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Abstract: Image blur, often caused by camera shake and object movement, poses a significant
challenge in computer vision. Image deblurring strives to restore clarity to these images. Traditional
single-stage methods, while effective in detail enhancement, often neglect global context in favor
of local information. Yet, both aspects are crucial, especially in real-life scenarios where images are
typically large and subject to various blurs. Addressing this, we introduce CNB Net, an innovative
deblurring network adept at integrating global and local insights for enhanced image restoration.
The network operates in two stages, utilizing our specially designed Convolution and Normalization-
Based Block (CNB Block) and Convolution and Normalization-Based Plus Block (CNBP Block) for
multi-scale information extraction. A progressive learning approach is adopted with a Feature Active
Selection (FAS) module at the end of each stage that captures spatial detail information under the
guidance of real images. The Two-Stage Feature Fusion (TSFF) module reduces information loss
caused by downsampling operations while enriching features across stages for increased robustness.
We conduct experiments on the GoPro dataset and the HIDE dataset. On the GoPro dataset, our Peak
Signal-to-Noise Ratio (PSNR) result is 32.21 and the Structural Similarity (SSIM) result is 0.950; and
on the HIDE dataset, our PSNR result is 30.38 and the SSIM result is 0.932. Our results exceed other
similar algorithms. By comparing the generated feature maps, we find that our model takes into
account both global and local information well.

Keywords: deep learning; image deblur; image restoration

1. Introduction

Image blur arises from various sources. For instance, camera shake during photo
capture often leads to blurred images. Similarly, rapid movement of the subject being
photographed can also result in image blur. In the realm of computer vision, tackling
image deblurring is of paramount importance. Deblurring can significantly enhance
handheld photography, capturing crucial moments and details with clarity. Additionally,
in traffic surveillance applications, clear imagery is essential for effective monitoring and
safety analysis.

Recent advancements in deep learning have spurred the development of numerous
image deblurring methods, particularly those using convolutional neural networks (CNNs),
which show remarkable proficiency in handling dynamic blur [1]. Zhang et al.’s [2] method
for single-stage image motion deblurring excels in extracting local feature information, yet
it somewhat lacks in addressing global contextual relationships. Lian et al.’s [3] U-Net-
based [4] image deblurring method, enhanced with an attention mechanism, focuses more
on local details. Similarly, Cui et al. [5] introduce a dual-domain attention and self-attention
model for image deblurring, which primarily learns from local regions while reducing
computational demands. However, these methods often overly concentrate on local details
at the expense of global context, leading to suboptimal recovery outcomes.
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In order to enable the model to learn both global information and local information,
we propose a novel image deblurring model: CNB Net. The model comprises two stages,
including the CNB Block, the CNBP Block, the FAS module, and the TSFF module. The CNB
Block and the CNBP Block are used to extract multi-scale information. The FAS module
mainly emphasizes detailed information, whereas the TSFF module mainly targets global
information. Our model significantly enhances image deblurring quality by leveraging
both global and local information sources, as confirmed by test results on the GoPro [6]
and HIDE [7] datasets, surpassing other existing methods.

Our contributions can be summarized as follows:

• We propose CNB Net, which consists of the CNB Block, the CNBP Block, the TSFF
module, and the FAS module. The CNB Block and the CNBP Block are designed for
extracting multi-scale features. The TSFF module is able to extract information from
the encoder and decoder and learn global information. The FAS module is able to
learn local information. The combination of the TSFF module and the FAS module
allows the network to learn both global information and local information.

• We perform some experiments on the GoPro dataset and the HIDE dataset and the
results are good. We analyze one of the many test samples and plot its features to
compare our modules.

2. Related Work

The rapid progress in deep learning, particularly in Convolutional Neural Networks
(CNNs), has markedly enhanced the effectiveness of image deblurring, a critical task in
areas like handheld photography and security surveillance.

Initial methods primarily addressed static blur, but contemporary CNN models have
advanced to adeptly handle dynamic blur scenarios. Despite the diversity in their structures,
these models achieve commendable results [1]. For example, Kim et al.’s [8] method
employs a sophisticated multi-stage configuration, adept at handling blurs across various
scales. This method not only streamlines the flow and integration of multi-scale information
but also innovatively integrates a pixel-shuffling mechanism, significantly improving the
handling of diverse blurring situations.

