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Abstract: In this paper, we present a novel Artificial Intelligence (AI) -empowered system that
enhances large language models and other machine learning tools with rules to provide primary care
diagnostic advice to patients. Specifically, we introduce a novel methodology, represented through a
process diagram, which allows the definition of generative AI processes and functions with a focus
on the rule-augmented approach. Our methodology separates various components of the generative
AI process as blocks that can be used to generate an implementation data flow diagram. Building
upon this framework, we utilize the concept of a dialogue process as a theoretical foundation. This
is specifically applied to the interactions between a user and an AI-empowered software program,
which is called “Med|Primary AI assistant” (Alpha Version at the time of writing), and provides
symptom analysis and medical advice in the form of suggested diagnostics. By leveraging current
advancements in natural language processing, a novel approach is proposed to define a blueprint of
domain-specific knowledge and a context for instantiated advice generation. Our approach not only
encompasses the interaction domain, but it also delves into specific content that is relevant to the
user, offering a tailored and effective AI–user interaction experience within a medical context. Lastly,
using an evaluation process based on rules, defined by context and dialogue theory, we outline an
algorithmic approach to measure content and responses.

Keywords: AI-empowered software engineering; generative AI; dialogue theory; large language
models; natural language processing; rule-augmented systems; medical diagnosis; evaluation

1. Introduction

Healthcare experiences for patients are multifaceted, encompassing dynamic doctor–
patient interactions, diverse diagnosis and treatment methods, adherence to recommended
lifestyle or suggested behavioral changes, and ongoing preventive health measures. A pa-
tient’s healthcare journey is clearly non-linear, forming a comprehensive and interwoven
sequence of events and encounters [1–4]. For example, the diagnostic procedure in medicine
often combines different approaches, which are influenced by the context, patient symp-
toms, clinician expertise, and available diagnostic tools [5]. Indeed, as illustrated and
summarized in Figure 1, the diagnostic process begins with gathering patient data, in-
cluding a medical history and possibly a physical examination. This information is then
analyzed for patterns to assist in decision making. The process further refines and con-
firms initial hypotheses about the condition using the collected data, which leads to the
creation of a treatment strategy, the monitoring of patient progress, and the tracking of
disease progression.

Recent advancements and ongoing research have allowed significant progress in
digitizing a great portion of the healthcare process, with the aim to alleviate the burdens
and costs of primary care, while improving patients’ experiences. Some methodologies
utilize natural language processing (NLP), big data analysis, and machine learning (ML)
technologies [6–8] to digitize, compress, and accelerate healthcare processes. Indeed, these
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technologies are promising to revolutionize patient care and disease management by
automating tasks, streamlining workflows, reducing manual labor, and simplifying daily
activities for all stakeholders [9,10].

Figure 1. Medical diagnosis pathways.

One such emergent technology showing great promise to revolutionize healthcare is
the technology of large language models (LLMs). Indeed, LLMs demonstrate a remarkable
capability of understanding medical texts and identifying (diagnosing) a range of symp-
toms and health conditions. An exemplary LLM is GPT by OpenAI, powering ChatGPT,
which generates accurate, human-like text responses [11]. Other notable LLMs include
Google’s BERT (Bidirectional Encoder Representations from Transformers) [12], Meta’s
Llama (Large Language Model Meta AI) [13], and Stanford’s Alpaca (fine-tuned from the
Llama model) [14]. While each LLM and NLP approach has its limitations, selectively inte-
grating elements from various technologies can offer both efficacy and cost-effectiveness.

In recent studies, a novel general three-step methodology was proposed to evaluate the
potential of LLMs and, more specifically, ChatGPT in medical diagnosis and treatment [15].
The evaluation of ChatGPT’s performance, as per its communication capability in radiol-
ogy [16] and oncology [17], has also been conducted. It was found that, under different
circumstances, ChatGPT performed at an average to optimum level. Moreover, it was
found that ChatGPT and other NLPs/LLMs could potentially perform better under the
supervision and assistance of a medical expert, who could evaluate the ChatGPT answers
better than a patient.

Based on these previous findings, in our current work, we introduce a novel rule-
augmented AI-empowered system in which a rule-based decision mechanism is integrated
with an LLM engine and various external machine learning and analytical APIs.

Our system includes the following novelties and key contributions.

• The domain space of AI–user interaction is associated with rules of dialogue to be
followed, as detailed later in the paper in Table 1 in Section 4.1. This provides a
theoretical basis for the evaluation of the performance and the assessment of an
LLM’s ability to remain within these constraints, which aim to simulate real-time/real-
world interactions. The process is systemized and generalized to reach a measurable
conclusion on the LLM answers, within a domain-specific context and a dialogue-
defined space.

• Using NLP algorithms, we define the blueprint of domain-specific knowledge and
the domain-specific content that is relevant to the user. This enhances the AI–user
interaction experience within a medical context.

• A methodology is introduced, represented through a process diagram, aimed at
defining generative AI processes and functions with a rule-augmented approach for
the prototyping of AI-empowered systems.

• The system, which utilizes the GPT-4 engine, has undergone extensive evaluation
through multiple-choice questions that focus on symptomatology in the field of
general pathology.
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The previous functionalities have been fully implemented in our rule-augmented
AI-empowered system and are presented in the remaining sections of the paper. Overall,
our system is characterized by the incorporation of ML tools that simulate several of the
common tools used by a general practitioner in an initial physical examination. Enhanced
with these functionalities, the current version of our system provides medical assistance,
closely replicating the behavior, objectives, tasks, and tools of a general practitioner when
offering diagnostic recommendations to primary care patients.

More specifically, the paper is organized as follows. Section 2 is devoted to highlighting
background theories and context with regard to both LLMs and the state of primary
care worldwide. Section 3 presents an overview of the developed rule-augmented AI-
empowered system. Section 4 details the system architecture from a micro and a macro
level. Section 5 includes a system evaluation and Section 6 summarizes the paper, articulates
and presents its key findings, and offers insights on future related research endeavours.

2. Background Theories and Context

In this section, our focus is to establish a comprehensive background pertinent to
the methodologies used. We delve into various aspects of NLP and explore its diverse
applications within the medical sphere. Notably, the integration of NLP and LLMs in
healthcare has been significant [18]. These technologies are increasingly employed for a
range of purposes, including the extraction of vital data from electronic health records
(EHR), supporting decision making in clinical settings, and analyzing patient sentiments
through their reviews and feedback [19,20].

2.1. Natural Language Processing

NLP, a pivotal AI sub-field, focuses on the interaction and interpretation of human
language by computers. It facilitates various tasks, including translation, sentiment anal-
ysis, and conversational interfaces. The evolution of NLP spans from rule-based ap-
proaches to sophisticated ML techniques, giving rise to advanced models such as GPT and
BERT [12,21,22]. Essential concepts in NLP encompass tokenization, part-of-speech tagging,
named entity recognition, and parsing. The overarching aim is the effective comprehension
of human language, facilitating the extraction of meaning and simulation of reasoning
to accomplish specific tasks. NLP employs an array of techniques and models, ranging
from rule-based systems to advanced ML algorithms. Prominent models in NLP include
the following.

