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Abstract: In the field of remote sensing image segmentation, achieving high accuracy and efficiency
in diverse and complex environments remains a challenge. Additionally, there is a notable imbal-
ance between the underlying features and the high-level semantic information embedded within
remote sensing images, and both global and local recognition improvements are also limited by
the multi-scale remote sensing scenery and imbalanced class distribution. These challenges are
further compounded by inaccurate local localization segmentation and the oversight of small-scale
features. To achieve balance between visual space and semantic space, to increase both global and
local recognition accuracy, and to enhance the flexibility of input scale features while supplementing
global contextual information, in this paper, we propose a U-shaped hierarchical structure called
ResU-Former. The incorporation of the Swin Residual Transformer block allows for the efficient
segmentation of objects of varying sizes against complex backgrounds, a common scenario in remote
sensing datasets. With the specially designed Swin Residual Transformer block as its fundamental
unit, ResU-Former accomplishes the full utilization and evolution of information, and the maximum
optimization of semantic segmentation in complex remote sensing scenarios. The standard experi-
mental results on benchmark datasets such as Vaihingen, Overall Accuracy of 81.5%, etc., show the
ResU-Former’s potential to improve segmentation tasks across various remote sensing applications.

Keywords: semantic segmentation; transformer; balance between visual and semantic space;
enhancement of both global and local aspects

1. Introduction

With the continuous expansion of remote sensing data and advancements in computer
algorithms, there is a growing need to enhance the capabilities of existing models in
the field of remote sensing to effectively capture both semantic information and intricate
detailed features [1,2]. Semantic segmentation techniques are employed to assign a semantic
category to each individual pixel in an image, and accurate pixel-level prediction methods
are particularly relevant in the domain of remote sensing images, which often involve
multi-scale complex scenes [3].

In complex remote sensing scenes [4], the visual space of remote sensing images is
affected by phenomena such as same spectrum different objects or same object different
spectra [5], leading to greater spectral differences among similar land features and spectral
overlap among different objects. This results in increased intra-class variance and decreased
inter-class variance [6], which confuses the image details with high-level semantic infor-
mation, making it difficult to solve the problem solely through expert visual recognition.
Traditional algorithms, such as color clustering [7], are unable to explore the deeper-level
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high-level semantic information behind the image, which limits their understanding of
both local and global image features and reduces task efficiency. Therefore, it is neces-
sary to adopt artificial intelligence machine learning algorithms to identify the advanced
information contained in remote sensing images.

Artificial intelligence algorithms are capable of extracting and analyzing specific
explicit features, abstracting and summarizing them into high-level semantic information,
and systematizing the process of extracting and abstracting specific features, thereby
enhancing efficiency and accuracy. However, this process may result in the loss of feature
details. The primary task of visual space is to segment and locate feature details, while the
primary task of semantic space is to summarize and learn high-level conceptual information.
This is where the contradiction lies.

Based on the above problems, researchers begin to explore. Firstly, the addition of a self-
attention mechanism [8] in the big model, like ChatGpt [9] and Pangu-Weather [10], which
can capture the dependencies of global information [11,12], makes the big model become a
phenomenal presence in the processing of natural language or in the weather forecasting
domain, and researchers also apply self attention to the image processing domain [8,13].
Borrowing from Transformer [14], researchers introduced Transformer into the image vision
field, and the vision transformer was proposed by the Google team for accomplishing the
image recognition task [15]. Taking 2D image blocks with positional embedding as input
and pre-training on a large dataset, VIT’s performance [16] is comparable to that of CNN-
based methods, but the computational requirements are enormous and it is restricted only
to the image classification domain, unable to solve more downstream tasks. Later comes
the Swin Transformer model; Swin Transformer is a method based on the self-attention
mechanism and has good global perception, which is able to take into account both the
global information and local relationships of the input data, which makes it more effective
in dealing with long-global-distance dependencies in images [17]. At the same time, Swin
Transformer introduces the rowing window operation, which can help to extract the local
features, just like CNN does through the layer design of the convolution operation, and
reduce the calculation amount. However, at the same time, the rowing window operation
limits the size of its input features. And Swin-Unet [18] is applied to medical image
segmentation; however, according to the limitations of its image processing that requires
structural curing, as well as the finite number of samples to be processed, it can only be
used as a medical solution in the medical field.

To improve the above mentioned crucial problems in the intelligent processing of
remote sensing images in complicated scenarios, such as the recognition of multi-level
and multi-scale local features, the imbalance between the underlying attributes and high-
level semantic information, the lack of long-term semantic information, and the massive
amount of required sample data [1], this paper proposes the ResU-Former to address this
contradiction. From the perspective of the network’s application effects, the ResU-Former
enhances the capabilities of both global semantic relationship exchange and local feature
recognition, in a way balancing these two aspects.

