suggested mILD. Extrinsic parameters
are being updated in the order (a–c).



Electronics 2024, 13, 249 16 of 20

Electronics 2024, 13, x FOR PEER REVIEW 16 of 20 
 

 

Even when objects with different shapes are located at various distances, it can be con-
firmed that the point clouds of the LiDAR are correctly aligned with the images of the 
camera. This result shows the proposed method can successfully calibrate the camera and 
LiDAR in real-world situations. 

 
(a) (b) (c) 

Figure 12. Visualization of the updating process based on the suggested mILD. Extrinsic parameters 
are being updated in the order (a–c). 

 
Figure 13. Example results of projecting the point clouds onto the images using the calibration result 
of the proposed method. The projected point clouds are displayed in different colors depending on 
the distance. 

4.3. LiDAR–LiDAR Calibration 
Since the proposed method is based on the relationship between 3D planes and the 

coincidence of the intersection lines, it can be used not only for camera–LiDAR calibration 
but also for LiDAR–LiDAR calibration. For this, we can simply change the two-plane es-
timation for the camera into the two-plane estimation for the LiDAR in Figure 3. To verify 
the ability of the proposed method for the LiDAR–LiDAR calibration, this paper conducts 
a quantitative evaluation based on Gazebo simulation as well as a qualitative evaluation 
using real-world data. The two LiDARs are Velodyne VLP-16. For both simulation and 
real-world experiments, the method of data acquisition is the same as that of the camera–
LiDAR calibration. 

Table 4 shows a performance comparison of the proposed method with two other 
approaches in terms of the LiDAR–LiDAR calibration. The results are similar to those of 
the camera–LiDAR calibration presented in Table 2. The methods that use the proposed 
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4.3. LiDAR–LiDAR Calibration

Since the proposed method is based on the relationship between 3D planes and the
coincidence of the intersection lines, it can be used not only for camera–LiDAR calibration but
also for LiDAR–LiDAR calibration. For this, we can simply change the two-plane estimation
for the camera into the two-plane estimation for the LiDAR in Figure 3. To verify the ability of
the proposed method for the LiDAR–LiDAR calibration, this paper conducts a quantitative
evaluation based on Gazebo simulation as well as a qualitative evaluation using real-world
data. The two LiDARs are Velodyne VLP-16. For both simulation and real-world experiments,
the method of data acquisition is the same as that of the camera–LiDAR calibration.

Table 4 shows a performance comparison of the proposed method with two other
approaches in terms of the LiDAR–LiDAR calibration. The results are similar to those of
the camera–LiDAR calibration presented in Table 2. The methods that use the proposed
sub-sampling approach (Method II and the proposed method) perform significantly better
than the method that does not use it (Method I). Comparing the two methods using the
suggested sub-sampling, the proposed method based on the suggested mILD performs
better than Method II based on the point-to-plane distance. Thus, it can be said that
the proposed method with the suggested sub-sampling and mILD can also be accurately
utilized for the LiDAR–LiDAR calibration.

Table 4. Quantitative comparison of three different LiDAR–LiDAR calibration methods.

Method

Error Translation Error (cm) Rotation Error (deg)

Mean Std Mean Std

Method I
(Whole data set) 1.35 0.91 1.70 0.98

Method II
(sub-sampling and
point-plane distance)

0.59 0.35 0.66 0.36

Proposed method
(sub-sampling and mILD) 0.52 0.25 0.48 0.25
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Figure 14 shows the real-world experimental situation and acquired data for the
LiDAR–LiDAR calibration. In this figure, (a) shows the two LiDARs attached to the robot-
shaped jig, and (b) presents example data acquired from the two LiDARs. Figure 15 shows
the results of aligning the point clouds from the two LiDARs using the final calibration
result of the proposed method. Red and blue points indicate the point clouds acquired from
the first and second LiDARs, respectively. In this figure, it can be seen that the point clouds
from the two LiDARs are accurately aligned. This result shows the proposed method can
successfully calibrate the two LiDARs in real-world situations.
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5. Conclusions

This paper proposes a method for camera–LiDAR calibration based on a calibration
object consisting of two ChArUco boards. The proposed method uses an approach that
performs calibration based on various combinations of data through random sub-sampling
and then selects the highest quality result based on the dissimilarity of the intersection
line between the two planes. The suggested calibration object is easy to manufacture and
carry, and the proposed calibration method has the advantage of being robust against
noise. In addition, it can be used for camera–LiDAR calibration as well as LiDAR–LiDAR
calibration. Through quantitative evaluation based on simulation data and qualitative
evaluation based on actual data, it was confirmed that the proposed method performs
better than the existing method and can stably perform both camera–LiDAR calibration
and LiDAR–LiDAR calibration.

The contributions of this paper can be summarized as follows: (1) It proposes a
robust calibration method against sensor noise and object recognition, which uses an
iteration of data selection, extrinsic calibration, and quality evaluation. (2) It suggests
a calibration object consisting of two small planes with ChArUco patterns, where this
object is easy to make, convenient to carry, and assists in evaluating calibration quality.
(3) The proposed method and calibration object can be used for both camera–LiDAR and
LiDAR–LiDAR calibration.
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