• NLP using pattern matching and substitution: These initial NLP systems depend on
manually crafted rules and lexicons. An iconic example is the ELIZA chatbot [23],
created in 1964. ELIZA was one of the first programs capable of attempting the
Turing test.

• ML models: This category encompasses traditional models like naive Bayes, support
vector machines (SVM), and decision trees, commonly applied in text classification
and sentiment analysis.

• Neural networks: Inspired by the human brain, these models include recurrent neural
networks (RNNs) and convolutional neural networks (CNNs), suitable for tasks
needing an understanding of a language’s sequential nature.

• Embedding models: These models produce dense vector representations of words or
larger text units, capturing semantic meanings. Notable examples include Word2Vec,
GloVe, and FastText [24].

• Sequence-to-sequence models: Capable of transforming input sequences into output
sequences, these models are integral to machine translation and text summarization,
often based on an encoder–decoder architecture with attention mechanisms [25].

• Large language models (LLMs): LLMs are designed to perform a wide range of NLP
tasks, from translation to question answering and to text generation, without needing
task-specific training data. LLMs are further discussed in the following section.
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2.2. Large Language Models (LLMs)

The GPT series, including GPT-3 and GPT-4, comprises autoregressive models known
for generating contextually coherent text. GPT decodes the received input, using language
pattern understanding, to produce a relevant and coherent output. GPT models are espe-
cially powerful for applications like content creation, dialogue generation, and tasks that
require the production of new text based on given prompts.

In contrast, BERT operates by analyzing both preceding and succeeding words in
a sentence, thereby enriching its understanding of the sentence context. Both models
are built upon the Transformer architecture, first introduced in [22], which employs an
“attention” mechanism to assign varying significance to different words. Central to these
models is an encoder, which converts sequences of words into contextually enriched
vector representations. The novel self-attention mechanism in these models allows them to
consider the inter-dependencies of words over longer ranges, significantly improving their
predictive accuracy. Notably, BERT employs a bidirectional training approach, enabling
word prediction based on both the preceding and subsequent context. This is in contrast to
GPT’s unidirectional methodology.

Prior to the widespread adoption of neural networks and Transformer models in NLP,
statistical models were the mainstay. Key among these were the following.

• Markov Models: Based on the principle named after mathematician Andrey Markov,
these probabilistic models assume that the probability of each subsequent state de-
pends only on the current state. Their application is particularly notable in sequential
tasks like language modeling.

• Hidden Markov Models (HMMs): An extension of Markov models, HMMs include
hidden states and observable outputs. They find applications in NLP tasks, notably in
part-of-speech tagging and named entity recognition.

• Conditional Random Fields (CRFs): These are statistical frameworks used in NLP to
model the probability of outputs given specific inputs. Unlike HMMs, CRFs take into
account the entire sequence of words, thereby yielding more accurate results.

• n-gram Models: These models predict the next item in a sequence by considering the
previous (n − 1) items. Predicated on the assumption that a word’s probability is
dependent solely on its preceding words, n-gram models are prevalent in areas like
speech recognition and machine translation.

• Latent Dirichlet Allocation (LDA) is a generative statistical model that allows sets of
observations to be explained by unobserved groups. In NLP, these groups or topics
help us to understand why data parts are similar, positing each document as a topic
mixture with each word attributed to a document’s topic.

2.3. Problems with NLP and Evaluation Pipeline

Below, we list some important problems and concerns associated with NLP, especially
when employed in the medical domain. Some of these are currently being addressed by
the companies that commercially provide the state-of-the-art models.

• Hallucinations: Generation of outputs that seem plausible but are entirely fabricated
or inaccurate [26,27].

• Bias: LLMs learn and reproduce the biases that exist in their training datasets [28].
• Lack of explainability: Generative AI systems typically do not provide explicit expla-

nations for the conclusions that they reach or the answers that they provide [29,30].
Explainable AI (XAI) ensures that users comprehend the characteristics of the utilized
models and provide a transparent representation of the used algorithms that generate
a response, a classification, or a recommendation. Considering user ability and adding
personalization in XAI is also an important factor that can increase transparency and
lead to the greater adoption of AI-empowered systems [31]. Current GAI systems lack
explainability, particularly in terms of personalized explanations.
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• Real-time validation: The responses are not derived from real-time information. In-
stead, they are based on the dataset that was used to train the model that typically
contains information from a period up to the date of the training of the tool [27].

• Limitations in mathematical operations: This limitation is partially addressed using
Python modules for calculations and by providing updated models more frequently.

• Content—token size limitation: This limitation is partially addressed by increasing
the token size limits and charging higher usage costs.

In previous works [15,32], we proposed a methodology to evaluate the domain-specific
proficiency of ChatGPT or other LLMs, focusing on reliability and precision. These metrics
are based on the context of the answers, their accuracy, and the quality of the references
used. Our approach utilizes a three-tiered scoring scale (1–3) to assess various aspects,
categorizing the context, references, and value added to the system as follows:

• correct (3), generic (2), or incorrect (1);
• actionable (3), generic (2), or non-actionable (1);
• precise (3), generic (2), or misleading (1);
• under-extended (2), exactly aligned (1), or over-extended (1).

The evaluation specifically focuses on (A) the validity and accuracy of answers as per
the context and references returned in the LLM response, (B) the specificity and usefulness
of the LLM-generated response to physicians and patients alike, and (C) the economic
value (potentially) added to the system. The entire assessment process is overseen by a
medical professional and can be seen in Figure 2.

Figure 2. Methodology for evaluation of the domain-specific proficiency of ChatGPT.

2.4. Transformers and Attention Mechanism

The Transformer model has been very influential in the field of NLP and constitutes
the engine of the state-of-the-art LLMs, still powering the latest ChatGPT engine as of the
latest update of November 2023. In Figure 3, the architecture of a Transformer is presented,
along with a description of each step and a brief explanation of the related mathematical
formulae. This section contextualizes our study within the broader scope of NLP progress,
but also provides a necessary technical foundation for the analysis and development of
further innovations in the generative artificial intelligence (GAI) space.

The Transformer model is based on a mechanism, referred to as self-attention, that
directly models the relationships between words in a sentence, regardless of their respective
positions in the sentence.

• Encoder: The left part of the diagram represents the encoder, which processes the
input data. The input sequence is processed through multiple layers of multi-head at-
tention and feed-forward networks, with each of these layers followed by the residual
connection and linear normalization steps.