The breakthrough lies in recognizing the evolutionary nature of information features,
which aids in balancing features across different dimensions and improving the utilization
of image pixels. The network architecture incorporates various structured designs, includ-
ing the Swin Transformer structure with residual connections to capture global information,
mining contextual relationships among pixel points and all the information the image
itself contains, the U-shape structure to complement underlying features, and the cascade
connection of feature maps to transfer contextual information. This enables the network to
evolve the characteristic information. The Swin Transformer Residual Block is used as the
fundamental unit for feature learning, providing the network with sufficient information
for ingestion, extraction, reproduction, and learning. This unit establishes distant connec-
tions and dependencies between features, thereby uncovering a wider range of contextual
semantic information and improving segmentation capabilities. Additionally, a scale ad-
justment module is introduced to address the constraint of input image feature size for
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the Swin Transformer. At a macro level, the network complements contextual information
through skip connections, while, at a micro level, the scale adaptive block combines with
the Swin Residual Transformer to consistently utilize and balance information features,
enhancing their utilization rate and allowing for the relearning of prior information from
low to high levels. Through this process, the network achieves the evolution of information
features and enhances the accuracy both locally and globally, addressing the imbalance
between local recognition and global semantic context exchange.

In conclusion, the contributions of this paper can be summarized as follows:

1. The integration of the Swin Transformer and Resnet to construct Swin Residual
Transformer blocks, achieving local and global self-attention while suppressing the
generation of degeneracy problems and gradient explosion.

2. The design of a scale adaptive block to solve the problem of insensitivity of the Swin
Transformer module to input feature size.

3. A symmetric encoder–decoder architecture with skip connections is constructed.
In the encoder, gradual convolutional downsampling increases the feature recep-
tive field while decreasing the resolution; in the decoder, features are progressively
upsampled back to the resolution at the time of original input.

4. The introduction of fussion loss effectively mitigates the issues of class imbalance by
incorporating the Soft Cross Entropy Loss, while Lovasz Loss enhances the model’s
capability to delineate object contours with higher fidelity. This dual-objective loss
function fosters a robust learning process that results in a superior segmentation
performance.

2. Related Work
2.1. Unet

Unet is a classical deep learning convolutional neural network structure proposed by
Ronneberger et al. in 2015 [19]. It adopts an encoder–decoder structure. Unet increases
the receptive field by stacking a large number of convolutional layers and downsampling
layers [20], and the high-level feature maps acquired through multi-layer convolutional
operations help to segment the target recognition and the skip connections used, which
joins the underlying detailed features of the encoder stage to the up-sampling part; this
is conducive to the accurate localization of the target. In spite of the U-shaped structure
and skip connections in the Unet network, that achieve a certain degree of balance between
visual and semantic spaces, there are still some deficiencies in capturing details.

2.2. Swin Tramsformer and CNN

CNN is widely used in the field of image classification with its advantages of excellent
local perception and parameter sharing [21]. However, it also has limitations; CNN will
lose some details in the process of convolution and pooling, resulting in a lack of sufficient
information to recover the image information. The features extracted by CNN are localized,
resulting in a lack of contextual connections between pixels. Moreover, the information
extracted from superficial and profound features is not the same, and CNN-based semantic
segmentation methods fail to utilize this information efficiently.

Dosovitskiv et al. first proposed the transformer backbone network VIT for computer
vision [15,22]. The experiments demonstrate that the Vision Transformer (VIT) performs
self-attention computation on a global scale, leading to a significant increase in network
parameters and a requirement of a large number of training samples. For this reason,
Liu et al. proposed the Swin Transformer [17], which divides small windows for patches,
calculates local self-attention within the window, and enhances the local features by shifting
the window operation to interact with information between different windows [23]; at the
same time, in order to be able to design the same hierarchical structure as a convolutional
neural network for dense prediction tasks, it is proposed to merge neighboring patch
blocks. The two major improvements of calculating local self-attention and merging patch
blocks greatly reduce the number of parameters of the network, while maintaining the
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sensory field of the model, which reduces the difficulty of applying the transformer in the
semantic segmentation of remote sensing images. Wang et al. [24] connected a pyramid
pooling module (PPM) to the Swin Transformer to obtain rich edge and background
information, and Shi et al. [25] simply combined an all-aware module (ALL-MLP) with
the Swin Transformer to reduce the complexity when the Swin Transformer is extended
to a semantic segmentation network. Yu et al. [26] proposed the combination of multi-
scale moving windows with FPN for expanding the sensory field of the network. But
feature maps at different scales contain different semantic information, and simply splicing
and fusing them together may lead to a serious loss of contextual information; thus, the
U-shaped architecture of ResU-Former is constructive.

2.3. Resnet

Traditional deep neural networks [27] are prone to the problem of gradient vanishing
or gradient explosion as the number of layers increases, making the network difficult to
train and also prone to degradation during the training process [28]. Resnet solves this
problem by introducing residual connections. Residual connections allow information to
propagate directly across layers in the network, making it easier for the network to learn the
residual function. However, the residual block always contains convolutional layers, which
is still limited for balancing the global semantic information according to the above theory.

