
Citation: Szwarc, E.; Golińska-

Dawson, P.; Bocewicz, G.; Banaszak,

Z. Robust Scheduling of Multi-

Skilled Workforce Allocation: Job

Rotation Approach. Electronics 2024,

13, 392. https://doi.org/

10.3390/electronics13020392

Academic Editors: José Machado,

Fernando De la Prieta Pintado,

Vicente Julian Inglada and

Sascha Ossowski

Received: 11 December 2023

Revised: 12 January 2024

Accepted: 16 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Robust Scheduling of Multi-Skilled Workforce Allocation:
Job Rotation Approach
Eryk Szwarc 1,* , Paulina Golińska-Dawson 2 , Grzegorz Bocewicz 1 and Zbigniew Banaszak 1

1 Faculty of Electronics and Computer Science, Koszalin University of Technology, Sniadeckich 2,
75-453 Koszalin, Poland; grzegorz.bocewicz@tu.koszalin.pl (G.B.); zbigniew.banaszak@tu.koszalin.pl (Z.B.)

2 Faculty of Engineering Management, Poznan University of Technology, Jacka Rychlewskiego 2,
60-965 Poznań, Poland; paulina.golinska@put.poznan.pl

* Correspondence: eryk.szwarc@tu.koszalin.pl

Abstract: This paper addresses scheduling challenges in software development organizations, specif-
ically focusing on a novel version of the software project scheduling problem (SPSP). This enhanced
model incorporates the dynamics of learning and forgetting phenomena, crucial in maintaining
employee competencies, particularly when unexpected events such as absenteeism or shifts in project
priorities occur. The paper introduces a new declarative reference model for SPSP, aimed at proac-
tively managing the assignment of versatile programmers to tasks within an portfolio of IT projects,
while considering the effects of forgetting. Implemented within a constraints programming envi-
ronment, this model facilitates decision making in project management for software companies. It
serves to find feasible solutions and identify conditions necessary to meet specified expectations. The
effectiveness of the proposed SPSP model is demonstrated through numerical examples.

Keywords: job rotation; project; competencies; maintenance; learning–forgetting effect; robustness

1. Introduction

In today’s dynamic and competitive business environment, organizations are con-
stantly seeking ways to optimize their resources, enhance productivity, and adapt to
changing demands. A critical aspect of achieving these goals is efficient scheduling of a
multi-skilled workforce allocation [1–4]. A promising solution is an effective approach that
results in the job rotation driven robust scheduling of employees, which not only optimizes
the allocation of a workforce but also promotes an employee’s skill development and job
satisfaction [5,6].

Instead of confining employees to a single job profile, job rotation (JR) involves the
systematic movement of employees between different roles and functions within an organi-
zation, encouraging them to take on varied responsibilities, allowing for the development
of a broad skillset [7–11]. Implementing a JR approach in workforce scheduling addresses
these challenges by providing a dynamic framework that adapts to changing demands
while allowing for real-time adjustments in workforce allocation based on demand fluctu-
ations. This ensures optimal resource utilization without compromising efficiency while
balancing the organizational needs with the capabilities of individual employees [12–15].

Businesses often face fluctuations in demand, requiring dynamic scheduling algo-
rithms that consider real-time factors such as employee availability and skill requirements.
Coordinating a workforce with diverse skillsets following such a factor requires careful
planning caused by the effectiveness of job rotation programs being influenced by the
learning–forgetting effect, which suggests that the skills acquired during a rotation can be
diminished if not consistently reinforced [16–18]. This means that multi-skill employees
in the professions of a teacher (conducting classes in various subjects), an IT programmer
(using different programming languages), or a nurse (working in emergency, surgical,

Electronics 2024, 13, 392. https://doi.org/10.3390/electronics13020392 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020392
https://doi.org/10.3390/electronics13020392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1255-898X
https://orcid.org/0000-0002-5821-3805
https://orcid.org/0000-0002-5181-2872
https://orcid.org/0000-0001-7219-3903
https://doi.org/10.3390/electronics13020392
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020392?type=check_update&version=2

Electronics 2024, 13, 392 2 of 18

and pediatric wards) deteriorate over time if not reinforced, i.e., when their periodic, al-
ternating use is not entailed. In other words, the learning–forgetting effect introduces a
temporal dimension to this maintenance challenge, emphasizing the need for continual
skill reinforcement to counteract the natural decay of knowledge over time. Against this
background, the presented study explores the learning–forgetting effect and its implica-
tions on the scheduling of job rotations to maintain the multi-skilled staff at an assumed
level of their competences while involving the preservation and enhancement of a diverse
skillset [19,20].

The purpose of this paper is to present a new decision-making model, which applies
a declarative approach for the proactive planning of job rotation of a multi-skilled team
of programmers to avoid the forgetting effect [21]. The work focuses on the skills of
programmers, which are also called competencies. In software development, the level
of the programmers’ competencies (which changes over time due to job rotation) affects
the execution time of tasks. Low-skilled programmers make more mistakes (requiring
time-consuming corrections) compared to high-skilled programmers.

Therefore, this article represents an extension of previous research on proactive re-
source allocation within competency structure constraints [22–25] and is a continuation
of the authors’ recent research presented at the International Conference on Distributed
Computing and Artificial Intelligence, 2023 [26].

The main contributions include the following:

• A new declarative model for proactive job rotation planning within a multi-skilled
workforce.

• The definition of a constraint satisfaction software project scheduling problem (SPSP)
that links staff rotation to task timing and competency validity. The new SPSP takes
into account the uncertainties and dynamic events that often occur during the imple-
mentation of a software project.

• A demonstration through numerical results of the viability of employing this proactive
job rotation planning method in real-time scenarios.

The structure of this paper is outlined as follows: Section 2 identifies the primary
research gap based on the examination of related works. Section 3 introduces a declarative
model that facilitates the formulation of the software project scheduling problem (SPSP) as
a constraint satisfaction problem (CSP). Subsequently, in Section 4, the paper integrates the
concepts of competence structure robustness and the maintenance of team competences at a
constant level. The effectiveness of proactive job rotation schedules in SPSP is then revealed
through computer experiments presented in Section 5. Finally, Section 6 summarizes the
contributions of the paper.

2. Literature Review

The definitions of job rotation found in the literature and a review of research on job
rotation in various types of activities, in particular in software producing enterprises, are
presented. Following an exploration of software project scheduling within the program-
ming industry, the research highlighted the influence of learning and forgetting effects.
Through this investigation, a distinct gap in the existing body of knowledge was identified.

2.1. Job Rotation

Job rotation, also known as work rotation, represents a managerial tactic employed
within organizations to alleviate work monotony, boredom, fatigue, and burnouts [27,28].
Its primary objective extends to improving job satisfaction, employee motivation and
balancing ergonomics indices [29–31]. This strategy spans various sectors, encompassing
nursing, engineering, software development, and the manufacturing industry [32,33].
In the context of software production, job rotation entails the deliberate and structured
movement of employees across different job roles (J2J) or from one project to another
(P2P) [34]. P2P rotation particularly involves shifting employees between projects that
share similar characteristics, often involving comparable technical duties. This practice

Electronics 2024, 13, 392 3 of 18

stimulates greater team adaptability and reduces work monotony while also fostering
innovation and the formation of diverse multicultural teams.

There are many definitions in the literature describing job rotation. In [27], it is treated
as the deliberate and organized movement of employees within and between organizational
areas to increase the company’s success and the employment of employees. In [35], it was
stated that it is a regular change of jobs in different positions in the organization, either
based on a pattern or spontaneously based on the personal needs of employees. One study
defines job rotation as the replacement of personnel between two or more areas of an
organization for a predetermined period of time [30]. Another paper presents a practice
that allows employees to be transferred from team to team and from project to project
within the same organizational area [36]. One of the broadest definitions was proposed
by Wood [37], who perceived job rotation as the systematic movement of employees from
work to work or from project to project within an organization during the course of a task
as an approach to achieving a wide variety of human resource goals, such as filling jobs,
directing new employees, preventing boredom or burnouts, rewarding employees, and
supporting career development.

In the context of software engineering organizations (software development and/or
development), job rotation is defined as the practice of transferring an employee within an
organization from one project (source project) to another (target project). In most situations,
the role (software engineer, test engineer, team leader, software architect, etc.) performed
by the rotated person remains the same. However, in different circumstances, in order to
meet the resource needs in the target project, an employee can change the role, for example,
a test engineer to a software engineer.