Zhang et al. [2] introduce a single-stage image motion deblurring method, effectively
extracting local features but somewhat lacking in global context processing. Their approach,
utilizing a residual module, a cascade cross-attention module, and a two-scale discrimina-
tor module, enhances detail processing. Lian et al. [3] employ a U-Net-based [4] method
incorporating attention mechanisms and depth-wise separable convolutions, focusing
mainly on local details. Cui et al. [5] propose a novel dual-domain attention mecha-
nism, combining spatial and frequency attention modules, thus addressing both local and
frequency-dependent aspects of images. Kupyn et al. [9] develop the Deblur GAN, a
GAN-based real-time deblurring method that excels in direct learning from blurred images,
efficiently reconstructing missing details. Ali et al.’s [10] survey on Vision Transformers
(ViTs) in image restoration tasks points out their prowess in capturing fine details, though
they may fall short in processing global context. Ding et al. [11] employ a Transmission-
aware network for image restoration, focusing on detail capture but lacking in global scene
understanding, especially when handling the Transmission Dark Channel Prior (TDCP),
which neglects overall image integrity. Zhang et al. [12] enhance detail extraction via
techniques like the Hypercomplex Infrared Fourier Transform (HIFT), focusing on intricate
aspects of infrared imagery, but falling short in global scene context processing.

To overcome these limitations, we introduce CNB Net. This model unites convolu-
tional layers with a 5 × 5 kernel size, normalization, the TSFF module, and the FAS module.
It significantly boosts the model’s ability to capture global information while effectively
amalgamating it with local details, leading to superior image deblurring quality. Tests on
the GoPro and HIDE datasets validate that CNB Net surpasses existing methods across
various evaluation metrics.
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3. Approach

Traditional deep CNNs often struggle with capturing global information due to their
limited receptive fields, as highlighted by Chen et al. [13]. To address this, some researchers,
like Lian et al. [3], recommend using convolution with a larger receptive field for better
global information comprehension, thereby enhancing deblurring effectiveness. Addition-
ally, attention mechanisms, as proposed by Cui et al. [5], have been integrated to more
precisely focus on critical image areas for detailed information capture. In light of the com-
plexity of image deblurring and reconstruction tasks, we have designed a novel two-stage
architecture named CNB Net, illustrated in Figure 1.

Figure 1. CNB Net includes a two-stage architecture for image deblurring. The first stage focuses on
extracting global information and coarse features, ending with a FAS module for detailed information.
The second stage combines these details with multi-scale features from the first stage via the TSFF
module, enabling deep feature extraction. This design effectively achieves comprehensive extraction
of both global information and specific details.

The CNB Net adopts a progressive learning approach in its two-stage architecture.
The first stage primarily concentrates on global information extraction and coarse feature
learning, aiming to reduce the blur significantly and restore the overall structure and main
features of the image. The FAS module, employed at the end of the first stage, helps in
extracting local information. The second stage enhances feature extraction by combining
local information from the FAS module with multi-scale features from the first stage, using
the TSFF module. This stage further processes the image to recover finer details and
reduce artifacts like over-smoothing or edge distortions. Our two-stage approach ensures a
thorough extraction of global information and detailed capture of specific image details.

Specifically, each stage of CNB Net consists of a sub-network with U-Net [4] as its
backbone. Each stage commences with a convolution with a kernel size of 5 × 5 to extract
initial features, which are subsequently fed into an encoder–decoder structure comprising
four levels of downsampling and upsampling. Excessive downsampling results in a
significant loss of detail, whereas insufficient downsampling may cause the neural network
to assimilate an abundance of superfluous information. We use convolution with a kernel
size of 5 × 5 because the dataset involves motion blur caused by camera shake and the
motion of the object. In addition, we conducted experiments using different convolution
kernels to prove that convolution with a kernel size of 5 × 5 achieves the best results.

In the encoder component, we design the CNB Block and the CNBP Block to extract
features at every scale by doubling the feature channels during downsampling. The
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detailed introduction of the CNB Block and the CNBP Block is shown in Section 3.1. Within
the decoder component, Res Blocks are utilized to capture high-level features and merge
them with features from the encoder component via skip connections to compensate for
information loss caused by resampling. Figure 2 shows the details of the Res Block. The
output image at the end of each stage undergoes processing via the FAS module.