3. Methodology
3.1. The Architecture of ResU-Former Net

The overall neural network ResU-Former Net in this paper is based on the designed
Swin Residual Transformer block as the basic unit that supports the designed U-shaped
architecture including an encoder, decoder, and skip connections. The Swin Residual
Transformer block is based on the Swin Transformer and also uses operations such as
convolutional downsampling, focusing on balancing both local and global information
features. Meanwhile, the adaptive scale module is added to solve the problem that the
Swin Transformer is not sensitive to the input size. The residual connections are embed-
ded within the network for computational compression and solving problems such as
gradient explosions.

The network is first supplied with two CBL feature extraction layers, the CBL layer
consists of a 3 × 3 convolutional layer, a Batch Norm standard normalization layer, and a
LeakRelu activation function layer. Supposing the input feature X, the feature dimension is
denoted as H × W × 3. The formula for the CBL layer is as follows:

Fx = LeakRelu(BN(Conv3×3′2(X))) (1)

After the input image undergoes the initial two-layer CBL convolutional feature
extraction process, we obtain the feature xin with shape H × W × 3.

xin = CBL(Fx) (2)

The basic unit of the ResU-Former is the Swin Residual Transformer Block, as is shown
in Figure 1. The task of the network encoder is first to transform the input into a sequential
embedding, applying a linear embedding layer to project the feature dimensions into an
arbitrary dimensional representation as C. The transformed patch is first passed through
a scale adaptive block, a continuous Swin Transformer block to generate the hierarchical
feature representation. Among them, the scale adaptive block is responsible for adjusting
the input image of an arbitrary scale, which can realize the adjustment of the image scale
to be completely adapted to the input scale of the Swin Transformer, solving the problem
that the rowing window introduced by the Swin Transformer to enhance the local feature
sensory field being insensitive to the input size; the Swin Transformer block is responsible
for feature representation learning. Then, the image feature size changed by the scale
adaptive block is recovered by the Resize module. The output features are used as residual
mappings, which are added to the identity mapping of the starting input to form the
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output of the residual block, and the above operation is designed to be encapsulated as
the Swin Residual Transformer Block. Next, the output features of the Swin Residual
Transformer Block are fed into the convolutional layer with the Leakrelu activation layer,
which is responsible for downsampling and constitutes the down module as a whole.
After the down operation has been performed four times, it enters the up module and
starts the task of the network decoder. The decoder is also based on the Swin Transformer
composition, and the encoder structure is symmetric; functioning first through upsampling,
the neighboring dimensions of the feature mapping reconstructed to a resolution of two
times the large feature mapping, the sampled patch through the Swin Residual Transformer
Block, and the encoder process are similar.

Figure 1. The architecture of ResU-Former Net: in the symmetric structure of a 4-layer encoder and
decoder, each layer is based on the unit Swin Residual Transformer Block. With the scale adaptive
block and resize module additions, the ResU-Former structure extracts semantic information well.

In the symmetric structure of the decoder and encoder, the extracted contextual
features are integrated through skip connections with the decoders to compensate for the
loss of spatial information due to downsampling. After four Up module operations, the
resolution of the feature mapping is restored to the input resolution W × H, and then a
linear projection layer is applied on these final upsampled features to output pixel-level
segmentation predictions.

3.2. Details
3.2.1. Scale Adaptive Block

Based on the window partition operation in the Swin Transformer, it commonly sets a
fixed 7 × 7 window size, making one of the limitations of the Swin Transformer that the
input image feature size is at least a multiple of 7, resulting in the Swin Transformer being
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insensitive to the size of the input image. In order to solve this problem, this paper designs
a scale adaptive block. The input features are adaptively interpolated and transformed into
the input feature, conforming to that in the Swin Transformer based on its structure. The
goal is to adjust the size of the input features so that they meet the requirements of the
Swin Transformer while not being completely fixed to a particular size. This is an adaptive
method that allows the model to handle inputs of different resolutions, thus increasing the
range of the applicability of the model.

3.2.2. U-Shaped Architecture

The overall U-shaped structure is supported by Down and Up modules; the encoder
contains four Down operations and the decoder contains four Up operations.

For the first four layers of the encoder, the encoder is responsible for gradually re-
ducing the spatial size of the image and adjusting the number of channels to capture
information at different scales and consists of multiple Swin Residual Transformer Blocks
that compare the attention scores between sequences to capture the contextual relationships;
this is used to gradually extract the high-level semantic features of the image as a whole.
The number of channels is increased layer by layer by the Swin Residual Transformer Block.
The features are subsequently extracted layer by layer by halving the width and height
through Conv3×3′2, as the first layer implements the H × W × C −→ H

2 × W
2 × 2C. The de-

coder part then gradually restores the original resolution through an upsampling operation
and fuses the features extracted in the encoder with those in the decoder. The decoder part
is symmetrical to the encoder part, and the primary body both uses the Swin Transformer,
which connects the feature maps in the encoder to the feature maps in the corresponding
decoder layer using skip connections after the subsampling, and upsampling operations in
order to fuse the low-level and high-level features. This design helps to retain more spatial
information and enhance the accuracy of semantic segmentation.