Typically, rotation is applied in the following two scenarios:

• When a particular project demands a larger team or a different skillset.
• When an employee expresses an interest in transitioning to different projects.

From this, it follows that rotations can be used to achieve organizational goals related
to resource allocation, as well as individual motivational needs. One of the key factors
to consider when performing a rotation is the variety of tasks and skills. Low diversity
(shifting people to the same role in a project with similar technical requirements or to work
in the same business domain using the same technologies) creates fewer opportunities
for learning and therefore fewer benefits for the rotated person. On the other hand, too
much variety can create a long and steep learning curve for a rotating person, which can
result in a loss of performance and an increase in fatigue. Another important factor is the
timing of the job rotation. Research indicates that a balance needs to be struck in a person’s
rotation frequency. Doing them too often reduces the perception of performing a job well.
On the other hand, leaving a person in the same project for too long is not desirable because
software engineers value variety (tasks and/or acquiring new skills). Overall, the research
indicates that the use of rotation has a positive effect on motivation, job satisfaction, and
innovation [38] and impacts negatively on job specificity [39]. A set of tasks and a set of
employees with specific characteristics are included. Skills, remuneration, and working
time limits are given. In the context of software projects, it is possible to have skills in
specific technologies or tasks such as programming, database management, design, etc.

2.2. Scheduling of IT Projects

The rotation of programmers is part of the so-called software project scheduling
problem (SPSP), which involves the assignment of employees to tasks, subject to various
constraints, such as the total development cost and duration [40]. Many of the SPSP models
proposed so far are similar to the model originally presented in [41], i.e., specified by a given
set of tasks and a set of employees characterized by their skills, salary, preferences, working
time limits, and so on. Skills are understood as the abilities possessed by employees to
perform certain types of tasks. In the context of software projects, it is possible to have skills
in specific technologies or tasks such as programming, database management, design, etc.
In [40], an SPSP model is proposed that takes into account the uncertainties and dynamic

Electronics 2024, 13, 392 4 of 18

events that often occur during the implementation of a software project. In other words,
the changing environment for software companies means that software project planning is
a dynamic optimization problem. In this model, the labor intensity of the tasks is uncertain,
that is, modifications to task specifications and inaccuracies in the initial estimates can
cause changes in the originally estimated labor intensity of the task. Additionally, changes
in customer requirements may occur during the software development lifecycle, leading
to the need for additional tasks. Furthermore, the proposed model takes into account the
fluctuation of employees (departure or employment) during the course of the project.

The existing SPSP models assume that the requirements for skills in the performance
of tasks and the workload of employees are expressed in person–months. A task can be
assigned to one or more employee, and each employee is assigned a level of commitment
to the task. For example, if a full-time employee is assigned a commitment of 0.5 for a
particular task, it means that that particular employee devotes half of his/her workday to
that task. On this basis, the duration of the project is calculated.

The skills of programmers in SPSPs have been discussed in many studies so far. In [42],
workers are classified according to four different skill levels, beginner, junior, senior, and
expert, with an entry-level employee receiving the lowest salary and an expert earning the
highest salary. Additionally, tasks are assigned a required skill level, which corresponds
to one of the four mentioned. In [43], five different skill levels of workers are considered,
i.e., novice, average, good, very good, and expert, while in [44], they are classified only as
novice or experienced. In [45], employee productivity, i.e., the time it takes for an employee
to complete their assigned tasks, was discussed.

In some SPSP models, the skill level of programmers is assumed to be constant [46,47].
In fact, employees can hone their skills during software development, i.e., an employee
may have a low level of a skill, but if they work long enough on a task that requires that
skill, they will increase the level of that skill through the experience they have gained.
On the other hand, when they rarely use a particular skill, they experience a forgetting
effect, and the skill level decreases [48], which affects the efficiency and working time of
programmers and thus the timely completion of projects [49].

2.3. The Effect of Learning and Forgetting

The learning–forgetting effect is a cognitive phenomenon that occurs when newly
acquired knowledge or skills gradually decline over time in the absence of reinforcement
or practice. Understanding the dynamics of this effect is crucial to designing effective job
rotation programs. Research suggests that the rate of forgetting varies depending on the
complexity of the skills and the frequency of reinforcement activities.

Wright [50] was the pioneer in analyzing how the workers’ skill levels impact the
output of aircraft production, introducing the concept of the Wright learning curve (WLC).
This curve illustrates the correlation between skill mastery or knowledge and time. It has
been applied in the solution of project planning issues [51]. Additionally, studies such
as [52] have demonstrated that utilizing the learning curve significantly influences the
efficiency of the programmers’ work.

The ability to learn is often accompanied by what is known as the forgetting effect—a
non-linear function that represents the decline of a skill when it is not actively utilized.
Several models have emerged to describe this phenomenon, such as the variable regression
to variable forgetting (VRVF) model [53], the variable regression to invariant forgetting
(VRIF) model [54], the learning–forgetting curve model (LFCM) [55], and the recency model
(RC) [56].

While numerous studies exist in this domain, there is limited literature specifically
addressing the learning and forgetting effects within SPSP. Existing research primarily
delves into the impact on project costs and duration [18]. Notably, the focus tends to
center on the learning effect, where programmers repeating the same tasks in a project’s
initial phase (without rotation) enhance specific skills, thereby reducing the implementation

Electronics 2024, 13, 392 5 of 18

time of those tasks in subsequent stages. However, this comes at the cost of diminishing
proficiency in unused skills.

The study results do not definitively indicate whether repetitive task assignments
without rotation and specialization in specific skills yield better outcomes than implement-
ing work rotation. Additionally, within the realm of SPSP, there is a research gap concerning
the influence of rotation and its associated learning and forgetting effects on sustaining the
employees’ skill at consistent readiness levels. This aspect is important, especially when
unforeseen disruptions occur during the functioning of software companies. To illustrate
the problem of determining the schedules’ robustness to disruptions, an example of an
SPSP was used (see Section 3), in which, for didactic reasons, fictitious small-scale data
were adopted.

3. Problem Formulation

The essence of the SPSP is the allocation of employees (hereinafter also referred to as
programmers) with many skills to perform a specific set of tasks Z =

{
Z1, . . . , Zi, . . . , ZQ

}
,

such as the physical design and implementation of a database, user interface design,
program coding, testing, etc. A portfolio of projects E =

{
E1, . . . , Ej, . . . , EK

}
is given,

where Ej ⊆ Z. The projects are executed according to the sequence W = (w1, .., wl , . . . , wL),
where wl ∈ E.

A group of P = {P1, . . . , Pk, . . . , PM} programmers needed to carry out individual Zi
tasks is given. The competence structure of employees P during the execution of the Ej

project has the form of a matrix Gj as follows:

Gj =
[

gj
i,k

]
i=1...Q; k=1...M

(1)

where gi,k ∈ {1, . . . , 5} determines the level of competence of the programmer Pk necessary
to perform task Zi. The adopted five-level scale determines the duration time tj

i of task Zi
in accordance with the following function:

gj
i,k =

5 or 4 programmer Pk performs the task Zi in tj

i = 1 time unit
3 programmer Pk performs the task Zi in tj

i = 2 time units
2 or 1 programmerPkperformsthetask Zi in tj

i = 4 time units

According to the above, the duration time of task Zi is:

• 1 time unit if the programmer Pk has competences at level 4 or 5;
• 2 time units if the programmer Pk has competences at level 3;
• 4 time units if the programmer Pk has competences at level 2 or 1.

Each project Ej from portfolio E is associated with the X j assignment of programmers
to tasks. Similar to the competence structure, it takes the form of a matrix, which is
as follows:

X j =
[

xj
i,k

]
i=1...Q; k=1...M

(2)

where xj
i,k ∈ {0, 1}, xj

i,k = 1 when the programmer Pk is assigned to perform the task Zi in

project Ej, otherwise, xj
i,k = 0.

Assignments X j make up the sequence of assignments X =
(
X1, . . . , X j, . . . , XK),

which determines the schedule for project execution as follows:

Y =
(
y1, . . . yj, . . . , yK

)
(3)

where yj specifies when project Ej starts (all project tasks start with Ej simultaneously). The
completion time of project sequence order W depends on schedule Y and is denoted as
variable EY.