Figure 2. The structure of the Res Block.

To establish connectivity between the two stages, we use both the TSFF and the FAS
modules. In the TSFF module, we leverage convolution with a kernel size of 3 × 3 to
transfer features from the first stage to the second stage while aggregating them alongside
second-stage features, thereby enriching multi-scale characteristics within this latter phase.
By introducing the FAS module, the network shifts towards detail-oriented information
extraction in the second stage specifically. With the FAS module, valuable features from the
first stage are actively selected and propagated into the second stage while less informative
ones are masked out.

3.1. CNB Block and CNBP Block

The CNB Block and the CNBP Block play a pivotal role in our research endeavors,
primarily focused on the effective extraction and processing of multi-scale image features.
With the aid of these modules, the CNB Net can extract and process information at various
levels within an image.

The CNB Block and the CNBP Block employ a distinctive strategy to address the
challenges of feature normalization and modeling within convolutional neural networks.
The structures of the CNB Block and the CNBP Block are depicted in Figure 3. The initial
part of the model consists of a convolutional layer with a kernel size of 5 × 5, which



Electronics 2024, 13, 404 5 of 16

effectively captures global information from the image, rather than concentrating solely on
details such as edges, textures, and shapes. This broad perceptual capability significantly
contributes to a comprehensive understanding of the image’s structure and content.

Figure 3. The CNB Block and the CNBP Block. The role of the CNB Block and the CNBP Block is to
extract features. The difference between the CNB Block and the CNBP Block is that the CNBP Block
concatenates the features transferred through the TSFF module.

Following the feature extraction by the convolutional layer, an identity mapping and
normalization layer are introduced. The identity (ID) mapping component plays a critical
role in preserving the original information and features, thereby facilitating effective train-
ing of deep networks. The normalization layer is utilized to standardize feature distribution,
leading to expedited training processes and improved model generalization. Available
normalization methods include Batch Normalization (BN) and Instance Normalization (IN).
Based on extensive experimental results, optimal outcomes are achieved by combining ID
with IN when training on the GoPro and HIDE datasets, with each method accounting
for half of this combination. This unique processing approach enables the CNB Block to
perform feature normalization while simultaneously focusing on both local details, such
as edges and textures, and preserving global information. Consequently, it attains com-
prehensive perception of both global and local information. The application of instance
normalization assists the model in adjusting feature distribution at the individual sample
level, thereby enhancing its generalization ability across different datasets.

Specifically, the CNB Block processes the input feature Fin ∈ RCin×H×W , generat-
ing intermediate features Fmid ∈ RCout×H×W via a convolution layer, where Cin and
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Cout represent the number of input and output channels, respectively. After generat-
ing the intermediate feature Fmid, it is divided into two equal parts, Fmid1 and Fmid2, with
Fmid1 = Fmid2 = 1

2 Cout. This division is performed using the torch.chunk function in
PyTorch along the channel, and the dimension is 1. Next, the CNB Block applies IN to
Fmid1, while Fmid2 retains the original features via ID, preserving global information from
the input features, which aids in providing a more comprehensive feature representation.
Subsequently, the instance-normalized feature Fmid1 and the identity feature Fmid2 are con-
catenated, resulting in Fmid = Fmid1 + Fmid2. This combined feature is then passed through
a Leaky ReLU activation function with a parameter set to 0.2 followed by a convolution
layer with a kernel size of 3 × 3 and another same Leaky ReLU activation function. Finally,
by adding processed features to shortcut features out generated via a convolution layer
with a kernel size of 1 × 1, we obtain the output of the CNB Block denoted as Rout.

In the CNB Block and the CNBP Block, the ID branch retains the original informa-
tion, while the IN branch normalizes the features. Since IN calculates independently
for each sample, this is especially useful when dealing with data where the distribution
of features varies significantly from batch to batch. For the deblurring task, the feature
distribution varies greatly from batch to batch, and choosing IN enables the network to
learn complex patterns more effectively. This design aims to further extract and process
features introducing non-linearity for enhancing the model’s expressive power, enabling
accurate identification and restoration of image details and textures while maintaining
gradient stability.