– Embeddings: The numerical representations of words, phrases, or other types
of data. In the case of LLMs, they represent words or tokens. Each word or
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token is mapped to a vector of real numbers that captures semantic and syntactic
information about the word. The words with similar meanings or used in similar
contexts will have similar vector representations.

* Input Sequence Embedding: Input tokens’ conversion into vectors of a fixed
dimension.

– Positional Encoding: Adds information about the positional order of the respec-
tive words of the sequence.

– Multi-Head Attention: Applies self-attention multiple times in parallel to capture
different aspects of the data. This allows joint attention to information from
different representation subspaces, referred to as heads, at different positions.
Using multiple heads, the model captures different types of dependencies from
different representational spaces. For example, one head might learn to pay
attention to syntactic dependencies, while another might learn semantic depen-
dencies. The mathematical representation of this is as follows. Let us we denote
the linear transformations that produce the queries, keys, and values for head i
with WQ

i , WK
i , WV

i , respectively, and the output linear transformation with WO.
Then, the multi-head attention operation MultiHead can be defined as

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO,

where each head headi is computed as

headi = Attention(QWQ
i , KWK

i , VWV
i )

and Attention is the scaled dot-product attention function:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V.

Here, dk is the dimensionality of the key vectors, while the division by
√

dk is the
scaling factor.

1. Q, K, V: The input to the multi-head attention layer is first linearly trans-
formed into three different sets of vectors: queries (Q), keys (K), and values
(V). This is done for each attention head using different, learned linear
projections.

2. Scaled dot-product attention: For each head, the scaled dot-product atten-
tion is independently calculated. The dot product is computed between
each query and all keys, which results in a score that represents how much
focus to place on other parts of the input for each word. These scores are
scaled down by the dimensionality of the keys (typically the square root of
the key dimension) to stabilize the gradients during training. A softmax
function is applied to the scaled scores to obtain the weights on the values.

3. Attention output: The softmax weights are then used to create a weighted
sum of the value vectors. This results in an output vector for each head
that is a combination of the input values, weighted by their relevance to
each query.

4. Concatenation: The output vectors from all heads are concatenated. Since
each head may learn to attend to different features, concatenating them
combines the different learned representation subspaces.

5. Linear transformation: The concatenated output undergoes a linear trans-
formation to produce the final product of the multi-head attention layer.

6. Feed-forward network: A fully connected feed-forward network is applied
to each position separately and identically.
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7. Residual connection and linear normalization: Applies residual connections
and layer normalization.

Figure 3. Transformer—data flow chart.

• Decoder: The right part of the diagram represents the decoder that generates the output.

– Target sequence embedding: Converts target tokens into vectors and shifts them
to the right.

– Masked multi-head attention: Prevents positions from attending to subsequent
positions during training.

– Encoder–decoder attention mechanism: Attends to the encoder’s output and the
decoder’s input. The keys (K) and values (V) come from the output of the encoder.
The similarity between the queries and keys is calculated. This involves taking
the dot product of the queries with the keys, scaling it (usually by dividing by
the square root of the dimension of the key vectors), and then applying a softmax
function to obtain the weights for the values.

– Feed-forward network: Following the attention mechanisms, there is a feed-
forward network. It consists of two linear transformations with a ReLU activation
in between.

– Residual connection and linear normalization: Applies residual connections and
layer normalization.

– Linear transformation before softmax: In the final layer of the decoder, the Trans-
former model applies a linear transformation to the output of the previous layer.
This linear transformation, typically a fully connected neural network layer (often
referred to as a dense layer), projects the decoder’s output to a space whose
dimensionality is equal to the size of the vocabulary.

– Softmax function: After this linear transformation, a softmax function is ap-
plied to these projected values, which creates a probability distribution over the
vocabulary based on the positional attributes.

– Token selection: The probability distribution for each potential token is analyzed
considering the context of the sequence. This analysis determines which tokens
are most likely to be the appropriate next elements in the sequence. The token
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selection can be done using various strategies like greedy decoding, sampling,
or beam search.

– Token generation: Based on this probability distribution, tokens are generated as
the output for each position in the sequence.

– Sequence construction: The selected tokens are combined to form the output text
sequence. This can involve converting sub-word tokens back into words and
dealing with special tokens such as those that represent the start and end of a
sentence.

– Post-processing: Post-processing is performed, based on syntactical, grammatical,
and language rules.

This architecture is highly parallelizable and reduces the need for recurrent or con-
volutional layers. Further details of this architecture are analyzed in [22]. By providing a
previous basic overview of how a Transformer works, we can show how the methodology
that we use provides an efficient shortcut to creating our domain-specific system’s engine.

2.5. Telehealth

Telehealth uses digital technologies to remotely deliver selected healthcare services.
Telehealth’s importance is prominent where resources are limited and the goal of healthcare
cost reduction is important. The continuous monitoring of treatment is another impor-
tant domain of application of telehealth. It also aims to educate patients and healthcare
providers, support consultations between primary care providers and specialists for quicker
diagnoses and treatment, more effectively manage hospital patient loads, and more actively
engage patients in their own care [33,34].

Telehealth has been widely adopted across various medical specialties due to its
versatility. Primary care can handle routine check-ups and minor health issues remotely,
while psychiatry and psychology benefit from teletherapy and telepsychiatry. Similarly,
radiology allows for the remote sharing and analysis of medical images, and cardiology and
neurology utilize remote monitoring for conditions like heart rhythm abnormalities and
epilepsy. Dermatology and endocrinology practices can remotely diagnose and manage
skin conditions and diseases like diabetes. Geriatrics and pediatrics are also benefiting
from telehealth, especially for patients with mobility issues or for the management of minor
concerns and follow-ups. Chronic disease management, including hypertension, COPD,
and asthma, is another area where telehealth plays a crucial role.

As technology advances, more medical specialties are incorporating telehealth into
their practices. While physical examinations remain a limitation, many conditions can
be diagnosed and treated effectively using a combination of the patient history, visual
examination, and remotely collected data. However, the above areas do not constitute an
exhaustive list and the potential for telehealth continues to grow.

2.6. The State of Primary Care

In many healthcare systems worldwide, including those in Europe and the United
States, costs and delays [35] are significant issues, although their intensity and nature
vary by region. In the European Union, most countries have universal healthcare systems
funded through taxation or mandatory health insurance, with some variations in patient
costs and the option of private insurance. While the primary care quality is generally high,
there are differences between and within countries, with concerns often centered around
waiting times for specialty care.

In contrast, the USA operates mainly on an insurance-based system, with many facing
co-payments, deductibles, and other out-of-pocket costs. This can deter some from seeking
primary care, and the quality of care varies by factors like location and socioeconomic
status. Debates about the benefits and drawbacks of moving towards a universal healthcare
system are still ongoing [36].