Electronics 2024, 13, 392 6 of 18

According to the effect of learning and forgetting, the level of competence does not
remain constant. Curves that model this effect are the subject of many studies [57,58], in
which different shapes are given with different degrees of inclination. In this work, for
simplicity, it was assumed that the level increases if the programmer performs a specific
task. The range of this increase depends on the level of competence, and similarly, the
level of competence decreases if the programmer does not perform a specific task. The
classification rules are as follows:

• Competence increases by one for every two time units of task duration if the compe-
tency level is 1 or 2;

• Competence increases by one for each time unit of task duration if the competency
level is 3 or 4;

• Competence decreases by one for each time unit when the task is not performed if the
competence level is 2 or 3;

• Competence decreases by one for every two time units when the task is not performed
if the competency level is 4 or 5.

In other words, the level of the programmers’ competences changes during the im-
plementation of subsequent projects. It depends on the assigned sequence adopted. The
elements gl

k,i of the competence structure Gj for project Ej are determined as follows:

gj
i,k = ϕ

(
gj−1

i,k , xj−1
i,k

)
, for j > 1, (4)

where ϕ is a function determining the level of competence of programmers for the Ej

project, based on the values of the elements gj−1
i,k , xj−1

i,k (according to above rules).
In addition, the problem under consideration assumes the following:

• The task can be performed by only one programmer with any level of competence;
• All tasks must be assigned to employees;
• The moment EY of completing sequence projects W determined by the schedule Y

must be less than or equal to the arbitrarily set horizon H (EY ≤ H).

Unplanned events (disruptions) during the execution of projects mean adding a new
project (r)E to the W order (usually as the last one) as follows: (r)W = W||(r)E (where ||
means sequence concatenation operation). The ability of the competency structure to deal
with this type of disruption can be assessed by the robustness measure (i.e., the ratio of
variants of the number of disruption (LP) for which the competency structure G guarantees
the execution of (r)W to all disruption scenarios (set of disruptions E∗) as follows:

R =
LP
|E∗| . (5)

The problem outlined here simplifies the SPSP, overlooking various practical limita-
tions, such as working hour constraints and payroll expenses. The presented approach
focuses solely on the learning and forgetting curve model (LFCM), excluding other models
such as RC (recency) and PID (power integration diffusion) for comparison—a direction
for future investigation. In a broader context, diverse shapes of the forgetting function,
specific to various professions, gender, and age groups, could be considered. However,
due to the absence of available statistics defining these shapes for distinct occupational
groups, this paper relies on approximate characteristics gathered from a population of
25–30 individuals over the last five years.

In this context, the objective is to find a response to the following specific questions:

1. Is there a particular assignment X variation that guarantees the completion of the
project’s portfolio W within the specified horizon EY ≤ H?

2. Does there exist an assignment X that guarantees a specified robustness R (e.g., R = 1)
for completing tasks in the given project order?

Electronics 2024, 13, 392 7 of 18

To illustrate, let us consider a software company that executes an order involving a
portfolio of three E = (E1, . . . , E3), projects that require different sets of steps (operations):
E1:(Z1, Z2, Z3); E2:(Z1, Z2, Z4); and E3:(Z2, Z3, Z4). Projects are completed in the following
order: E1, E2, E3, which means that only after the completion of project E1, the tasks of
project E2, etc., begin.

The company employs three programmers P = (P1, . . . , P3). Each of them has a
specific level of skills (on a scale of 1–5) to carry out individual tasks Z = (Z1, . . . , Z4).
Their collective list is represented by the competence structure G1 in Table 1 (structure
describing the competencies of employees before E1 project implementation). In addition,
it is assumed that each employee has the 4th level of competence for each task.

Table 1. Competence structure G1.

G1 P1 P2 P3

Z1 4 4 4
Z2 4 4 4
Z3 4 4 4

Programmer competency levels affect duration tj
i of tasks Zi. To illustrate this, let us

assume the following:

• Duration is tj
i = 1 time unit if the level of competence of the employee is 4 or 5;

• Duration is tj
i = 2 time unit if the level of competence of the employee is 3;

• Duration is tj
i = 4 time unit if the level of competence of the employee is 2 or 1.

It was assumed that the level of competence increases if a programmer performs a
specific task, and the rate of increase depends on the level of competence as follows:

• If the level of competency is 1 or 2, the competence increases by one per two time units
of task duration;

• If the level of competency is 3 or 4, the competence increases by one for each time unit
of task duration.

Similarly, the competence level decreases if the programmer does not perform a
specific task, and the rate of decrease depends on the level of competence as follows:

• If the competence level is 2 or 3, the competence decreases by one for each time unit
when the task is not performed;

• If the competency level is 4 or 5, the competence decreases by one in two time units of
the time when the task is not performed.

For example, if a programmer P1 with the competence to Z1 at level 4 performs this
task, then after 1 time unit, the level Z1 will increase to 5. Similarly, if an employee does
not perform a specific task, the level of competence decreases by one level. For example, if
a programmer P2 with the competence to Z1 at level 4 does not perform this task in 2 time
units, then the level will drop to 3. This means that at the implementation stage of each Ej

project, the levels of employees’ competencies (described by the Gj competency structure)
may differ from their initial values.

For such assumptions, the sequence of assignments X =
(
X1, X2, X3) of the set

of programmers P to tasks Z comprising projects E1, E2, E3 is sought. The assignment X j

determines the assignment of programmers (with competencies defined by the Gj structure)
to the tasks of the Ej project.

It is required that each assignment X j meets the following conditions:

• The activity can be carried out only by one employee of any level of competence;
• All activities must be assigned to employees.

An example of assigning X1 employees to tasks Z1, Z2, Z3 in project E1 is presented
in the Table 2. A value of 1 means that the programmer is performing a specific task, and

Electronics 2024, 13, 392 8 of 18

a value of 0 means the opposite. For example, P1 performs task Z1 but does not perform
tasks Z2 and Z3. It also does not carry out the task of Z4, which is not part of the E1 project.

Table 2. Employee assignment X1.

X1 P1 P2 P3

Z1 1 0 0
Z2 0 1 0
Z3 0 0 1
Z4 0 0 0

The assignment X1 defines both the G2 competency structure for the subsequent im-
plementation of the E2 project as well as the time of completion of the commissioned tasks
(tj

i). For example, after the completion of the E1 project, the level of Z1 competence in the
employee P1 (learning effect) will increase (level 5), which means the time of implementa-
tion t2

1 = 1, while the level of competence to Z2, Z3 and Z4 will not change (level 4), which
means the time of implementation t2

2, t2
3, t2

4 = 1 (see Table 3).

Table 3. G2 competence structure for the E2 project (implemented after the end of the E1 project).

G2 P1 P2 P3

Z1 5 (t2
1 = 1) 4 (t2

1 = 1) 4 (t2
1 = 1)

Z2 4 (t2
2 = 1) 5 (t2

2 = 1) 4 (t2
2 = 1)

Z3 4 (t2
3 = 1

)
4 (t2

3 = 1) 5 (t2
3 = 1)

Z4 4 (t2
4 = 1) 4 (t2

4 = 1) 4 (t2
4 = 1)

The adopted allocation of employees X determines the schedule for the implemen-
tation of projects Y. It is defined as the sequence Y = (y1, y2, y3), where yj specifies the
start point of the Ej project. For simplicity, it is assumed that all Ej project tasks start at
the moment of yj. The start time of the Ej project must not be less than the end time of the
project Ej−1 (for j > 1).

The presented example illustrates a simplified version of the SPSP, which omits a
number of limitations encountered in practice, such as working time limits, wage costs, etc.
In general, however, the following routine question is sought: is there an assignment of X
employees that guarantees the existence of a schedule Y for the implementation of projects
E1, E2, E3 that meets the given assumptions?

In general, there can be multiple assignment variants. Figure 1 shows the two selected
variants of schedule Y = (0, 1, 2) for two different assignments X. These schedules differ in
terms of the time to complete the project portfolio. For example,

• In the variant from Figure 1a, assignments X1 and X2 cause a decrease in competences
in the competence structures G2 and G3, affecting the duration of project E3, i.e., in
assignment X3, employee P1 (due to G3, his Z4 competence is at level 3) is assigned to
task Z4, which means that he performs this task in 2 time units (t3

4 = 2). Ultimately,
the project order ends after 4 time units.