The CNBP Block is a variant of the CNB Block, incorporating an additional connection
structure with the TSFF module. By concatenating the output of the TSFF module with
the input of the CNB Block, the CNBP Block integrates cross-stage feature information,
enabling accommodation of features from multiple stages and achieving synergy between
global and local information.

3.2. FAS Module

To enhance the perception of local information within the CNB Net architecture, we
introduce the FAS module. In the FAS module, 3 × 3 convolution kernels are utilized, along
with bias added to each convolution operation, to boost the model’s learning capability.
The structure of the FAS module is shown in Figure 4.

The FAS module initially processes the input feature x through a convolution layer
called conv1, generating a feature map x1. It further processes this input feature through
another convolution layer called conv2, while combining it with additional image infor-
mation and the original input. This process generates a modified image represented as an
image copy in the diagram. This step aids in focusing on more important regions within
input features, such as key objects or salient areas of the image.

Subsequently, the image copy undergoes processing using a third convolution layer
called conv3, resulting in the generation of a feature map x2 via the sigmoid function. The
feature map x2 ranges between 0 and 1, actively allocating different weights to various
spatial locations, thereby highlighting important feature regions while suppressing less
significant ones.

By element-wise multiplication of x1 and x2, the FAS module effectively recalibrates
the original features, ensuring the network’s focus is concentrated on the most critical
features. Finally, the actively selected feature x1 is added to the original input x to retain
the original information and further enhance the feature representation.

This design allows the FAS module to not only capture local details in the image, such
as edges and textures, but also comprehensively understand and enhance the structure and
content of the entire image by actively adjusting spatial attention.

A key function of the FAS module is its ability to process information-rich features
at the current stage, streamlining the network’s focus. Those less informative features are
masked by using sigmoid function. This functionality is vital in the deblurring process,
ensuring both the efficiency and precision of the task at hand.
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Figure 4. The FAS Module, where x represents a specific instance. The FAS module enhances the
network’s local detail perception by processing and recalibrating input features through multiple
convolution layers, selectively emphasizing critical features and spatial regions for improved image
structure and content understanding.

The FAS module’s active selection mechanism plays a critical role in the network’s
performance, directing the net to notice the most pertinent information before progress-
ing to subsequent stages. Implemented at the end of the first stage, the FAS module
aids the network in attaining a deeper understanding of the image content, particularly
when addressing specific tasks. This fine tuning of feature representation is instrumental
for achieving more detailed and higher-quality image restoration in the later stages of
the process.

3.3. Loss Function

In the selection of the loss function, we adopt PSNR as the evaluation metric. The
PSNR loss function is directly related to the assessment of image quality, where a higher
PSNR typically indicates lower distortion. Here, let Si ∈ RB×C×H×W denote the input of
subnet i, where B is the batch size, C is the number of channels, and H and W represent
the spatial dimensions. Similarly, Yi ∈ RB×C×H×W represents the output of subnet i, while
Gi ∈ RB×C×H×W represents the ground-truth image for each stage. Then, we optimize the
CNB Net end-to-end using Formula (1).

LOSS = −
2

∑
i=1

PSNR((Si + Yi), G) (1)

To optimize the CNB Net for enhancing performance in image deblurring tasks, we
employ the backpropagation algorithm in conjunction with gradient descent methods. This
approach is strategically focused on minimizing the PSNR loss. Through this training
regimen, the network is conditioned to refine its ability to produce outputs that are increas-
ingly congruent with real images at the pixel level. The primary goal is to systematically
diminish the disparity between the predicted image and the ground truth image at each
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stage of the subnet. By iteratively adjusting the network parameters in this manner, CNB
Net is expected to demonstrate marked improvements in image deblurring, ultimately
leading to clearer and more accurate image restorations.

4. Experiments

In our image restoration experiments, the PSNR and SSIM are employed as the
primary metric for evaluating the quality of the restored images. The datasets leveraged for
training, alongside the specific experimental methodologies, are comprehensively detailed
in subsequent sections.

4.1. Implementation Details

The training of our model was conducted on the GoPro dataset and the HIDE dataset.
The GoPro dataset and the HIDE dataset are publicly accessible resources specifically
curated for deblurring tasks.