Both the European Union and the USA face challenges in primary care accessibility and
preventable mortality. Over 100,000 deaths annually in the USA may be due to preventable
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medical errors, including access failures. Similarly, thousands may be dying annually in the
European Union due to preventable causes. Treatable mortality [37,38] rates are published
yearly both in Europe and the USA. In 2020, the treatable mortality rates accounted for
39 deaths per 100,000 population in Switzerland (lowest) and for 225 deaths per 100,000
population in Hungary (highest) [39]. These challenges are intertwined with issues like
quality of care, equity of access, and patient satisfaction, and each region addresses them
based on its specific healthcare models and cultural values.

Lastly, many developing countries have limited budgets for healthcare, which can
lead to inadequate infrastructures, low salaries for healthcare workers, and insufficient
medical supplies.

2.7. NuhealhtSoft: An AI-Empowered Software Platform for Medical Exam Classification and
Health Recommendations

NuhealthSoft is a recently developed software platform to facilitate users in under-
standing their blood exams using various presentation and analytical techniques, including
semantic grouping. The system also provides its users with services that identify patterns
and, thus, health states in their blood exams and dietary intake. In more detail, Nuhealth-
Soft [40] employs advanced ML techniques combined with comprehensive nutritional
and biochemical data. This approach enables the platform to effectively categorize indi-
viduals based on various health metrics. These metrics include blood pressure, weight,
and indicators of metabolic syndrome, as supported by several studies and references [10].
Additionally, NuhealthSoft moves beyond mere classification by offering personalized
nutritional advice. This guidance is specifically tailored to meet the unique dietary needs
and blood work results of each user.

The development and refinement of NuhealthSoft necessitate close collaboration
with medical professionals and regulatory bodies. These stakeholders play a crucial
role in validating the system’s effectiveness and compliance with health standards. This
collaboration has been a pivotal aspect of our research. We have focused on understanding
and integrating the specific requirements of doctors to facilitate a seamless validation
process. Simultaneously, we aim at maintaining a transparent and user-friendly framework
for the end-users of NuhealthSoft. This dual focus ensures that the system is not only
medically sound and compliant, but also accessible and beneficial to those whom it serves.

In this paper, Med|Primary AI assistant is presented, which has been developed
as an an add-on for the NuhealthSoft suite. Specifically, Med|Primary AI assistant has
been developed to analyze symptoms and provide health advice from a general practi-
tioner’s perspective.

3. System Overview of Med|Primary AI Assistant

In Figure 4, the objectives, tasks, and available tools are outlined. The purpose is to
build an AI-empowered system that can perform these objectives and complete the tasks
with use of the available tools. In essence, Figure 4 provides the blueprint of the domain-
specific knowledge of the system. To ensure that the shortcomings of LLMs are addressed,
the system also encompasses rules, i.e., a rule-augmented application is developed. The
rules are used to

• engineer prompts based on domain specification;
• extract semantically important words and associated with external services and classi-

fiers and external sensors; and
• create an evaluation basis, to ensure alignment with domain specifications and re-

quirements based on the dialogue’s theoretical context.



Electronics 2024, 13, 320 10 of 26

Figure 4. General practitioner’s objectives, tasks and tools.

3.1. System Description

Med|Primary AI assistant, included in the NuhealthSoft suite, utilizes LLMs; for the
purpose of this study, we have used and tested the GPT-4 model.

GPT-4 is an advanced multimodal model, currently processing text inputs and pro-
ducing text outputs and chat completion tasks. It outperforms previous models with its
extensive general knowledge and enhanced reasoning skills. While it shares similarities
with GPT-3.5-turbo in being optimized for chat interactions, it is also proficient in executing
traditional completion tasks.

Our system also encompasses analytical services and ML models to extract useful
information from health data, while only providing the necessary information. The lim-
iting of token usage maintains a manageable input and also ensures the computational
and mathematical validity of the provided information, thus augmenting the quality of
the response.

3.2. Use Cases

In Med|Primary AI assistant, a user can interact with the system in two main ways.

• The first is by freely (without constraints and rules) providing symptoms and descrip-
tions of their health state and obtaining a series of diagnoses, proposed diagnostic
exams, or a referral to a medical specialist. While, in this case, the patient has no
constraints, using specific knowledge input, the LLM will provide assistance if the
user’s input is not useful for the LLM to complete its predefined tasks and objectives.

• The second is by using a more constrained and step-by-step approach, for the LLM
to obtain a more comprehensive background on the user’s symptomatology and age.
In both cases, data can be retrieved by health sensors and analyzed by the included
analytical and machine learning services [41].

In Figure 5, two main actors are presented. The first actor is the patient, who will
provide the symptoms directly to Med|Primary AI assistant or via form inputs. Health
sensors can provide more context and data. Finally, the patient can review the process
and output. The doctor, as the second actor, can evaluate and validate the primary care
AI interactions (inputs–outputs) and the patient’s review of the the primary care AI. This
process is essential for the system to improve and for more services to address primary care
AI shortcomings.
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Figure 5. Med |Primary AI assistant use case.

4. System Architecture Analysis

In this section, the structural elements, flow of data, and organization of Med|Primary
AI assistant are outlined and described. As shown in Figure 4, the specific objectives,
tasks, and tools are considered as building blocks. For example, if a service is provided
to facilitate the process of diagnostic analysis, it will only belong in the domain of a
general practitioner’s competencies and, thus, constructs the blueprint of domain-specific
knowledge of the system.

4.1. Modeling the Domain Space

The main sources of the system pertain to the management of inputs and outputs
during a conversation between a patient and a general practitioner, specifically addressing
questions and answers [42–44].

For context, there are six (6) types of theoretical questions and answers that can be
applied in any domain.

1. Questions

(a) Informational: Query for specific information.
(b) Instructional: Query related to specific task, i.e., a command to do something.
(c) Reflective: To confirm or clarify previous statements.
(d) Rhetorical: Are not meant to be answered and are rather used for emphasis.
(e) Open-ended: Are meant to encourage a detailed response or discussion.
(f) Closed-ended: Can be answered with a a yes or no.

2. Answers

(a) Direct: Provide a straightforward response.
(b) Elaborated: Provide additional context and information beyond what was

requested.
(c) Clarifying: Aim at requiring clarity, where a query is ambiguous.
(d) Reflected: Ensure that the question is answered in a way that mimics the

question’s sentiment.
(e) Deferred: When an answer cannot be provided and the one that provides it

offers guidance on where or how to find it.
(f) Non-Answers: When the choice is to not answer.

4.2. Domain Settings

Questions and answers are the building blocks of the conversations and the input
and output of the flow chart pictured in Figure 6. A conversation in the medical domain
usually includes informational and open-ended questions, followed by direct or elaborated
answers. For the case of this system (Table 1), a deferred answer is also an option when
the question cannot be answered, either due to the fact that it requires a more specialized
evaluation (i.e., a referral to a specialist) or when it is outside the scope of the domain
(dialogue reset). Dialogue rules are set to

• provide a basis for evaluating the performance;
• assess the model’s ability to remain within constraints that aim to simulate real-time

communication protocols.
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Table 1. Dialogue rule augmentation.