• In the variant from Figure 1b, compared to the variant from Figure 1a, there is a higher
rotation of tasks (another assignment X2 causes a smaller decrease in competences in
the G3 structure after the implementation of project E2), which allows project E3 to be
completed within 1 time unit. Ultimately, the project order ends after 3 time units.

Among the variants of schedule Y that meet the adopted assumptions (see Figure 1),
an answer to the following question is sought: which variant of employee assignment X
guarantees the minimum makespan to complete projects E1, E2, E3?

In the example shown, such a variant of allocation X and schedule Y = (0, 1, 2) is
illustrated in Figure 1b.

Electronics 2024, 13, 392 9 of 18Electronics 2024, 13, 392 9 of 18

Figure 1. Project execution 𝐸 , 𝐸 , 𝐸 in horizon 𝐻 4 (a), 𝐻 3 (b).

However, the SPSP solutions found in the literature do not take into account un-

planned events during the implementation of projects, e.g., additional orders. So, let us

consider a case in which a company executes an order 𝐸 according to schedule 𝑌
0,1,2 (see Figure 1b) and considers the possibility of accepting another order 𝐸 . There-

fore, the following question arises: is it possible to undertake the implementation of the

𝐸 project and complete the projects (in the order of 𝑊 𝐸 , 𝐸 , 𝐸 , 𝐸) within the dead-

line of 4 time units for the adopted allocation 𝑋 (determining schedule 𝑌 from Figure
1b)? As can be seen from Figure 2, the 𝐺 competency structure allows for such an allo-

cation of 𝑋 that results in a schedule 𝑌 0,1,2,3 that is completed on time.

Figure 2. Variant of the schedule 𝑌 0,1,2,3 and execution of the projects 𝐸 , 𝐸 , 𝐸 , 𝐸 in 4 time units.

Figure 1. Project execution E1, E2, E3 in horizon H = 4 (a), H = 3 (b).

However, the SPSP solutions found in the literature do not take into account unplanned
events during the implementation of projects, e.g., additional orders. So, let us consider
a case in which a company executes an order E3 according to schedule Y = (0, 1, 2) (see
Figure 1b) and considers the possibility of accepting another order E2. Therefore, the
following question arises: is it possible to undertake the implementation of the E2 project
and complete the projects (in the order of W = (E1, E2, E3, E2)) within the deadline of 4 time
units for the adopted allocation X (determining schedule Y from Figure 1b)? As can be
seen from Figure 2, the G4 competency structure allows for such an allocation of X4 that
results in a schedule Y = (0, 1, 2, 3) that is completed on time.

Electronics 2024, 13, 392 9 of 18

Figure 1. Project execution 𝐸 , 𝐸 , 𝐸 in horizon 𝐻 4 (a), 𝐻 3 (b).

However, the SPSP solutions found in the literature do not take into account un-

planned events during the implementation of projects, e.g., additional orders. So, let us

consider a case in which a company executes an order 𝐸 according to schedule 𝑌
0,1,2 (see Figure 1b) and considers the possibility of accepting another order 𝐸 . There-

fore, the following question arises: is it possible to undertake the implementation of the

𝐸 project and complete the projects (in the order of 𝑊 𝐸 , 𝐸 , 𝐸 , 𝐸) within the dead-

line of 4 time units for the adopted allocation 𝑋 (determining schedule 𝑌 from Figure
1b)? As can be seen from Figure 2, the 𝐺 competency structure allows for such an allo-

cation of 𝑋 that results in a schedule 𝑌 0,1,2,3 that is completed on time.

Figure 2. Variant of the schedule 𝑌 0,1,2,3 and execution of the projects 𝐸 , 𝐸 , 𝐸 , 𝐸 in 4 time units. Figure 2. Variant of the schedule Y = (0, 1, 2, 3) and execution of the projects E1, E2, E3, E2 in
4 time units.

Electronics 2024, 13, 392 10 of 18

4. Reference Model

The considered problem could be described using the declarative modeling paradigm.
Parameters:

Z: set of tasks Z =
{

Z1, . . . , Zi, . . . , ZQ
}

;
E: portfolio of projects E =

{
E1, . . . , Ej, . . . , EK

}
;

P : group of programmers P = {P1, . . . , Pk, . . . , PM};
W: sequence of projects;
H: expected moment (horizon) of completion of W sequence projects;
G1: initial competence structure;

ϕ: function determining the level of competence of programmers ϕ
(

gj−1
i,k , xj−1

i,k

)
;

E*: set of disruptions E* ⊆ E (unplanned tasks/projects);
(r)W : sequence of projects with disruption (r)E ∈ E*: (r)W = W||(r)E;
R: robustness of a competence structure;
GR: expected value of competence structure robustness for set of disruption E*.

Decision variables:
(r)X j : assignment of programmers to tasks (2), in the case of disruption (r)E ∈ E∗;
(r)Gj : competence structure (1), in the case of disruption (r)E ∈ E∗;
(r)Y : schedule for project execution, in the case of disruption (r)E ∈ E∗;
(r)ω : binary value specifying whether, in the case of disruption (r)E ∈ E∗, the projects can
be completed within the given horizon H.

Constraints:

• In each project Ej, for all tasks Zi, the programmers of setP must be assigned the following:

∑M
k=1

(r)xj
i,k = 1; ∀Zi ∈ Ej, ∀(r)E ∈ E∗, (6)

∑M
k=1

(r)xj
i,k = 0; ∀Zi /∈ Ej, ∀(r)E ∈ E∗, (7)

• The assignment of programmers to tasks of portfolio E is the same for each case of
disruptions (r)E, (q)E ∈ E∗.

(r)xj
i,k = (q)xj

i,k ; q 6= r, Ej 6= (r)E, (q)E ∈ E∗ (8)

• In each project Ej, programmer Pk can only be assigned to one task.

∑Q
i=1

(r)xj
i,k = 1; ∀Zk ∈ P , ∀(r)E ∈ E∗, (9)

• Elements (r)g
j
k,i of the competence structure (r)Gj of project Ej (for j > 1) depend on

the preceding project Ej−1.

(r)g
j
i,k = ϕ

(
(r)g

j−1
i,k , (r)xj−1

i,k

)
, for j > 1, ∀(r)E ∈ E∗, (10)

• The duration of a task (r)t
j
i for the Ej project depends on the competence of the Pk

employee who is performing it.

(r)t
j
i =

1 if (r)xj

i,k= 1 and (r)g
j
i,k ≥ 4

2 if (r)xj
i,k= 1 and (r)g

j
i,k = 3

4 if (r)xj
i,k= 1 and (r)g

j
i,k ≤ 2

, ∀Zi ∈ Ej, ∀(r)E ∈ E*, (11)

• Project Ej starts after project Ej−1 is finished.

Electronics 2024, 13, 392 11 of 18

(r)y j =
(r)y j−1 + max

i=1...Q

{
(r)t

j−1
i

}
, for j > 1, (r)y1 = 0, ∀(r)E ∈ E*, (12)

• If the portfolio of projects (with additional project (r)E) can be completed within the
given horizon H, then the competence structure is robust for disruption (r)E.(

(r)yK+1 + max
i=1...Q

{
(r)t

K+1
i

}
≤ H

)
=⇒

(
(r)ω = 1

)
, (13)

(
(r)yK+1 + max

i=1...Q

{
(r)t

K+1
i

}
> H

)
=⇒

(
(r)ω = 0

)
, (14)

• Competence structure robustness R (5) for the disruption of set E∗ should be at least
equal to GR as follows:

R =
∑
|E*|
r=1

(r)ω

|E*|
≥ GR. (15)

The presented model allows us to answer the following question: is there an assign-
ment (r)X that guarantees a robustness R ≥ GR for the given set of disruptions E∗? The
above problem can be formulated as the following CSP (constraint satisfaction problem):

CS = ((V ,D), C), (16)

where V =
{
(r)xj

i,k , (r)g
j
i,k, (r)y j

∣∣∣k = 1, . . . , M; i = 1, . . . , Q; j = 1, . . . , K + 1, r = 1 . . .
∣∣E*
∣∣},

a set of decision variables representing assignment (r)X, schedule (r)Y and competence
structure (r)Gj ; D is a finite set of domains of the decision variables; and C is a set of
constraints specified in inequalities (6)–(15).