The GoPro dataset encompasses a total of 2103 image pairs for training purposes,
alongside 1111 pairs designated for testing. A noteworthy characteristic of the GoPro
dataset is the method employed to generate blurred images: they are created by averaging
multiple sharp images captured using a high-speed camera.

The HIDE dataset encompasses a total of 6397 image pairs for training purposes,
alongside 2025 pairs designated for testing. It includes multiple blurs caused by the relative
movement between an imaging device and a scene, mainly due to camera shaking and
object movement.

Our network is trained using the Adam optimizer with a default learning rate of
2 × 10−4, which is reduced to 1 × 10−7 using a cosine annealing strategy [9]. The model
operates on 256 × 256 patches with a batch size of 32. The training process involved a total
of 4 × 105 iterations.

4.2. Main Results

The results in Table 1 show the deblurring comparisons on the GoPro dataset. And,
the results in Table 2 show the deblurring comparisons on the HIDE dataset. We achieve an
improvement of 0.36 dB in PSNR and 0.005 in SSIM over the previous best method on the
GoPro dataset. And, we achieve an improvement of 0.4 dB in PSNR and 0.002 in SSIM over
the previous best method on the HIDE dataset.

Table 1. The comparison with other state-of-the-art (SOTA) deblurring algorithms on the GoPro
dataset; our model is highlighted in bold within the table. The inverse filtering method uses a motion
fuzzy kernel with different size.

Method PSNR SSIM

Inverse filtering method (45 degree, kernel size 7 × 7) 20.14 0.653
Xu et al. [14] 21.00 0.741

Inverse filtering method (45 degree, kernel size 5 × 5) 22.37 0.751
Hyun et al. [15] 23.64 0.824
Whyte et al. [16] 24.60 0.846

Inverse filtering method (45 degree, kernel size 3 × 3) 25.75 0.850
Gong et al. [17] 26.40 0.863

Liang et al. Method-MPRNet [18] 28.55 0.911
Deblur GAN [9] 28.70 0.858

Nah et al. [6] 29.08 0.914
Zhang et al. [19] 29.19 0.931

Deblur GAN-v2 [9] 29.55 0.934
Liang et al. Method-Restormer [18] 30.00 0.9332
Liang et al. Method-Uformer [18] 30.24 0.9346

SRN [8] 30.26 0.934
Gao et al. [20] 30.90 0.935
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Table 1. Cont.

Method PSNR SSIM

DBGAN [21] 31.10 0.942
MT-RNN [22] 31.15 0.945
DMPHN [23] 31.20 0.940
Suin et al. [24] 31.85 0.948

CNB Net (ours) 32.21 0.953

Table 2. The comparison with other SOTA deblurring algorithms on the HIDE [7] dataset; our model
is highlighted in bold within the table. The inverse filtering method uses a motion fuzzy kernel with
different size.

Method PSNR SSIM

Inverse filtering method (45 degree, kernel size 7 × 7) 18.95 0.447
Inverse filtering method (45 degree, kernel size 5 × 5) 19.64 0.499
Inverse filtering method (45 degree, kernel size 3 × 3) 20.54 0.598

Liang et al. Method-MPRNet [18] 27.25 0.8847
DeblurGAN-v2 [9] 27.40 0.882

SRN [8] 28.36 0.915
Liang et al. Method-Uformer [18] 28.55 0.9080

Liang et al. Method-Restormer [18] 28.71 0.9116
HAdeblur [7] 28.87 0.903
DMPHN [23] 29.09 0.924
Gao et al. [20] 29.11 0.913
MT-RNN [22] 29.11 0.918
Suin et al. [24] 29.98 0.930

CNB Net (ours) 30.38 0.932

4.3. Quality Experiments

In Table 1, we demonstrate the effectiveness and superiority of CNB Net on the GoPro
dataset. Additionally, we conduct quality experiments to validate the superiority of our
proposed method. We select a subset of models from the models described above for
comparison with our model, which is shown in Figure 5.