Question (q) Domain (d) Medical (m) Answer (a) Answer Content (c) Use Case Examples

Open Ended Yes Yes Direct or Elaborated Define Ability (Ab), Reflect (Re) Figure 7
Informational Yes Yes Direct or Elaborated Define Ability (Ab), Reflect (Re) Figure 8

Any No Yes (deferred) Refer To Specialist Define Ability (Ab), Reflect (Re) Figure 9
Any No No (deferred) Dialogue Reset Define Ability (Ab), Reflect (Re) Figure 10

Figure 6. Domain settings, flow chart.

Figure 7. Open-ended question—direct answer, system objectives, and tasks.

Figure 8. Informational question—elaborated answer, skin problem with referral.
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Figure 9. Open-ended question—deferred answer, cancer patient.

Figure 10. Informational question—elaborated answer, symptoms with health metrics.

The instantiated advice generation and blueprint of domain-specific knowledge en-
courage the structuring of informational and open-ended questions. Rules are also de-
fined to lead to a certain type of answer that ensures a diagnosis, the promotion of nec-
essary diagnostics, or the proposal of a medical specialist, mostly associated with the
described symptoms.

To ensure the safety of users, the Dialogue Rule Augmentation stage (as shown in
Table 1) establishes the framework for evaluating the extracted answers, as depicted in
Figure 6. This evaluation is conducted through the ‘Define Ability Process (I)’ and the
‘Reflect Process (III)’, which are incorporated as functions in Algorithm 1. Notably, in the
medical domain, professors evaluate students across a spectrum of themes and real-time
scenarios. These evaluations include the process of patient interaction, as well as the
assessment of symptoms and the subsequent course of action, as referenced in [45,46]. Here,
we systematize and generalize the process to reach to a measurable conclusion of LLMs
answers, within a domain-specific context and a dialogue-defined space. Our contributions
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in the generalization of the domain settings using embeddings can be seen in Figure 6
within the yellow cards.

Each component that defines the answer is represented by the appropriate letter in
Table 1 and Figure 6. In a range of (n), a final score would finalize a decision as per the
quality of the answer, which in essence represents the ability (A) of the LLM to comprehend
the answer and also the effectiveness of the domain setup (Figure 6). In more detail, the
items are as follows.

• Question q.
• Domain d.
• Medical m.
• Answer a.
• Answer content c: Derived from the ‘instantiated advice generation’ (2) and the

’blueprint of domain-specific knowledge’ (1).
• Retrieve documents r: Sourced from (1) and (2) to show basis of produced answer.
• Process I (ability assessment): To define ability, we compare the answer produced by

the LLM (a) to the ground truth (i.e., the correct answer) using similarity checks and
pairwise embedding distance algorithms. This involves retrieving the documents (r)
on which the answer was based.

• Process III (reflective capacity): The reflective capacity is calculated by applying
similarity checks and pairwise embedding distance algorithms between a composite
of the question (q) and answer type (a) and the answer content (c) produced by
the LLM.

Algorithm 1 Evaluation process based on rules.

Require: Question (q), Domain (d), Medical (m)
Ensure: Answer (a), Grade of Answer Content (c)

1: Begin
2: if (q == “Informational” OR q == “Open-Ended”) AND (d == “Yes”) AND (m == “Yes”)

then
3: a← “Direct or Elaborated”
4: else if (q == “Any”) AND (d == “No”) then
5: if (m == “No”) then
6: a← “(deferred) Dialogue Reset”
7: else if (m == “Yes”) then
8: a← “(deferred) Refer To Specialist”
9: end if

10: end if
11: c← AnswerContent
12: r ← RetrieveDocuments
13: grade(Ab)← Define Ability(c)
14: grade(Re)← Reflect(c)
15: return a, grade
16: End
17: function DEFINEABILITY(AnswerContent)
18: // A grading logic for Answer content(1)
19: // Return grade(Ab)
20: end function
21: function REFLECT(AnswerContent,documents)
22: // A reflection(2) logic for answer content and document retrieval(3)
23: // Return grade(Re)
24: end function

For Process I (Define Ability),

Ability = Similarity(LLM Answer, Ground Truth)
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where
LLM Answer = Function(a, c, r)

Ground Truth = Known Correct Answer

For Process II (Reflect -reflective capacity),

Reflective Capacity = Similarity((q + a), c)

Here, “Similarity” represents the similarity check and pairwise embedding distance
algorithms, and “Function” is the method by which the LLM produces its answer based on
the answer type (a), answer content (c), and retrieved documents (r).

The main assumption made for the creation of embeddings in GAI, instead of a bottom-
up approach when fine tuning or recreating a model, is based on the fact that the trained
LLMs used in systems like Bard (google) and ChatGPT (openAI) are tested and evaluated in
numerous tasks. Moreover, the magnitude of their training datasets is such that recreating
a similar model would incur additional costs and evaluation procedures. While the fine
tuning is a more straightforward strategy than recreating one, again, there are significant
costs and similar evaluation requirements.

Retrieval-augmented generation (RAG) is particularly effective for general tasks as
it combines the benefits of a large language model with external data sources, enhancing
the breadth and specificity of its responses. This approach is suitable for a wide range of
applications where expert involvement is not critical and the focus is on augmenting the
generative capabilities with a diverse set of information sources.

On the other hand, GAI, particularly in sensitive areas, requires a more nuanced
approach. In scenarios such as healthcare, legal advice, or personalized recommendations,
the requirements are higher. Therefore, employing GAI in these domains demands rigorous
testing, diligent constraint implementation, and continuous monitoring to ensure safety,
accuracy, and ethical compliance. The involvement of domain experts becomes crucial for
the validation of the outputs and provision of guidance on the model’s usage boundaries.
This ensures that the generated responses and decisions are not merely based on data and
algorithms but are also aligned with human expertise and ethical standards.

The creation of embeddings offers a rapid method of incorporating essential con-
text into pre-trained LLMs, which becomes particularly effective when these models are
employed in specific applications. Additionally, we ensure that all supplementary data
utilized by the model are provided by medical experts and align with the guidelines set
forth by the relevant medical boards. The need for model fine tuning is determined based
on the outcomes observed. If necessary, this fine tuning can occur later in the release and
production pipeline, after a thorough evaluation tailored to the specific domain require-
ments and specifications. When the embeddings are input into a trained Transformer
model, particularly for conversational purposes, the model utilizes the weights (as shown
in Figure 3) that were acquired during its training phase. This process enables the model to
more swiftly adapt to a predetermined conversational context [47].