To solve the problem CS (16), one should determine the values of decision variables
(r)xj

i,k , (r)g
j
i,k, (r)y j, for which all the constraints given in set C are satisfied. Solving CS

means determining the assignment which guarantees the execution of the portfolio of
projects with a given robustness for the occurrence of a new project (r)E ∈ E∗.

The problem defined in this way should be treated as an extension of the worker
assignment problem [59,60] (which is NP-hard) with elements of assessing the robustness
of the solutions obtained. In this approach, in addition to the decision variables describing
the allocation of employees (r)X j (to which the classic assignment problem is limited), the
level of their competencies (r)Gj as well as project implementation schedule (r)Y resulting
from the adopted assignment are also taken into account. The search space determined by
these variables grows exponentially with the number of programmers (M), implemented
tasks (Q), and projects (K), as well as with the considered project implementation time
horizon (H), and is estimated by the function (M, Q, K, H) = 10M×Q×K × KH . The problem
under consideration, similar to the worker assignment problem, is NP-hard. The use of
declarative programming environments (in particular, constraint programming) allows for
an effective search of such spaces using branch and bound [61] algorithms dedicated to
solving the constraint satisfaction problem (CSP), implementing mechanisms of constraints
propagation and variables distribution. For the CS problem (16) considered in the article,
the IBM ILOG CPLEX declarative programming environment was used.

The proposed model describes the constraints coming from a software development
company. The correctness of the model was verified by an IT industry expert in a series of
10 variants of test data from completed projects.

An example using the proposed approach is presented in the next section.

Electronics 2024, 13, 392 12 of 18

5. Computation Experiments

As part of the computer experiments, a case study related to the need to implement
tasks in a software company was performed, and the effectiveness of the developed solution
was checked for various scales of project/employee size.

5.1. Case Study

In order to verify the correctness of the model proposed in Section 4, an experiment was
conducted based on data obtained from an enterprise specializing in the implementation of
IT sector projects. For confidentiality reasons, it is impossible to provide the company’s full
name. In particular, the company develops IT programs and internet applications such as
systems for launching multiple websites, intranet portals, browser and mobile applications,
etc. Such a big variety of implemented projects requires specific competences and flexibility
of human resources (programmers) to take over additional tasks when a specific order is
received (multi-functional employees are required). Additionally, it is necessary to rotate
the assignment of tasks to employees in order to maintain competences at a level that
allows for effective project performance.

For the purposes of the experiments, data from the E portfolio consisting of six projects
were used as follows: E = {E1, . . . , E6}, within which four tasks, Z = {Z1, Z2, Z3, Z4}, were
carried out.

To carry out the tasks, the company employed staff comprising eight programmers
P = (P1, . . . , P8). According to the adopted model, each employee was assessed in terms of
the level of competence to perform individual tasks Z = (Z1, . . . , Z4). Their collective list
is represented by the initial competence structure G1 in Table 4. Due to the requirements
for personal data protection, the processed data have been pseudonymized.

Table 4. Company’s competence structure G1.

G1 P1 P2 P3 P4 P5 P6 P7 P8

Z1 5 4 5 4 3 4 4 5
Z2 4 4 5 4 4 5 3 4
Z3 4 4 5 4 5 5 4 4
Z4 5 5 4 4 5 4 5 3

The duration of tasks Zi depends on the competency level as follows:

• Duration is tj
i = 1 time unit if the level of employee competency is 4 or 5;

• Duration is tj
i = 2 time unit if the level of employee competency is 1, 2 or 3.

According to the learning effect, it is known that the competency level increases
as follows:

• If the competency level is 1 or 2, the competence increases by one per two time units
of the task duration;

• If the competency level is 3 or 4, the competence increases by one for each time unit of
the task duration.

Similarly, according to the forgetting effect, it is known that competency level decreases
as follows:

• If the competency level is 2 or 3, the competency decreases by one for each time unit
when the task is not performed;

• If the competency level is 4 or 5, the competency decreases by one for two time units
when the task is not performed.

Additionally assumed was the following:

• A single programmer, regardless of their competency level, can complete the task;
• Every task needs to be assigned to employees;

Electronics 2024, 13, 392 13 of 18

• The entire project portfolio E = {E1, . . . , E6} needs to be completed within the speci-
fied time horizon H = 3;

• A disruption in the form of an additional project E∗ = {E 7} which requires a set of
tasks, E7 : (Z1, Z2, Z3, Z4), is adopted after the completion of the assumed portfolio E,
which needs to be completed in time horizon H = 4.

The objective of the experiment is to utilize the constructed model in order to identify
the assignment (r)X that guarantees robustness for given disruption E∗. Finding this kind
of assignment provides a solution to the problem (16) formulated in the form of constraint
programming and then is implemented in the declarative programming environment IBM
ILOG CPLEX (Intel Core i7-M4800MQ 2.7 GHz, 32 GB RAM). The proposed sequence
of assignments X1, X2, X3, X4 used to perform the E project portfolio and additional
project E∗ (disruption) is presented in Figure 3. This is one of the many variants of feasible
solutions (which satisfies assumptions). The developed implementation of the model does
not allow for the setting of optimal schedules, e.g., in terms of the smallest possible loss of
competence. This issue will be the focus of future work.

Electronics 2024, 13, 392 13 of 18

The objective of the experiment is to utilize the constructed model in order to identify

the assignment 𝑋
 that guarantees robustness for given disruption 𝐸∗ . Finding this

kind of assignment provides a solution to the problem (16) formulated in the form of con-

straint programming and then is implemented in the declarative programming environ-

ment IBM ILOG CPLEX (Intel Core i7-M4800MQ 2.7 GHz, 32 GB RAM). The proposed

sequence of assignments 𝑋 , 𝑋 , 𝑋 , 𝑋 used to perform the 𝐸 project portfolio and ad-
ditional project 𝐸∗ (disruption) is presented in Figure 3. This is one of the many variants

of feasible solutions (which satisfies assumptions). The developed implementation of the

model does not allow for the setting of optimal schedules, e.g., in terms of the smallest

possible loss of competence. This issue will be the focus of future work.

Figure 3. Sequence of an assignments 𝑋 , …, 𝑋 used to perform the 𝐸 project portfolio and dis-
ruption 𝐸∗.

5.2. Quantitative Calculations

The effectiveness of the proposed approach, which was determined by assessing its

scalability, was validated through multiple computer experiments. The results, consider-

ing various numbers of programmers (𝑚 10, 12, 15) and tasks (𝑛 20, … , 50), are illus-
trated in Figure 4.

Figure 3. Sequence of an assignments X1, . . ., X4 used to perform the E project portfolio and
disruption E∗.

5.2. Quantitative Calculations

The effectiveness of the proposed approach, which was determined by assessing its
scalability, was validated through multiple computer experiments. The results, considering
various numbers of programmers (m = 10, 12, 15) and tasks (n = 20, . . . , 50), are illustrated
in Figure 4.

Electronics 2024, 13, 392 14 of 18Electronics 2024, 13, 392 14 of 18

Figure 4. Calculation time for the various number of programmers.

In each experiment, project portfolio 𝐸 consists of five projects, which include a var-

iable total number of tasks (as mentioned above, from 20 to 50). The number of tasks in

different (more or less equal) proportions was distributed among five projects (for exam-

ple, for the variant of 20 tasks, they were divided into 4 tasks for each of the five projects,

and for the variant of 23 tasks, they were divided into 4 tasks for the two projects and 5

tasks in the another three projects, etc.). The set of unplanned projects is a pool of five

projects consisting of 10 tasks each, one of which is randomly selected and is considered

to be disruption 𝐸∗. The sought solution to the problem should guarantee the robustness

𝑅 1.
Notably, as the problem’s scale increases, the computation time rises exponentially.

As an illustration, consider the cases where there are 50 tasks (operations). It is evident

that an increase in the number of programmers from 10 to 12 results in more than a 2-fold

extension of the calculation time. Furthermore, enlarging the team size from 10 to 15 pro-

grammers leads to the calculation time growing more than 3-fold. Hence, the proposed

approach is applicable online for practical scenarios within the limit of 50 tasks for the

entire project portfolio and teams of up to 15 programmers.