3.2.3. Swin Residual Transformer Block

The most crucial component of the neural network proposed in this paper is the
module Swin Residual Transformer Block, which combines the functions of Resnet and the
Swin Transformer to significantly increase the neural network’s capacity for generalization.

The following is the formula for the Swin Residual Transformer Block:

Suppose the input feature: xin

The input features with resolution H ×W ×C are subjected to scale adaptive operation,
and then are turned into H1 × W1 × C, assuming the resolution of xl−1, where SA denotes
the scale adaptive operation.

Subsequently, the scale-adaptive input is put into two subsequent Swin Transformer
blocks for representation learning, with constant feature size and resolution. The Swin
Transformer’s construction is based on a shift window, unlike the conventional Multihead
Self-Attention (MSA) module. Figure 1 illustrates two successive Swin Transformer blocks,
each of which is made up of a Layer Norm(LN) layer, a multi-head self-attention module, a
residual connection, and an MLP. The MLP introduces nonlinear transformations using
a nonlinear activation function, allowing the network to extract raw data from more
abstract and practical features while also making the network more expressive to increase
the model’s capacity for fitting and representation. Two subsequent Swin Transformer
blocks and a shortcut connection compose the Swin Residual Transformer Block. In the
meantime, the codec’s Down modules and Up modules are primarily composed of the
Swin Residual Transformer Block. The output of the Swin Residual Transformer Block is
input into another after up-sampling and a convolutional layer of the kernel, 1 × 1, doubles
the number of channels in the Up module. In the Down module, the output of the Swin
Residual Transformer Block is subjected to a one-step convolutional layer and a Leakrelu
activation layer operation, which further extracts features and enhances nonlinearity. In
order to fully mine both global and local information, the Swin Residual Transformer is
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constructed with a Swin Residual Transformer for global semantic information mining and
the convolutional operation for local feature extraction.

The window-based multi-head self-attention (W − MSA)module and the shift window-
based multi-head self-attention (SW − MSA) module are the succeeding transformer blocks
of the multi-head self-attention module, respectively. By using the window-based self-
attention mechanism, and only performing a localized region within the window self-
attention computation, the computational complexity is reduced while the model’s recep-
tive field is maintained. The Swin Transformer process is carried out as follows:

x̂l = W − MSA(LN(xl−1)) + xl−1 (3)

xl = MLP(LN(x̂l)) + x̂l (4)

x̂l+1 = SW − MSA(LN(xl)) + xl (5)

xl+1 = MLP(LN(x̂l+1)) + x̂l+1 (6)

where x̂l is assumed to be the output of W − MSA and xl the output of MLP. The self-
attention calculation inside the window is represented as follows:

Attention(Q, K, V) = So f tMax(
QKT
√

d
+ B)V (7)

where Q, K, V ∈ RM2×d , the values of B are taken from the bias matrix B̂ ∈ R(2M+1)(2M−1),
M2 indicates the number of divided windows, and d denotes the dimensions of Q, K.

The upscaling is carried out to increase the number of channels in order to achieve the
acquisition of a greater range of information. Supposing the feature Y as the output of the
successive Swin Transformer blocks, Y’s dimension is H1 × W1 × 2C. This is carried out by
fusing the channels in the Swin Residual Transformer block using the convolutional layer
of the 1 × 1 kernel. Perform the Resize operation as follows:

xout = Resize(Y) (8)

After the Resize operation, the xout feature becomes H ×W × 2C. xout, as the designed
residual mapping of the Swin Residual Transformer block, added with the identity mapping
xin, forms the G(x) through shortcut connections.

G(x) = xout + xin (9)

Next, the G(x) as input undergoes a convolutional layer with a 3 × 3 kernel and a
stride of 2, followed by a LeakyReLU activation layer.

f (x) = Conv3×3′2(G(x)) (10)

L(x) = LeakRelu( f (x)) (11)

The Swin Residual Transformer employs a residual block computation technique,
which is deduced above, to facilitate the maintenance of gradient flow and enable deeper
layers within the network. Just because of the construction of the deep network involving
shortcut connections between multiple layers, the ResU-Former Net network comprises
numerous stacked Swin Residual Transformer blocks. Each residual block efficiently incor-
porates input and output information through shortcut connections, thereby facilitating
seamless information flow layer by layer.

3.3. Fusion Loss

In traditional segmentation tasks, a common challenge arises from imbalanced class
distributions and irregular object shapes, where standard Cross Entropy Loss often falls
short. This limitation hinders the model’s performance, especially in delineating precise
object boundaries.
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To address this issue, we propose an innovative loss function that synergistically fuses
Soft Cross Entropy Loss with Lovasz Loss at a 1:1 weight ratio. Our approach is designed
to leverage the strengths of both: the Soft Cross Entropy Loss facilitates learning from the
probabilistic distribution of classes, while the Lovasz Loss directly targets the optimization
of the Jaccard index, which is crucial for achieving high-quality segmentation results.