Figure 5. Qualitative comparisons with other methods on the GoPro dataset. The deblurred results
listed from left to right are from MT-RNN [22], Gao et al. [20], and DMPHN [23].
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5. Discussion
5.1. Parameter Setting

The core idea of CNB Net revolves around the CNB Block. In this section, we conduct
several experiments to evaluate the CNB Block from various perspectives. First, we
evaluate the CNB Block in terms of multiply–accumulate operations (MACs). MACs, as an
evaluation metric, measures the total number of multiplications and additions required for
the model to perform one forward propagation. This metric is independent of the specific
content of the input data, only related to the architecture of the model (e.g., number of
layers, size, stride, etc.) and the shape of the input data. We evaluate the MACs using
a random input to the model, which incorporates different normalization methods. The
input is a random tensor with 256 × 256 pixels and RGB channels. Table 3 shows the results
with different normalization methods.

Table 3. Comparison of different normalization methods on the GoPro dataset with ID, BN, and
IN.The method 1

2 ID and 1
2 IN yields the best results. The best results are shown in bold.

Method PSNR SSIM MACs

1 ID 31.11 0.942 192.39G
1 IN 31.92 0.950 192.42G
1 BN 31.26 0.940 192.42G

1
2 ID and 1

2 BN 31.34 0.941 192.41G
1
2 ID and 1

2 IN 32.21 0.953 192.41G
1
2 BN and 1

2 IN 31.41 0.946 192.41G

The values in the table are represented in italicized bold for the lowest values and
underlined for the highest values. It can be observed that using a combination of 1

2 ID and
1
2 IN yields the best results. This approach not only improves accuracy but also slightly
reduces the parameter count.

All the experimental results presented below utilize the FAS module and the TSFF
module. For the normalization part of the CNB Block, a combination of 1

2 ID and 1
2 IN is

employed, as shown in Figure 6 and Table 4.

Figure 6. Comparison of PSNR and SSIM for different receptive field sizes in the convolutional layers
of CNB Net with 1

2 ID and 1
2 IN on the GoPro dataset.
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Table 4. Comparison of PSNR and SSIM for different receptive field sizes in the convolutional layers
of CNB Net with 1

2 ID and 1
2 IN on the HIDE dataset. The best results are shown in bold.

Kernel Size PSNR SSIM

3 × 3 29.97 0.928
5 × 5 30.38 0.932
7 × 7 29.14 0.921

In our experiment, on the GoPro dataset, the use of convolution with a kernel size of
5 × 5 resulted in a PSNR of 32.2 and a SSIM of 0.953, which is the best outcome among all
of the configurations we tested. And, on the HIDE dataset, the use of a 5 × 5 receptive field
convolutional kernel resulted in a PSNR of 30.38 and a SSIM of 0.932.

In contrast, kernels with receptive fields smaller than 5 × 5 were unable to capture
global information, adversely affecting the overall performance of the model. Additionally,
the convolution kernels larger than 5 × 5, due to their excessively large receptive fields, led
to a loss of detail and also negatively impacted the model’s overall performance.

Although, 3 × 3 convolutional kernels are often favored in certain scenarios due to
their smaller parameter count and computational efficiency. In our experiments, the 5 × 5
convolution kernels have larger receptive fields than 3 × 3 convolution kernels and are
more effective in feature extraction, thereby enhancing the accuracy of the model.

5.2. Ablation Experiments

We conduct numerous experiments where we consider the approach that uses the
Identity method as the baseline, and the results comparing different receptive field sizes
with various normalization methods are presented in Tables 5–7.

Using 5 × 5 convolution kernels to extract features gives better results than 3 × 3
convolution kernels. Regarding the phenomenon where IN yields better results compared
to BN in the provided data, we conduct an analysis.

To illustrate, BN aims to address the issue of covariate shift in deep learning. It ensures
that the outputs of each layer in a deep network have consistent means and standard devia-
tions across the entire dataset. During training, as these statistics are unconstrained and can
vary randomly, this can lead to numerical stability issues. BN reduces this uncertainty by
normalizing the layer outputs. However, due to the computational cost of calculating the
mean and standard deviation over the entire dataset, these calculations are performed only
on each batch of data. This approach has its limitations: if the batch statistics significantly
differ from the overall dataset, it may lead to performance degradation. To obtain more
stable statistics, sometimes additional forward passes need to be performed during training.

Table 5. Comparison of PSNR and SSIM for different receptive field sizes in the convolutional layers
of CNB Net with different normalization method on the GoPro dataset. The best results are shown
in bold.