5.3. Experiments Summary

In summarizing the case study and quantitative experiments, let us point out the fol-

lowing:

 When using the developed model, decision-makers can find a staffing rotation plan

that ensures that competencies are maintained at a level that allows for effective pro-

ject performance.

 The proposed model is suitable for the scale of problems that occur in real-life com-

panies.

 The obtained computation times relate to finding the one admissible solution.

 The developed implementation of the model does not allow for the setting of optimal

plans, e.g., in terms of the smallest possible loss of competencies and associated cal-

culation times.

 The model does not contain sufficient conditions that guarantee the existence of non-

empty sets of admissible solutions. This is one of the future research goals.

The used approach shows that the factors determining the need to introduce job ro-

tation also include the number of activities performed, the planning horizon, and the ini-

tial level of competencies. This means that in some cases, e.g., due to a small number of

Figure 4. Calculation time for the various number of programmers.

In each experiment, project portfolio E consists of five projects, which include a
variable total number of tasks (as mentioned above, from 20 to 50). The number of tasks in
different (more or less equal) proportions was distributed among five projects (for example,
for the variant of 20 tasks, they were divided into 4 tasks for each of the five projects, and
for the variant of 23 tasks, they were divided into 4 tasks for the two projects and 5 tasks
in the another three projects, etc.). The set of unplanned projects is a pool of five projects
consisting of 10 tasks each, one of which is randomly selected and is considered to be
disruption E∗. The sought solution to the problem should guarantee the robustness R = 1.

Notably, as the problem’s scale increases, the computation time rises exponentially. As
an illustration, consider the cases where there are 50 tasks (operations). It is evident that an
increase in the number of programmers from 10 to 12 results in more than a 2-fold extension
of the calculation time. Furthermore, enlarging the team size from 10 to 15 programmers
leads to the calculation time growing more than 3-fold. Hence, the proposed approach is
applicable online for practical scenarios within the limit of 50 tasks for the entire project
portfolio and teams of up to 15 programmers.

5.3. Experiments Summary

In summarizing the case study and quantitative experiments, let us point out the following:

• When using the developed model, decision-makers can find a staffing rotation plan
that ensures that competencies are maintained at a level that allows for effective
project performance.

• The proposed model is suitable for the scale of problems that occur in real-life companies.
• The obtained computation times relate to finding the one admissible solution.
• The developed implementation of the model does not allow for the setting of optimal

plans, e.g., in terms of the smallest possible loss of competencies and associated
calculation times.

• The model does not contain sufficient conditions that guarantee the existence of
non-empty sets of admissible solutions. This is one of the future research goals.

The used approach shows that the factors determining the need to introduce job
rotation also include the number of activities performed, the planning horizon, and the
initial level of competencies. This means that in some cases, e.g., due to a small number
of projects, despite the use of rotation, it is not possible to avoid the effect of forgetting.
However, the model we propose allows us to formulate synthesis questions, e.g.,

Electronics 2024, 13, 392 15 of 18

• What team of employees with what competencies makes it possible to use work
rotation to avoid the forgetting effect?

• What set of orders (projects) will enable the team members to maintain the competen-
cies at a given level?

• What allocation of team members with what competencies enables the use of work
rotation to minimize losses caused by the forgetting effect?

6. Conclusions

The robust scheduling of a multi-skilled workforce through the job rotation approach
is a strategic move that aligns with the demands of the modern business landscape. By
fostering skill development, promoting adaptability, and enhancing employee satisfaction,
organizations can create a workforce that is not only efficient but also well prepared for
challenges of the future.

The paper introduces a new model aimed at proactively planning assignments of
multi-skilled programmers to tasks within IT project portfolios while considering the
forgetting effect. This approach addresses the challenge of maintaining the competency
levels of programmers by advocating regular rotation between tasks.

A key advantage of this approach lies in its open declarative model structure, which
facilitates the inclusion of new relationships between decision variables without compromis-
ing computational efficiency. In particular, in constraint programming environments such
as IBM ILOG, an increase in constraints leads to a reduced solution determination time.

However, the limitations of this approach stem from specific workplace characteristics
(such as task execution methods, group work dynamics, and resource usage) and the nature
of disruptions encountered (e.g., employee absenteeism, competency loss, organizational
structural changes). The model presented in this study is applicable solely to project
portfolios defined by deterministic data. Using stochastic models that account for random
or human-influenced processes shaping the project portfolio’s implementation is unfeasible
due to challenges in acquiring dependable random samples. Obtaining such samples
is essential for identifying density distributions of random variables and synthesizing
the stochastic parameters that govern the expected portfolio implementation. Moreover,
practical disruptions encountered in real-world scenarios need consideration, such as the
complete loss of qualifications (competencies), structural changes in task orders, and the
simultaneous or consecutive absence of multiple employees, among others. Integrating
these factors into the model remains an area for further exploration and development.

To overcome these limitations, future research will extend the model to consider uncer-
tainties in operation times, planned deadlines for order execution, and skill levels expressed
in fuzzy numbers. For example, exploring directed fuzzy numbers to describe imprecise
variables in a constraints programming environment presents a promising approach. Ad-
ditionally, our forthcoming work will focus on extending the model to accommodate the
SPSP problem within dynamic environments. This expansion will consider unforeseen
events such as the abrupt departure of employees and the subsequent recruitment of new
team members with varying competencies. Expanding the broader context of our study,
we aim to delve deeper into the following question: can a given allocation of multi-skilled
team members guarantee a job rotation schedule that can maintain the current level of
its competences? We plan to broaden this inquiry to encompass expectations related to
minimizing team size while maximizing its robustness, a critical consideration for future
studies.

The findings from this study carry significant managerial implications. Managers
can use the proposed approach to dynamically rotate staff, ensuring the retention of their
diverse skillsets without the need for costly additional training to refresh forgotten or
outdated competencies. The case study demonstrates the applicability of this approach in
industries where employees have a multitude of skills and where companies must adapt to
evolving customer demands.

Electronics 2024, 13, 392 16 of 18

In industries that require employees to retain their skills for extended periods, rotation
is emerging as a practical solution. The proposed approach helps managers in planning
rotations for employee task assignments, enabling them to fulfill customer orders while
maintaining an optimal competency structure within the team. This addresses the require-
ments of sustainable production, emphasizing effective human resource management by
establishing clear protocols for planning, monitoring, and control.

It should be noted that continuous monitoring of existing competencies and supporting
the development of new skills throughout an individual’s career are necessary in the context
of the challenges of the popular Industry 4.0 trend. It is particularly important to look for
new methods to support decision-makers in maintaining the potential of human resources,
and this is provided by our model.

Author Contributions: Conceptualization, E.S., G.B. and Z.B.; methodology, E.S. and G.B.; software,
G.B.; validation, P.G.-D.; formal analysis, G.B.; investigation, E.S.; resources, P.G.-D. and E.S.; data
curation, E.S. and P.G.-D.; writing—original draft preparation, Z.B. and E.S.; writing—review and
editing, P.G.-D.; visualization, G.B. and E.S.; supervision, E.S.; project administration, E.S. and Z.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Snauwaert, J.; Vanhoucke, M. A Classification and New Benchmark Instances for the Multi-Skilled Resource-Constrained Project

Scheduling Problem. Eur. J. Oper. Res. 2023, 307, 1–19. [CrossRef]
2. Kuo, Y.; Leung, J.M.Y.; Yano, C.A. Scheduling of Multi-skilled Staff Across Multiple Locations. Prod. Oper. Manag. 2014, 23,

626–644. [CrossRef]
3. Peña, D.A.; Osorio, A.F.; Orejuela, J.P.; Idarraga, J.C. Multi-Skilled Workforce Scheduling with Training and Welfare Considerations.

Eng. Manag. Prod. Serv. 2023, 15, 27–41. [CrossRef]
4. Afshar-Nadjafi, B. Multi-Skilling in Scheduling Problems: A Review on Models, Methods and Applications. Comput. Ind. Eng.