LSCE = −
N=num_classes

∑
i=1

yilogP(xi) (12)

where LSCE is the value of the Soft Cross Entropy Loss function, yi ∈ (0, 1) set to soft label,
representing the label value of the i class in the groundtruth labels, and P(xi) represents
the probability of the i class predicted by the model. The cross entropy with a smooth label
increases the generalization.

The goal of Lovasz Loss is to gradually improve the prediction results such that they
are more similar to ground truth labels. In order to address the issues of category imbalance
and the disparity between tough and simple samples, it takes into account boundary
samples as well as samples that have been wrongly classified.

∆JC : MC ∈ {0, 1}P 7→ |MC|
|{y∗ = c ∪ MC}|

(13)

where ∆JC denotes the loss function to be optimized, y* denotes the groundtruth, c is the set
of prediction error pixels, and MC is the set of mismatches between network segmentation
results and labels. MC ∈ {0, 1}P, p denotes the number of pixels.

The Lovasz extension is utilized for smooth extension and is specifically implemented
in multi-class segmentation.

mi(c) =

{
1 − fi(c) if c = yi∗
fi(c)

(14)

where fi(c) refers to the probability value after the softmax of class c. Use the scoring
function fi(c) to construct a pixel errors mi(c) vector. Use errors m(c) vector to contruct a
loss function replacing the loss function ∆JC.

loss( f (c)) = ∆JC(m(c)) (15)

During training, Lovasz Loss can generate a smooth gradient signal, which aids in
the model’s generalization and convergence [29]. It is frequently used for applications like
object detection, pixel-level segmentation, and is especially effective at addressing issues
with class imbalance and boundary sample problems. The Lovasz softmax loss is defined
as follows in order to maximize the evaluation of mloU metrics across all categories by
averaging the aforesaid loss( f (c)):

loss( f ) =
1
|C| ∑

c∈C
∆JC(m(c)) (16)

The resilience and generalization capabilities of the model can be increased, overfitting
can be decreased, more accurate gradient signals can be provided, and the model can
be made to learn and adjust the parameters more effectively by incorporating the two
loss function computations. The LovaszLoss is also simpler to combine with other loss
functions because it is mathematically differentiable, thereby enhancing the performance
of the model.

The weights between various objectives can be balanced when the two loss compu-
tations are combined by changing the weights involved.This allows for flexible modifi-
cation of the model’s degree of optimization on various task indicators to accommodate
changing needs.
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Combining these two loss functions, with Soft Cross-Entropy Loss providing pixel-
level classification accuracy, while Lovász Softmax Loss strengthens the model’s ability to
predict object boundaries, the model can be motivated to better handle boundary regions
while maintaining classification accuracy, especially in cases of category imbalance or
ambiguous segmentation boundaries in the semantic segmentation task.

3.4. Optimizer and FLOPs Params

The network optimizer uses SGD, sets the momentum to 0.9, uses a learning rate
of 0.01, and a weight decay of 10−4; the GPU uses a single RTX 3090 (24 GB) and sets the
batchsize to 2. The network FLOPs is 15.06 GB and params is 23.89 MB.

4. Experiments
4.1. Datasets

In this paper, WHDLD, Vaihingen, and Postdom datasets [30] are used. The WHDLD
dataset contains six types of remote sensing feature types, the training set contains 4446 images,
and the validation set contains 494 images, all of which are 256 × 256. The six types include
rural territorial characteristics like water, bare soil, and vegetation, and urban territorial
characteristics like buildings, pavement, and roads. The Vaihingen and Postdom datasets
are released by ISPRS; both contain five types include buildings, trees, low vegetation, roads,
and cars, except for the background. Both datasets are used to develop and test algorithms
for identifying different scale types of land cover from aerial imagery. Real-world scenarios
that benefit from the analysis of this dataset include urban planning and environmental
monitoring. The Vaihingen dataset is preprocessed and cut into 5010 training sets and
1003 validation sets of 256 × 256. Similarly, the Postdom dataset is cut into 3581 training
sets and 896 validation sets of 256 × 256 for training.

4.2. Metrics

The evaluation metrics use Overall Accuarcy, Frequency Weighted Accuracy, Mean
Accuarcy, and Mean IoU. The above metrics are combined to consider the training effect of
the neural network.

Used collectively, these metrics provide a comprehensive view of the model’s perfor-
mance. OA provides a snapshot of how much of the model is classifying correctly across
all categories. However, if one category has far more samples than the others, OA can
be misleading because it may primarily reflect the accuracy of that dominant category.
Remote sensing imagery often suffers from an unbalanced distribution of categories. FWA
adjusts for this imbalance by giving more weight to high-frequency categories. This helps
us understand how the model performs in the most common scenarios. MA, on the other
hand, provides a more balanced perspective by telling us how the model performs, on
average, in each category, ignoring the imbalance in the distribution of categories. Mean
IoU provides information about the spatial accuracy of the segmentation task, in particular
the boundary regions, which provides a good measure of the confusion between categories.

Overall Accuracy is a commonly used evaluation metric, denoted as OA, which is
used to measure the accuracy of a model in classifying images at the pixel level.