Kernel
Size ID BN IN PSNR SSIM

5 × 5 1 - - 31.11 0.942 (baseline)
5 × 5 - 1 - 31.26 0.940
5 × 5 - - 1 31.93 0.950
3 × 3 1 - - 30.98 0.941 (baseline)
3 × 3 - 1 - 31.15 0.940
3 × 3 - - 1 31.76 0.948
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Table 6. Comparison of PSNR and SSIM for different receptive field sizes in the convolutional
layers of CNB Net, employing various normalization methods on the GoPro dataset. The network
architecture incorporates a two-part feature segmentation strategy, where each segment undergoes
distinct normalization before being recombined. The best results are shown in bold.

Kernel Size ID BN IN PSNR SSIM

5 × 5 - 1 1 31.41 0.946
5 × 5 1 1 - 31.34 0.941
5 × 5 1 - 1 32.21 0.953
3 × 3 - 1 1 31.27 0.945
3 × 3 1 1 - 31.28 0.940
3 × 3 1 - 1 31.92 0.950

Table 7. Comparison of PSNR and SSIM for different receptive field sizes in the convolutional
layers of CNB Net, employing various normalization methods on the GoPro dataset. The network
architecture incorporates a four-part feature segmentation strategy, where each segment undergoes
distinct normalization before being recombined. The best results are shown in bold.

Kernel Size ID BN IN PSNR SSIM

5 × 5 1 - 3 31.92 0.949
5 × 5 1 1 2 31.26 0.943
5 × 5 1 2 1 31.26 0.942
5 × 5 1 3 - 31.05 0.939
5 × 5 2 1 1 31.28 0.945
5 × 5 3 1 - 31.28 0.942
5 × 5 3 - 1 31.32 0.944
3 × 3 1 - 3 31.62 0.948
3 × 3 1 1 2 31.23 0.943
3 × 3 1 2 1 31.24 0.942
3 × 3 1 3 - 31.31 0.941
3 × 3 2 1 1 31.16 0.944
3 × 3 3 1 - 31.11 0.941
3 × 3 3 - 1 31.20 0.942

Formula (2) is used for normalizing the input features. Formulas (3) and (4) are
used to calculate the mean and standard deviation of N elements in batch i, respectively.
Formulas (5) and (6) are the update formulas for the mean and standard deviation, re-
spectively, where 1 − ϵ represents the momentum (or persistence) of previous samples.

X̂i =
Xi − mi

œi
(2)

mi =
1
N ∑ Xk (3)

œ2
i =

1
N ∑ X2

k − m2
i (4)

m̂t+1 = (1 − ϵ)m̂t + ϵmt (5)

œ̂t+1 = (1 − ϵ)œ̂t + ϵœt (6)

While BN reduces covariate shift by adjusting the unit values for each batch, it may
introduce noise due to the randomness of training batches. Furthermore, in deblurring
tasks, small variations in features are crucial. BN can diminish these subtle feature differ-
ences via normalization. This can result in reduced sensitivity of the model to important
features. Unlike BN, IN normalizes each individual data instance (such as a single image)
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independently. This means it is not affected by batch size or variations between batches,
making the model more stable, especially when dealing with images that have varying
sizes, styles, or content. IN exhibits a higher adaptability to changes in input data due to its
independent processing of each instance. This is particularly important when dealing with
image datasets that exhibit high variability.

5.3. Evaluation of FAS Module and TSFF Module

In addition to the evaluation of the CNB Block module, we also conducted ablation
experiments to assess the impact of using the FAS module and the TSFF module. In the
case of using 1

2 ID and 1
2 IN with 5 × 5 convolutional kernels, we conduct two separate

comparisons: firstly, comparing the PSNR and SSIM with and without the TSFF module in
the presence of the FAS module; secondly, comparing the PSNR and SSIM with and without
the FAS module when the TSFF module is present. The results are shown in Table 8.

Table 8. Comparison of PSNR and SSIM with and without the use of the FAS and TSFF modules on
the GoPro dataset. The presence of a ’✓’ symbol indicates the inclusion of a particular module within
the model, whereas the symbol ’×’ denotes the absence of such a module.