2021, 151, 107004. [CrossRef]
5. Isah, M.A.; Kim, B.-S. Integrating Schedule Risk Analysis with Multi-Skilled Resource Scheduling to Improve Resource-

Constrained Project Scheduling Problems. Appl. Sci. 2021, 11, 650. [CrossRef]
6. Karam, A.; Attia, E.-A.; Duquenne, P. A MILP Model for an Integrated Project Scheduling and Multi-Skilled Workforce Allocation

with Flexible Working Hours. IFAC-Pap. 2017, 50, 13964–13969. [CrossRef]
7. Messias, I.d.A.; Nascimento, A.; Rocha, R. Job Rotation as a Legal Requirement: Analysis of the Participatory Approach in

Acceptance and Workers’ Perception at a Meatpacking Plant. Gestão Produção 2022, 29. [CrossRef]
8. Oparanma, A.; Nwaeke, L. Impact of Job Rotation on Organizational Performance. Br. J. Econ. Manag. Trade 2015, 7, 183–187.

[CrossRef]
9. Fišar, M.; Krčál, O.; Staněk, R.; Špalek, J. Committed to Reciprocate on a Bribe or Blow the Whistle: The Effects of Periodical

Staff-Rotation in Public Administration. Public Perform. Manag. Rev. 2021, 44, 404–424. [CrossRef]
10. Shahiri, H.; Husin, K.A.; Khain, W.C. The Effect of Job Rotation in a Fixed Wage Setting Model. Sage Open 2023,

13, 215824402311538. [CrossRef]
11. Zin, M.L.M.; Ibrahim, H. The Moderating Effect of Organization Tenure on Job Rotation and Career Development. Ann. Contemp.

Dev. Manag. HR 2021, 3, 1–9. [CrossRef]
12. Kampkötter, P.; Harbring, C.; Sliwka, D. Job Rotation and Employee Performance—Evidence from a Longitudinal Study in the

Financial Services Industry. Int. J. Hum. Resour. Manag. 2018, 29, 1709–1735. [CrossRef]
13. Dhanraj, D.; Parumasur, S.B. Perceptions of the Impact of Job Rotation on Employees, Productivity, the Organization and on Job

Security. Corp. Ownersh. Control 2014, 11, 682–691. [CrossRef]
14. Widiastutik, N.; Rahayu, M.; Juwita, H.A.J. Effect of Remuneration and Job Rotation on Employee Performance with Job

Satisfaction as a Mediation Variable. Int. J. Res. Bus. Soc. Sci. (2147–4478) 2022, 11, 175–183. [CrossRef]
15. Bocewicz, G.; Smutnicki, C.; Jasiulewicz-Kaczmarek, M.; Wójcik, R.; Banaszak, Z. Competence-Based Robust Scheduling of Cyclic

Workforce Relocation. IFAC-Papersonline 2023, 56, 132–137. [CrossRef]
16. Chen, J.C.; Chen, Y.-Y.; Chen, T.-L.; Lin, Y.-H. Multi-Project Scheduling with Multi-Skilled Workforce Assignment Considering

Uncertainty and Learning Effect for Large-Scale Equipment Manufacturer. Comput. Ind. Eng. 2022, 169, 108240. [CrossRef]
17. Glock, C.H.; Jaber, M.Y. A Multi-Stage Production-Inventory Model with Learning and Forgetting Effects, Rework and Scrap.

Comput. Ind. Eng. 2013, 64, 708–720. [CrossRef]

https://doi.org/10.1016/j.ejor.2022.05.049
https://doi.org/10.1111/poms.12184
https://doi.org/10.2478/emj-2023-0018
https://doi.org/10.1016/j.cie.2020.107004
https://doi.org/10.3390/app11020650
https://doi.org/10.1016/j.ifacol.2017.08.2221
https://doi.org/10.1590/1806-9649-2022v29e10522
https://doi.org/10.9734/BJEMT/2015/12051
https://doi.org/10.1080/15309576.2020.1812410
https://doi.org/10.1177/21582440231153846
https://doi.org/10.33166/ACDMHR.2021.03.001
https://doi.org/10.1080/09585192.2016.1209227
https://doi.org/10.22495/cocv11i4c7p10
https://doi.org/10.20525/ijrbs.v11i6.1976
https://doi.org/10.1016/j.ifacol.2023.10.1558
https://doi.org/10.1016/j.cie.2022.108240
https://doi.org/10.1016/j.cie.2012.08.018

Electronics 2024, 13, 392 17 of 18

18. Guo, Y.; Ji, J.; Ji, J.; Gong, D.; Cheng, J.; Shen, X. Firework-Based Software Project Scheduling Method Considering the Learning
and Forgetting Effect. Soft Comput. 2019, 23, 5019–5034. [CrossRef]

19. Goudarzi, E.; Esmaeeli, H.; Parsa, K.; Asadzadeh, S. Proposing New Clustering-Based Algorithms for the Multi-Skilled Resource-
Constrained Multi-Project Scheduling Problem with Resource Leveling Adjustments. Kybernetes 2023. [CrossRef]

20. Borgonjon, T.; Maenhout, B. The Impact of Dynamic Learning and Training on the Personnel Staffing Decision. Comput. Ind. Eng.
2024, 187, 109784. [CrossRef]

21. Wikarek, J.; Sitek, P. Proactive and Reactive Approach to Employee Competence Configuration Problem in Planning and
Scheduling Processes. Appl. Intell. 2022, 52, 3445–3464. [CrossRef]

22. Bocewicz, G.; Szwarc, E.; Wikarek, J.; Nielsen, P.; Banaszak, Z. A Competency-Driven Staff Assignment Approach to Improving
Employee Scheduling Robustness. Eksploat. I Niezawodn. 2021, 23, 117–131. [CrossRef]

23. Bocewicz, G.; Golińska-Dawson, P.; Szwarc, E.; Banaszak, Z. Preventive Maintenance Scheduling of a Multi-Skilled Human
Resource-Constrained Project’s Portfolio. Eng. Appl. Artif. Intell. 2023, 119, 105725. [CrossRef]

24. Szwarc, E.; Bocewicz, G.; Golińska-Dawson, P.; Banaszak, Z. Proactive Operations Management: Staff Allocation with Competence
Maintenance Constraints. Sustainability 2023, 15, 1949. [CrossRef]

25. Szwarc, E.; Wikarek, J.; Gola, A.; Bocewicz, G.; Banaszak, Z. Interactive Planning of Competency-Driven University Teaching
Staff Allocation. Appl. Sci. 2020, 10, 4894. [CrossRef]

26. Szwarc, E.; Golińska-Dawson, P.; Bocewicz, G.; Banaszak, Z. Job Rotation for the Competencies Maintaining: A Case Study in IT Project
Management; Springer Nature: Cham, Switzerland, 2023; Volume 741, ISBN 9783031383175.

27. Coyne, P. An Evidence-Based Model of Job Rotation. Ph.D. Dissertation, Middlesex University, London, UK, 2011.
28. Moussavi, S.E.; Zare, M.; Mahdjoub, M.; Grunder, O. Balancing High Operator’s Workload through a New Job Rotation Approach:

Application to an Automotive Assembly Line. Int. J. Ind. Ergon. 2019, 71, 136–144. [CrossRef]
29. Ollo-Lopez, A.; Bayo-Moriones, A.; Larraza-Kintana, M. The Relationship between New Work Practices and Employee Effort. J.

Ind. Relat. 2010, 52, 219–235. [CrossRef]
30. Richardson, A.; Douglas, M.; Shuttler, R.; Hagland, M.R. Critical Care Staff Rotation: Outcomes of a Survey and Pilot Study. Nurs.

Crit. Care 2003, 8, 84–89. [CrossRef]
31. Otto, A.; Battaïa, O. Reducing Physical Ergonomic Risks at Assembly Lines by Line Balancing and Job Rotation: A Survey. Comput.

Ind. Eng. 2017, 111, 467–480. [CrossRef]
32. Battini, D.; Berti, N.; Finco, S.; Zennaro, I.; Das, A. Towards Industry 5.0: A Multi-Objective Job Rotation Model for an Inclusive

Workforce. Int. J. Prod. Econ. 2022, 250, 108619. [CrossRef]
33. Platis, C.; Ilonidou, C.; Stergiannis, P.; Ganas, A.; Intas, G. The Job Rotation of Nursing Staff and Its Effects on Nurses’ Satisfaction

and Occupational Engagement. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2021;
Volume 1337, pp. 159–168.