OA =
TP + TN

TP + TN + FP + FN
(17)

Frequency Weighted Accuracy is a commonly used evaluation metric denoted as FWA,
which represents the frequency-weighted accuracy. FWA is used to measure the accuracy of
a model in classifying pixels of different classes, taking into consideration the frequency of
each class in the dataset, thus providing a more fair evaluation of the model’s performance.

FWA =
∑N=num_classes

i=1 (ωi × ti)

∑N=num_classes
i=1 (ωi × ni)

(18)
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where ωi represents the proportion of pixels belonging to class i in the entire dataset,
ti represents the number of pixels correctly predicted as class i by the model, and ni
represents the total number of pixels of class i appearing in the model’s prediction results.

Mean Accuracy is a commonly used evaluation metric. MA focuses more on the
overall classification accuracy of the model, without considering the importance of indi-
vidual classes. It is used to measure the average accuracy of the model’s classification for
each class.

MA =
∑N=num_classes

i=1 ti

∑N=num_classes
i=1 ni

(19)

where ti represents the number of pixels correctly predicted as class i by the model and
ni represents the total number of pixels of class i appearing in the model’s predicted results.

IoU =
TP

TP + FP + FN
(20)

MeanIoU =
1
N

N

∑
i=1

(IoU)i (21)

where N represents the number of semantic segmentation classes. The MeanIoU is a
commonly used evaluation metric for assessing the performance of semantic segmentation
models. It quantifies the degree of overlap between the predicted segmentation results and
the ground truth labels. Its purpose is to evaluate the segmentation capability of the model
across different categories.

4.3. Comparative Experiment

Below lies the comparative images selected from the two datasets—WHDLD and
Vaihingen. The comparative nets are danet, deepv3+, deepv3, pspnet, pan, fpn, linknet,
manet, unet++, and unet [19,31–39].

The ResU-Former emphasizes the improvement of both the global and local semantic
abstraction capabilities, which refers to the balance between global semantic space and local
visual space, as well as high-level semantic information and low-level feature information.
The improvements can be qualitatively observed from the comparative experimental results
in the figures and quantitatively obtained from the metrics of the network in the tables. The
high OA value in the tables and the high IoU for small feature classification demonstrate
the network’s excellent ability to perceive local information. The metrics, OA, and Mean
IoU are the highest in the datasets, indicating the network’s outstanding performance in
abstracting semantic information based on global understanding.

As shown in Figures 2–7 and Tables 1 and 2, the ResUformer-net achieves the best
performance across all metrics in the WHDLD dataset. In terms of segmenting large-scale
features, the ResU-Former effectively captures image features, resulting in clear boundaries
and consistent contours. It exhibits minimal false positives and false negatives, demon-
strating superior performance in segmenting detailed features. These results highlight the
network’s ability to integrate and recognize contextual information, effectively balancing
low-level features with high-level semantic information, thus enabling precise localization.

As shown in Figures 8–10 and Tables 3 and 4, it can be observed that the ResU-Former
achieves improvements in various aspects compared to other mainstream algorithms in the
Vaihingen dataset. It achieves the highest values for OA, FWA, and MeanIoU. Although
there is still a certain gap in terms of MA compared to the best-performing method, the
ResU-Former network excels in its category segmentation ability, particularly in feature
recognition and segmentation. By adopting the self-attention mechanism of the Swin
Transformer, it is able to capture long-range semantic information and also focus on image
feature edges and contours, which leads to an improvement in the IoU metric. Moreover, it
demonstrates a clear advantage in segmenting detailed features.
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4.4. Multi-Scale Experiments

The network is trained on the Postdom dataset using a multi-scale strategy with six dif-
ferent input-image scales, as shown in Table 5. Multi-scale experiments can provide a more
comprehensive and accurate evaluation of the performance of the semantic segmentation
model ResU-Former Net.

Table 1. The metrics for comparative networks trained on the WHDLD dataset are presented below.

Net Backbone OA MA FWA

deepvab3+ Resnet50 0.734758 0.551543 0.602162
deepvab3 Resnet50 0.692037 0.525037 0.561441

fpn Resnet50 0.725924 0.529165 0.588955
linknet Resnet50 0.723345 0.452256 0.576835
manet Resnet50 0.723208 0.527974 0.590553

pan Resnet50 0.724203 0.520272 0.58053
psp Resnet50 0.722804 0.528253 0.585737
unet Resnet50 0.736669 0.534071 0.601409

unet++ Resnet50 0.736234 0.542489 0.602753
danet Resnet50 0.703276 0.516436 0.563059

resuformer Swin-T 0.794566 0.669945 0.683484
Bolded data are optimal for each indicator.

Table 2. The IoU metrics of comparative networks trained on the WHDLD dataset are provided below.