The process of creating and training embeddings typically involves several key steps,
outlined below, to ensure reproducibility.

1. Creation of embeddings

(a) Training: Embeddings are usually created through supervised or unsupervised
learning on large text corpora. At this stage, the model’s trained weights are
used to create vectors.

(b) Dimensionality: The vectors usually have hundreds of dimensions. Dimension-
ality reduction techniques (like PCA or t-SNE) can be applied for visualization.

(c) Contextualization: Traditional embeddings (Word2Vec, GloVe) do not consider
the context, meaning that they represent a word with the same vector regard-
less of its usage. Modern embeddings (BERT, GPT) are contextual, adjusting
the representation based on the word’s usage in a sentence.
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(d) Transfer Learning: Pre-trained embeddings can be fine-tuned on a smaller
dataset for specific tasks, leveraging the general language understanding
learned during pre-training while adapting to the nuances of the task at hand.

(e) Evaluation: The quality of embeddings is usually evaluated based on their per-
formance in downstream NLP tasks like text classification, sentiment analysis,
or named entity recognition.

Using the created embeddings, the following processes are the splitting, chunking,
and storage of the information in vector databases, which would either define the
instantiated advice generation or the blueprint of domain-specific knowledge.

2. Vector stores are databases that specialize in storing, indexing, and querying high-
dimensional vectors. These vectors can represent various types of data, such as images,
text, or other complex data types, transformed into numerical representations [48].
They are extremely useful for a similarity search, which, in Figure 6, is the red rectangle
named search, pointing to the vector database.

3. A search is the process of retrieving documents stored in the vector store, either from
the instantiated advice generation or the blueprint of domain-specific knowledge,
based on a similarity threshold, manually defined. The higher the similarity threshold,
the more restrictive the rules; thus, less documents are returned for processing.

In the Q&A chain, the aforementioned process is outlined as a generic algorithm in
Algorithm 2.

Algorithm 2 Q&A Chain

1: DB, Embeddings← Vector.db() (Vector Database Settings)
2: Retriever, LLM← chainer(DB, Embeddings) (LLM engine properties)
3: procedure RUNQACHAIN(Query : QueryModel, CurrentUser) (*Function)
4: Question← Query.question
5: QAChain ← prompter(Retriever, LLM) (Retriever== Similarity parameters and

search depth, LLM== llm engine parameters)
6: Result← responder(QAChain, Question)
7: return {“response” : Result}
8: end procedure

Step 1 of the algorithm involves initializing or loading a vector database. The database
contains embeddings, which are high-dimensional vectors of keys and values, representing
the documents and instructions provided by the user. Step 2 involves the binding of
components to process queries. This involves setting up an embedding filter, i.e., similarity
search parameters; a retriever, where the properties to be retrieved from the DB are set;
and an LLM. The exact roles of these components depend on the specific implementation
and use case. In Step 3, the procedure is initialized, based on a received question that is
posed by a specific user. Lastly, a response is returned from the model as a result, usually
in a json or xml format.

4.3. System Architecture

The system architecture is outlined in Figures 11 and 12. In the micro-level process di-
agram, the internal design and communication paths of the different modules are analyzed.
In the macro-level diagram, the application’s overall structure is detailed.
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Figure 11. Process diagram—micro level.

Figure 12. System architecture—macro level.

4.3.1. Micro Level

In the process diagram, we introduce a novel methodology to define GAI processes
and functions, in the scope of a rule-augmented approach. On the left side, the different
components are noted, and, on the right side, these components are implemented and we
describe the information flow, the constraints, and the expected outcomes. In detail, the
items are as follows.

• Outputs: Information exchange.
• Connects: Implies dependency.
• DB: Type of database procedure.
• Content: Generation of data.
• Interactions: User interaction, which leads to a generation.
• Natural Language Processing: Any NLP process.
• Large Language Model: LLM processing or LLM API call.
• Computer Vision Object: ML process related to computer vision.
• Classifier Object: ML process related to classification.
• Machine Analysis: ML service output in textual or numeric format.
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• Rules: Rules that are used to augment the system and limit malfunctions.
• White Box: Description space for processes.
• White Box with Blue Line: Defines a function or system.
• Form: A type of user input form, in a predefined context, i.e., using questionnaires or

pre-selected inputs.
• !: Required described process.
• ?: Optional described process.
• API: External communication process.
• Three Dots (. . . ): Indicates a loop or a repetitive–iterative process.

The process starts with the input of the optional definition of reasons for the (doctor)
visit or/and patient symptoms and an optional patient history. In parallel, the user can
optionally upload or connect activity and health data via an API. An example of the data
format extracted via the API can be seen in the Garmin Health snapshot schema. Based
on specific rules, the data are then fed into the NLP system, which outputs an engineered
prompt and an embedding to be saved in the Vectors DB system. The engineered prompt
is the Ask Required interaction, which, alongside the Vectors DB, provides the necessary
information for the LLM system (powered here by GPT-4), to provide a required diagnosis,
the required diagnostics, and an optional referral to a specialist or an optional lifestyle
intervention strategy. For the diagnostics, the user is also provided with computer vision
systems and classifiers, for examination analysis and the transposition of data into usable
objects. These objects are again saved into embedding objects in the Vectors DB system.
The Discuss output is optional and can lead to a Q&A, as previously described in the
Theoretical Dialogue section.

4.3.2. Macro Level

In Figure 12, the microservice architecture that can optimally support the rule-
augmented AI application is detailed. This approach encompasses the overall structure of
the entire software system, including how the different modules and components interact.
In this specific application, which enables a range of analytical services and external APIs,
a microservice architecture allows each service to be deployed using the most appropriate
infrastructure. At the same time, the independent testing of each AI service or module
facilitates an easier-to-manage workflow.

Especially when dealing with Python AI libraries, one common issue is the varying
dependencies and requirements that they may have. These libraries often rely on specific
versions of other libraries, which can lead to compatibility issues when multiple AI services
are bundled together in a monolithic application.

The different components of the system architecture are as follows.

• Client: The user interface that provides the main space for the patients to interact.
• Identity Service: The authorization and authentication infrastructure that validates

the client based on user profiles stored in the first SQL database.
• Gateway Service: Acts as an intermediary that processes and routes requests from

clients to various services within a system.

– Database service.
– Analytics service: the component that is dedicated to analyzing data and generat-

ing insights, related to health metrics and diagnostic examinations.
– ML service: a packaged component that provides machine learning capabili-

ties to the system. This module can be integrated into existing systems to add
features like prediction, classification, and anomaly detection based on extreme
value theory.

– NLP Service: the software module that encompasses the required processing features.

* Vector database: type of database designed specifically to handle vectors,
and, more specifically, in this case, the transposition to incoming embedding data.
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– Proxy service: intermediary for requests from other APIs seeking resources from
other servers. In this case, it handles communication with external health sensors
and LLM engines.