FAS Module TSFF Module PSNR SSIM
× × 30.10 0.933 (baseline)
× ✓ 31.22 0.940
✓ × 31.24 0.942
✓ ✓ 32.21 0.953

Our experiments demonstrate that the incorporation of the FAS module and the TSFF
module notably enhances the accuracy in image restoration tasks. We conduct tests for
both the FAS module and the TSFF module, and we select one test sample from among
numerous test cases. In the case of using 1

2 ID and 1
2 IN with 5 × 5 convolutional kernels,

Figure 7 shows the comparisons of the FAS module in different stages and Figure 8 shows
the comparison with or without the TSFF module.

For the FAS module, we extract feature maps that have passed through this module
and those that have not, then perform visualizations on them. For the TSFF module, we
extract feature maps with this module and without this module, then perform visualizations
on them.

For the visualization part, we generate average feature maps from the test samples
across the RGB channel. We utilize the Viridis color mapping from the PLT package and
normalize the values to the range of zero to one. In this mapping, zero corresponds
to deep blue, while one corresponds to yellow–green. Areas on the image close to one
will appear as bright yellow or yellow–green, indicating high activation strength in those
regions. Conversely, regions close to zero will appear as dark blue, signifying low activation
strength. These bright areas represent the portions of the image that the network deems
highly important for the task, while the dark areas indicate the opposite.

After feature map extraction, we observe that the activation distribution becomes more
concentrated, and the activation intensity increases when passing through the FAS module
compared to not using it. This suggests that certain regions in the feature map become
noticeably darker or brighter than others when employing the FAS module, indicating
that the features extracted with the FAS module are more detailed and focused. The FAS
module plays a pivotal role in the entire deblurring process.

Similarly, to assess the impact of the TSFF module, we conduct feature map extractions
both with and without it, focusing specifically on the second stage before involving the
FAS module. This comparative analysis provides insights into the distinct enhancements
brought about by the TSFF module in the multi-scale feature representation process, further
substantiating its crucial role in our deblurring methodology.
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After extracting the feature maps, we observe that with the TSFF module, the activation
intensity is stronger and the smoothness is higher compared to when it is not present.

Figure 7. Comparison of feature maps in different stages that passed through the FAS module and
did not pass through the FAS module. In this figure, the feature map before passing through the FAS
module in Stage 1 is shown in (a); the feature map after passing through the FAS module in Stage 1 is
shown in (b); the feature map before passing through the FAS module in Stage 2 is shown in (c); and
the feature map after passing through the FAS module in Stage 2 is shown in (d).

Figure 8. Comparison of feature maps that passed through the TSFF module and did not pass through
the TSFF module. In the case of using 1

2 ID and 1
2 IN with 5 × 5 convolutional kernels, the feature

map of the model with the TSFF module is shown in (a), and the feature map of the model without
the TSFF module is shown in (b).
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6. Limitations and Future Work

In this study, we aim to develop a more effective method for image deblurring. Al-
though deep learning-based approaches have shown significant advancements in enhanc-
ing visual quality, there is still potential for improvement. Various factors can influence the
model’s performance, as noted by Zhang et al. [1]. For instance, our current loss function
relies solely on the PSNR metric. Moving forward, we plan to integrate both PSNR and
SSIM metrics into our loss function to investigate their impact on model performance. Ad-
ditionally, we intend to experiment with other loss functions, such as the frequency-domain
approach suggested by Yadav et al. [25].

Introducing supplementary information has been proven to enhance performance in
many tasks [26]. In our research, we have found that using the ’Segment Anything’ anno-
tation method [27] helps in obtaining images with clearly defined objects. This provides
the network with more explicit structural information, offering additional support to the
deblurring algorithm. Such segmentation aids the model in more accurately localizing and
addressing blurred areas.

7. Conclusions

In this study, we develop the CNB Block, which represents an innovative approach
by integrating large receptive fields with advanced normalization techniques. This novel
combination enhances our ability to capture and process complex image features effectively.
Expanding upon the foundation of the CNB Block, we have introduced a two-stage network
structure named CNB Net. This architecture incorporates the TSFF module to facilitate a
two-stage feature flow, thereby significantly improving our ability to represent multi-scale
features accurately. Furthermore, we have introduced the FAS module, which plays a piv-
otal role in enabling active feature selection and propagation to the subsequent stage of the
network. As a result of these advancements, images reconstructed and restored using our
proposed method have demonstrated superior quality compared to existing techniques.
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