Net MeanIoU Water Building Bare Soil Vegetation Pavement Road

deepvab3+ 0.424909 0.793887 0.408384 0.325546 0.702975 0.279097 0.039563
deepvab3 0.382345 0.793598 0.316567 0.276701 0.649479 0.257514 0.000213

fpn 0.413195 0.789803 0.384012 0.31177 0.687112 0.261684 0.044788
linknet 0.350987 0.782625 0.370225 0.003271 0.701498 0.247631 0.00067
manet 0.403766 0.787113 0.381844 0.290226 0.700507 0.247356 0.015548

pan 0.400813 0.78435 0.354016 0.3106 0.680746 0.268258 0.006905
psp 0.412346 0.797214 0.359893 0.313549 0.678884 0.270671 0.053867
unet 0.414915 0.805472 0.40225 0.303025 0.704142 0.269928 0.004672

unet++ 0.417252 0.816493 0.383985 0.309101 0.707612 0.24725 0.039068
danet 0.38925 0.770836 0.33121 0.30178 0.655124 0.272636 0.003915

resuformer 0.496528 0.86254 0.434463 0.33647 0.751058 0.338788 0.255852
Bolded data are optimal for each indicator.

Table 3. The metrics for comparative networks trained on the Vaihingen dataset are presented below.

Net OA MA FWA

danet 0.801468 0.622492 0.665658
deepv3+ 0.793168 0.62533 0.655897
deepv3 0.807184 0.628513 0.676598
pspnet 0.797542 0.637307 0.665285

pan 0.792273 0.619997 0.657551
fpn 0.793692 0.609119 0.657784

linknet 0.809461 0.646067 0.68159
manet 0.796106 0.640289 0.660128
unet++ 0.797842 0.630655 0.663521

unet 0.772966 0.589576 0.632654
resuformer 0.815147 0.651314 0.689264

Bolded data are optimal for each indicator.
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Table 4. The IoU metrics of comparative networks trained on the Vaihingen dataset are provided below.

Net MeanIoU Surface Building Low Vegetarian Tree Car

danet 0.607947 0.695523 0.749333 0.518418 0.704824 0.371639
deepv3+ 0.599365 0.677548 0.717366 0.526712 0.7142 0.360997
deepv3 0.611544 0.704255 0.759534 0.543725 0.707851 0.342357
pspnet 0.593678 0.675463 0.731295 0.556682 0.717106 0.287846

pan 0.59517 0.668688 0.696356 0.574505 0.714545 0.321757
fpn 0.593983 0.671545 0.72159 0.543336 0.712726 0.320718

linknet 0.594678 0.674396 0.721338 0.500775 0.704821 0.372051
manet 0.604153 0.678732 0.716838 0.538265 0.718308 0.368624
unet++ 0.604827 0.676129 0.709841 0.56384 0.721659 0.352668

unet 0.607947 0.695523 0.749333 0.518418 0.704824 0.371639
resuformer 0.631888 0.712576 0.736338 0.594463 0.7317345 0.3843269

Bolded data are optimal for each indicator.

The multi-scale experiment uses input-image scales as independent variables, and the
scale adaptive module designed by this network can freely adjust the input scale into the
Swin Transformer. The performance of the net varies under different input-image scales,
as shown in Table 5, and the 200 × 200 scale is the optimum, where OA is 73.99%, FWA is
59.43%, and Mean IoU is 52.22%.

Figure 2. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the dataset-WHDLD. This shows the distribution of zigzag boundaries
and fragmented waters, which fully demonstrates the network’s grasp of global semantic information,
as well as its accurate segmentation of local boundaries and small areas of water, illustrating the
network’s accurate understanding of local semantic performance.
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Figure 3. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the dataset-WHDLD. The feature recognition of the water segmentation
block demonstrates the network’s superiority in local understanding.

Figure 4. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the dataset-WHDLD. The detection of edge information for the whole
image is the clearest compared to other networks, which fully reflects the global understanding ability.
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Figure 5. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the dataset-WHDLD. Pavements, buildings, and vegetation are densely
distributed in terms of segmentation, and the accurate identification of each category reflects the
global semantic understanding of the network, while the identification of dense segmentation is
clearer compared to other networks.

Figure 6. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the dataset-WHDLD. In particular, in the recognition of more classes,
the semantic understanding is closest to the ground truth and the discrimination of individual objects
is a good indication of the network’s excellent understanding of local features.
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Figure 7. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the dataset-WHDLD. The recognition of roads and the segmenta-
tion of building clusters demonstrate the superiority of global semantic comprehension and local
detail comprehension.

Figure 8. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the Vaihingen dataset. ResU-Former demonstrates a better local
feature recognition capability in the identification of small features marked with white bounding
boxes, as well as in recognizing the details of road extension.
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Figure 9. Including the ground truth and the original image, all images from other comparative 10 nets
are shown above, from the Vaihingen dataset.The network exhibits an excellent local feature recog-
nition capability in accurately identifying the edges of objects marked with white bounding boxes.

Figure 10. Including the ground truth and the original image, all images from other comparative
10 nets are shown above, from the Vaihingen dataset. The network exhibits excellent local semantic
performance by accurately detecting and segmenting small vehicle features and shape of trees marked
with white bounding boxes.