* Health sensors: APIs provided by wearable manufacturers like Fitbit or
Apple HealthKit or medical devices used in clinical settings.

* LLMs: APIs of powerful natural language processing engines for question
and answering.

4.4. Services Simulating a General Practitioner

In this section, a brief description is provided for some key services that can facilitate
the user when providing him/her with detailed diagnostic outcomes. These outcomes are
to be processed using NLP techniques and provided back into the system, for the diagnosis
pipeline to complete via one of the possible outcomes (diagnosis, diagnostics, specialist
referral, lifestyle suggestion). It should also be stated that the services aim to simulate the
available tools and competencies of a general practitioner. In this study, the focus is the
simulation and automation of a physical examination using available technologies and
incorporating them into an intuitive, fast, and simple-to-use rule-augmented system.

A blood examination is considered, alongside a view of a user’s routine and a daily
snapshot of the user’s basic bio-metrics.

4.4.1. Blood Exam Analyzer

The blood exam analyzer consists of tools that extract information from the relevant
examinations provided by the user for the construction of the second prompt. As part
of this use case, the blood test analyzer and the blood exam classifier are utilized. This
particular technology consists of a specific conditional logic that extracts those blood
variables that are outside the normal ranges. Our system also consists of machine learning
algorithms [4,49] that can identify similarities with specific weight groups, based on blood
exams, and thus recognize other possible health states related to an unbalanced biochemical
profile. Metabolic syndrome is also identified through a similar process [4,10].

4.4.2. External Sensors

Connecting with external sensors, the doctor, or, in this case, the AI system, an approx-
imation to a physical examination can be achieved. Various health data can be extracted
by health sensors with great accuracy, such as the following.

• Heart Rate: Continuous heart rate monitoring, including resting heart rate and abnor-
mal heart rate alerts.

• Sleep: Tracks sleep patterns, including sleep stages (light, deep, REM) and sleep quality.
• Stress: Measures stress levels throughout the day.
• Steps and Floors Climbed: Tracks daily step count and floors climbed using an altimeter.
• Calories Burned: Estimates calories burned through various activities.
• Intensity Minutes: Tracks vigorous activity minutes as per health recommendations.
• Body Battery: Monitors body energy levels to suggest the best times for activity

and rest.
• Pulse Oximetry: Measures blood oxygen saturation, which can be essential at high

altitudes or for tracking sleep issues.
• Respiration Rate: Monitors breathing rate throughout the day and night.
• Women’s Health: Tracks menstrual cycle or pregnancy.
• VO2 Max: Estimates the maximum volume of oxygen that can be utilized during

intense exercise.
• GPS Tracking: Offers detailed tracking for outdoor activities, including pace, distance,

and routes.
• Activity Profiles: Multiple sports profiles for tracking different activities like running,

swimming, cycling, golfing, and more.
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• Incident Detection: Some models offer incident detection during certain activities,
which can send one’s location to emergency contacts if a fall is detected.

• Mobility Metrics: Monitors how fast one walks, the timing of each step, and how often
one stands up.

In the Garmin Health snapshot (see Listing 1), a json object, as an example of a useful
retrieved health metric, is provided. In the external sensor algorithm, a summary of the
processes of extraction and conversion of these data is provided, for replication purposes.

Listing 1. Garmin Health snapshot. Extracted and transformed into json file.

1 {‘calendarDate ’: ‘2023-10-23’,
2 ‘minHeartRate ’: 50,
3 ‘maxHeartRate ’: 131,
4 ‘includesActivityData ’: True,
5 ‘restingHeartRate ’: 61,
6 ‘averageStressLevel ’: 42,
7 ‘bodyBatteryMostRecentValue ’: 18,
8 ‘highestRespirationValue ’: 17.0,
9 ‘lowestRespirationValue ’: 12.0,

10 ‘latestRespirationValue ’: 14.0}

Algorithm External Sensors

get_weekly_data: Collects data for the past 7 days using a provided data retrieval function.
daily_snapshot: Collects last data using a data retrieval function.

Pseudocode

function get_weekly_data(SensorData):
start_date <- today - 7 days
weekly_data <- empty~list

for i in 0 to 6:
current_Date <- start_date - i days
data <- SensorData(current_Date)
append data to~weekly_data

return~weekly_data

function daily_snapshot(healthSensor, anarray):
extracted_data <- empty~dictionary

for each key in anarray:
extracted_data[key] <- healthSensor.get(key, None)

return extracted_data

4.5. Prototype—Use Cases

In this section, we present a series of screenshots, where different conversational use
cases are considered. The general Med|Primary AI assistant is constructed following the
methodology discussed in the previous section, where a blueprint of domain-specific knowl-
edge has been constructed using embeddings. Moreover, instantiated advice generation is
provided, in the form of embeddings, where the user can upload specific examination data
using the provided services (Figure 12).
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4.5.1. Use Case 1

In Figure 7, a user requests, in an open-ended question, the ways in which the as-
sistant can provide help. The answer provided outlines the blueprint of domain-specific
knowledge, which is analyzed in Figure 4. The tools, objectives, and tasks are described
and returned as a direct answer.

4.5.2. Use Case 2

In the second use case (Figure 8), a user requests a consultation based on the described
symptoms—an informational question. The system provides an elaborated answer, where
some initial consultation is provided. A recommendation for a physical examination is also
suggested and a provision for potential lifestyle changes and the use of products. This is
an elaborated answer where the discussion can continue for a more definite diagnosis to
be acquired.

4.5.3. Use Case 3

In this use case, shown in Figure 9, we show an example of a deferred answer, where
the user is referred to a specialist (Table 1). Here, an open-ended question is provided that is
within the medical domain but outside the blueprint of domain-specific knowledge. Thus,
the system suggests a medical specialist, an oncologist, to better assess the related query.

4.5.4. Use Case 4

In this final use case, shown in Figure 10, we present the ways in which the data
retrieved from external sensors are utilized. As already discussed in the previous sections,
the data are transposed into embeddings and then analyzed, if necessary, by the system.
The user provides some symptoms (information question –> elaborated answer) and
states that data have been uploaded. Moreover, a summary of the data is requested. This
descriptive prompt is designed in such a way as to best outline the system’s capabilities. In a
real-world scenario, since the blueprint of domain-specific knowledge is already created,
the process would be more intuitive and only the symptoms would be required. The AI
assistant would assess these symptoms and analyze the health data if necessary to provide
a response.

5. System Evaluation

To effectively assess our system, we have utilized a selection of multiple-choice quiz
questions sourced from ‘The Internet Pathology Laboratory for Medical Education’, an es-
teemed resource hosted by the University of Utah’s Eccles Health Sciences Library [50].
These quizzes are meticulously designed to cater to students and professionals in health-
care sciences, with a particular focus on pathology. This selection is aligned with the
specific educational needs and curricular requirements of medical students of pathology
and practitioners.