34. Fægri, T.E.; Dybå, T.; Dingsøyr, T. Introducing Knowledge Redundancy Practice in Software Development: Experiences with Job
Rotation in Support Work. Inf. Softw. Technol. 2010, 52, 1118–1132. [CrossRef]

35. Kuijer, P.P.F.M.; de Vries, W.H.K.; van der Beek, A.J.; van Dieën, J.H.; Visser, B.; Frings-Dresen, M.H.W. Effect of Job Rotation on
Work Demands, Workload, and Recovery of Refuse Truck Drivers and Collectors. Hum. Factors J. Hum. Factors Ergon. Soc. 2004,
46, 437–448. [CrossRef]

36. Alaei, M.; Shahrezaei, P.S. A Theoretical Structure for Strategic Human Resource Management in Project Oriented Manufactures.
Cumhur. Sci. J. 2015, 36, 2088–2096.

37. Wood, S. Human Resource Management and Performance. Int. J. Manag. Rev. 1999, 1, 367–413. [CrossRef]
38. Kaymaz, K. The Effects of Job Rotation Practices on Motivation: A Research on Managers in the Automotive Organizations. Bus.

Econ. Res. J. 2010, 1, 69–85.
39. Hsieh, A.-T.; Chao, H.-Y. A Reassessment of the Relationship between Job Specialization, Job Rotation and Job Burnout: Example

of Taiwan’s High-Technology Industry. Int. J. Hum. Resour. Manag. 2004, 15, 1108–1123. [CrossRef]
40. Shen, X.; Minku, L.L.; Bahsoon, R.; Yao, X. Dynamic Software Project Scheduling through a Proactive-Rescheduling Method.

IEEE Trans. Softw. Eng. 2016, 42, 658–686. [CrossRef]
41. Alba, E.; Franciscochicano, J. Software Project Management with GAs. Inf. Sci. 2007, 177, 2380–2401. [CrossRef]
42. García-Nájera, A.; del Carmen Gómez-Fuentes, M. A Multi-Objective Genetic Algorithm for the Software Project Scheduling

Problem. In Nature-Inspired Computation and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–24.
43. Duggan, J.; Byrne, J.; Lyons, G.J. A Task Allocation Optimizer for Software Construction. IEEE Softw. 2004, 21, 76–82. [CrossRef]
44. Luna, F.; Gonzalez-Alvarez, D.L.; Chicano, F.; Vega-Rodriguez, M.A. On the Scalability of Multi-Objective Metaheuristics for

the Software Scheduling Problem. In Proceedings of the 2011 11th International Conference on Intelligent Systems Design and
Applications, Córdoba, Spain, 22–24 November 2011; pp. 1110–1115.

45. Chicano, F.; Cervantes, A.; Luna, F.; Recio, G. A Novel Multiobjective Formulation of the Robust Software Project Scheduling
Problem. In Applications of Evolutionary Computation. EvoApplications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 497–507.

46. Crawford, B.; Soto, R.; Johnson, F.; Monfroy, E.; Paredes, F. A Max–Min Ant System Algorithm to Solve the Software Project
Scheduling Problem. Expert. Syst. Appl. 2014, 41, 6634–6645. [CrossRef]

47. Xiao, J.; Ao, X.-T.; Tang, Y. Solving Software Project Scheduling Problems with Ant Colony Optimization. Comput. Oper. Res. 2013,
40, 33–46. [CrossRef]

https://doi.org/10.1007/s00500-018-3165-2
https://doi.org/10.1108/K-06-2023-1044
https://doi.org/10.1016/j.cie.2023.109784
https://doi.org/10.1007/s10489-021-02594-x
https://doi.org/10.17531/ein.2021.1.13
https://doi.org/10.1016/j.engappai.2022.105725
https://doi.org/10.3390/su15031949
https://doi.org/10.3390/app10144894
https://doi.org/10.1016/j.ergon.2019.03.003
https://doi.org/10.1177/0022185609359446
https://doi.org/10.1046/j.1478-5153.2003.00011.x
https://doi.org/10.1016/j.cie.2017.04.011
https://doi.org/10.1016/j.ijpe.2022.108619
https://doi.org/10.1016/j.infsof.2010.06.002
https://doi.org/10.1518/hfes.46.3.437.50403
https://doi.org/10.1111/1468-2370.00020
https://doi.org/10.1080/09585190410001677331
https://doi.org/10.1109/TSE.2015.2512266
https://doi.org/10.1016/j.ins.2006.12.020
https://doi.org/10.1109/MS.2004.1293077
https://doi.org/10.1016/j.eswa.2014.05.003
https://doi.org/10.1016/j.cor.2012.05.007

Electronics 2024, 13, 392 18 of 18

48. Podolski, M.; Rosłon, J.; Sroka, B. The Impact of the Learning and Forgetting Effect on the Cost of a Multi-Unit Construction
Project with the Use of the Simulated Annealing Algorithm. Appl. Sci. 2022, 12, 12667. [CrossRef]

49. Van Peteghem, V.; Vanhoucke, M. Influence of Learning in Resource-Constrained Project Scheduling. Comput. Ind. Eng. 2015, 87,
569–579. [CrossRef]

50. Wright, P. Factors Affecting the Cost of Airplanes. J. Aeronaut. Sci. 1936, 3, 122–128. [CrossRef]
51. Qin, S.; Liu, S.; Kuang, H. Piecewise Linear Model for Multiskilled Workforce Scheduling Problems Considering Learning Effect

and Project Quality. Math. Probl. Eng. 2016, 2016, 3728934. [CrossRef]
52. Ngwenyama, O.; Guergachi, A.; McLaren, T. Using the Learning Curve to Maximize IT Productivity: A Decision Analysis Model

for Timing Software Upgrades. Int. J. Prod. Econ. 2007, 105, 524–535. [CrossRef]
53. Carlson, J.; Rowe, A. How Much Does Forgetting Cost. Ind. Eng. 1976, 8, 40–47.
54. Elm’aghraby, S.E. Economic Manufacturing Quantities under Conditions of Learning and Forgetting (EMQ/LaF). Prod. Plan.

Control 1990, 1, 196–208. [CrossRef]
55. Jaber, M.Y.; Bonney, M. Production Breaks and the Learning Curve: The Forgetting Phenomenon. Appl. Math. Model. 1996, 20,

162–169. [CrossRef]
56. Nembhard, D.A.; Uzumeri, M.V. Experiential Learning and Forgetting for Manual and Cognitive Tasks. Int. J. Ind. Ergon. 2000,

25, 315–326. [CrossRef]
57. Glock, C.H.; Grosse, E.H.; Jaber, M.Y.; Smunt, T.L. Applications of Learning Curves in Production and Operations Management:

A Systematic Literature Review. Comput. Ind. Eng. 2019, 131, 422–441. [CrossRef]
58. Hoedt, S.; Claeys, A.; Aghezzaf, E.-H.; Cottyn, J. Real Time Implementation of Learning-Forgetting Models for Cycle Time

Predictions of Manual Assembly Tasks after a Break. Sustainability 2020, 12, 5543. [CrossRef]
59. Ernst, A.T.; Jiang, H.; Krishnamoorthy, M.; Sier, D. Staff Scheduling and Rostering: A Review of Applications, Methods and

Models. Eur. J. Oper. Res. 2004, 153, 3–27. [CrossRef]
60. Panik, M.J. Linear Programming and Resource Allocation Modeling; Wiley: Hoboken, NJ, USA, 2018; ISBN 9781119509448.
61. Pesant, G. From Support Propagation to Belief Propagation in Constraint Programming. J. Artif. Intell. Res. 2019, 66, 11487.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app122412667
https://doi.org/10.1016/j.cie.2015.06.007
https://doi.org/10.2514/8.155
https://doi.org/10.1155/2016/3728934
https://doi.org/10.1016/j.ijpe.2006.02.013
https://doi.org/10.1080/09537289008919318
https://doi.org/10.1016/0307-904X(95)00157-F
https://doi.org/10.1016/S0169-8141(99)00021-9
https://doi.org/10.1016/j.cie.2018.10.030
https://doi.org/10.3390/su12145543
https://doi.org/10.1016/S0377-2217(03)00095-X
https://doi.org/10.1613/jair.1.11487

	Introduction
	Literature Review
	Job Rotation
	Scheduling of IT Projects
	The Effect of Learning and Forgetting

	Problem Formulation
	Reference Model
	Computation Experiments
	Case Study
	Quantitative Calculations
	Experiments Summary

	Conclusions
	References