More specifically, our system, which leverages the advanced capabilities of the GPT-4
model, has been tested across three thematic pillars of general pathology. These pillars
encompass a comprehensive range of topics critical to the field.

Atherosclerosis and Thrombosis: We explored 50 questions in this category, delving
into the complexities of atherosclerotic diseases and thrombotic processes. This section
aimed to evaluate the system’s understanding of cardiovascular pathologies, their etiologies,
and the intricate mechanisms underlying these conditions. Overall, 48 out of the total of
50 questions were correctly answered.

Cellular Injury: A set of 55 questions tested the system’s grasp of cellular injury
mechanisms. This included queries on cellular responses to stress, pathophysiological
changes in cell injury, and the various stages and outcomes of such injuries, mirroring real-
world scenarios encountered in medical practice. Overall, 50 out of the total of 55 questions
were correctly answered.
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Embryology: In this segment, 52 questions were presented, focusing on the devel-
opmental stages and anomalies of embryology. The system’s performance in this area
was crucial to ascertain its ability to handle complex developmental biology concepts and
their implications in pathological states. Overall, 45 out of the total of 52 questions were
correctly answered.

Nutrition: Lastly, a set of 40 questions pertaining to nutrition was used. These ques-
tions were designed to assess the system’s understanding of nutritional science, its role in
health and disease, and its integration into pathological conditions. Overall, 37 out of the
total of 40 questions were correctly answered.

In the evaluation process, each question was carefully crafted to present a realistic
medical scenario, encompassing a range of symptoms and conditions that were specific
to different gender and age groups. We provided the totality of questions and choices
and requested the correct choice as a response. This approach was intended to simulate
real-world clinical challenges, thereby testing the system’s ability to apply its knowledge in
a practical, context-sensitive manner.

For example, consider the following question from the Cellular Injury quiz.
A 50-year-old woman with a history of unstable angina suffers an acute myocardial infarction.

Thrombolytic therapy with a tissue plasminogen activator (tPA) is administered to restore the
coronary blood flow. Despite this therapy, the extent of myocardial fiber injury may increase due to
which of the following cellular abnormalities?

• [A.] Cytoskeletal intermediate filament loss
• [B.] Decreased intracellular pH from anaerobic glycolysis
• [C.] Increased free radical formation
• [D.] Mitochondrial swelling
• [E.] Nuclear chromatin clumping
• [F.] Reduced protein synthesis

This question exemplifies the complexity and depth of the quizzes. It not only tests the
system’s grasp of specific medical knowledge but also its ability to analyze and apply this
knowledge in diagnosing and understanding the progression of a disease. The inclusion of
multiple answer choices, ranging from four to five options per question, further enhances
the challenge, requiring the system to discern the most appropriate response from several
plausible alternatives.

Such questions are integral to evaluating the system’s proficiency in medical reasoning,
particularly in pathology and related healthcare fields. They are designed not only to test
the recall of factual information but also to assess the system’s understanding of intricate
physiological processes and its ability to make informed clinical decisions. This holistic
approach ensures a thorough assessment of the system’s capabilities in handling complex
medical scenarios.

This comprehensive testing approach not only gauges the system’s proficiency in han-
dling specific medical knowledge but also its ability to integrate and apply this knowledge
in a way that is coherent and contextually relevant to the field of pathology. The GPT-4
model had total precision of 91.37%, answering correctly 180 out of 197 questions. Although
the system demonstrates a high success rate, further evaluation by medical experts and
extensive testing across diverse scenarios are essential. Generally, systems empowered by
LLMs like GPT-4, as used in this research, should be considered and treated as assistants
and not replacements for human experts, particularly in sensitive domains such as the
medical field, considering the critical impact of decision making in such disciplines.

6. Discussion of Results and Future Research

In this paper, the application of AI and particularly LLMs and NLP in healthcare
is explored. A novel AI-empowered system is introduced, which is enhanced with rule-
based algorithms and incorporates GPT models and other ML tools, to provide diagnostic
advice. This system is tailored to address the complexities of healthcare experiences,
specifically from a general practitioner’s perspective. The research is organized into various
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sections, covering theoretical foundations, system design and implementation, and practical
use cases.

A key contribution of this work is the creation of a blueprint of domain-specific
knowledge, serving as a contextual foundation for an AI system augmented with LLMs and
rule-based logic. By generalizing the process, a measurable conclusion can be reached on
the quality of the LLM’s answers within a domain-specific context and a dialogue-defined
space. These rules are formulated from a dialogue theory perspective, ensuring meaningful
and relevant interactions. The system design is innovatively constructed and presented
in a cost-effective manner, emphasizing reproducibility and scalability. The proposed
AI-empowered, rule-augmented healthcare application integrates rules, external APIs,
and modern methodologies to utilize current LLMs efficiently. This forms the basis for
innovative approaches in the medical domain. Finally, the GPT-4-empowered system has
undergone comprehensive evaluation in the field of general pathology, achieving a 91.37%
accuracy rate in a set of 197 multiple-choice questions.

For future research and development, two critical areas are highlighted.

• Cost Analysis: Understanding the financial implications of deploying and using this
AI system in healthcare is vital. This involves assessing the initial setup costs, ongoing
operational expenses, and the potential financial benefits or savings that it might
bring to healthcare providers and patients. This analysis will help to determine the
economic feasibility and scalability of the system.

• Value-Based Care: This aspect focuses on comparing the costs and outcomes of care
provided by different healthcare providers, considering both automated systems like
the one proposed and traditional care methods. Key elements include the following.

– Evaluating Effectiveness of Interventions: This involves measuring the impact of
healthcare interventions on patient outcomes such as mortality rates, morbidity
rates, and improvements in health-related quality of life. The AI system’s role
in facilitating timely interventions and improving these outcomes needs to be
examined.

– Patient Perspectives on Effectiveness: Assessing the value of care from the pa-
tient’s point of view is crucial. This involves gathering and analyzing patient
feedback to understand their experiences and satisfaction with the care provided,
both through traditional means and the AI system.

These areas emphasize the need to balance technological advancement with practical,
patient-centered care. Future research should also focus on ethical considerations, data
privacy, and the integration of AI systems with existing healthcare infrastructures. The ulti-
mate goal is to enhance healthcare delivery while ensuring that it is accessible, affordable,
and aligned with patient needs and values.
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine Learning
AI Artificial Intelligence
XAI Explainable Artificial Intelligence
GAI Generative Artificial Intelligence
LLM Large Language Model
NLP Natural Language Processing
EHR Electronic Health Records
HMM Hidden Markov Models
CRF Conditional Random Fields
LDA Latent Dirichlet Allocation
RAG Retrieval-Augmented Generation
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