Electronics 2024, 13, 436 17 of 21

Table 5. All metrics of different multi-scale input resolutions from the postdom dataset are listed.

Scale OA MA FWA MeanIoU

400 0.695949 0.601041 0.537994 0.459527
300 0.721093 0.637878 0.570191 0.489534
256 0.732706 0.684212 0.590416 0.520947
200 0.73987 0.668063 0.594294 0.522162
185 0.726978 0.651337 0.577336 0.503144
154 0.644714 0.578341 0.475622 0.411014

Bolded data are optimal for each indicator.

While the metrics of the 154× 154 scale are low because the input scale features are too
small; this leads to the loss of image details and a decrease in resolution, which may result
in blurry boundaries and confused categories, thereby reducing the prediction accuracy of
the network. The poor performance of the ResU-Former Net on larger-scale images with
dimensions of 400 × 400 can potentially be attributed to the limited memory resources
for processing large-scale image features, leading to a loss of contextual information.
Additionally, the increased number of parameters in the network makes it more prone
to overfitting. Moreover, as the feature map size increases, the importance of pixel-level
details decreases, which can also contribute to the poor performance of the network on
larger-scale inputs.

Based on the analysis of the experimental results, future improvements in semantic
segmentation performance will involve the implementation of more intricate multi-scale
strategies, such as multi-scale fusion techniques.

4.5. Ablation Study
4.5.1. Ablation Experiments

In order to further analyze the role of each module in the algorithm, we conducted
ablation experiments on the WHDLD dataset, which are divided into baseline, baseline
and resnet, baseline and fusion loss, and baseline and fusion loss/and resnet. The results
of the experiments are shown in Tables 6 and 7.

Table 6. All metrics of the ablation study from the WHDLD dataset are listed.

Net OA MA FWA

baseline 0.746607 0.545161 0.603654
+resnet 0.762989 0.583239 0.637592

+fusion loss 0.748162 0.584657 0.616287
+resnet+fusion loss 0.76847 0.63809 0.651536

Bolded data are optimal for each indicator.

Table 7. The metrics IoU of the ablation study from the WHDLD dataset are listed.

Net MeanIoU Water Building Bare Soil Vegetation Pavement Road

baseline 0.431722 0.80584 0.402778 0.31591 0.70123 0.257943 0.106629
+resnet 0.465716 0.84091 0.430923 0.312223 0.729559 0.326153 0.154525

+fusion loss 0.449872 0.80561 0.424664 0.325412 0.71271 0.284509 0.146325
+resnet/+fusion loss 0.490832 0.845026 0.454164 0.328907 0.745774 0.304944 0.266176

Bolded data are optimal for each indicator.

The introduction of Resnet, which means the shortcut connections embedded within
the Swin Residual Transformer Blocks based on the designed successive Swin Transformer
blocks, can make the network perform better due to the results shown in Tables 6 and 7.
The baseline and resnet has an OA of 76.29%, which is an improvement of 1.63% compared
to baseline, an MA of 58.32%, which is an improvement of 3.81% compared to baseline, an
FWA of 63.76%, which is an improvement of 3.4% compared to baseline, and a Mean IoU
of 46.57%, which is an improvement of 3.4% compared to baseline. This proves that the
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introduction of Resnet in the Swin Transformer can comprehensively improve the accuracy
of network segmentation recognition as well as the performance of the network. This can
further utilize the image pixel information, obtaining the evolution of information features
on the basis of the Swin Transformer and U-shaped architecture.

The incorporation of fusion loss during training for the ResU-Former means an inno-
vative loss function that synergistically fuses Soft Cross Entropy Loss with Lovasz Loss at a
1:1 weight ratio. Our approach is designed to leverage the strengths of both loss functions.
Extensive experiments conducted on the dataset revealed that our fusion loss consistently
outperforms traditional loss functions, delivering substantial improvements in key segmen-
tation metrics such as mean IoU and MA compared to the baseline. The empirical results
unequivocally substantiate the efficacy of our approach.

By adding both Resnet and fusion loss, the network performance improves signifi-
cantly: OA is 76.85%, which is 2.19% higher than baseline, MA is 63.8%, which is 9.28%
higher than baseline, FWA is 65.15%, which is 4.79% higher than baseline, and Mean IoU is
49.08%, an improvement of 5.91% compared to baseline, which proves that the introduction
of fusion loss and Resnet combined further improves the performance of the network, with
the metrics MA and Mean IoU particularly improving, verifying that the two modules are
beneficial for the network to balance the overall ability to predict all classifications.

4.5.2. Discussion

The introduction of the Resnet, as well as the shortcut connections, improves the met-
rics like OA, MA, and MIou. Although the design of the Swin Transformer has introduced
structures similar to residual connections, the ResU-Former’s improvements prove the
Resnet is not a redundant connection. The following aspects can be analyzed in terms of
network performance improvement.

Shortcut connections allow gradients to flow directly through the network, which
helps alleviate the problem of gradient vanishing in deeper networks and makes deeper
model training feasible. Also, residual connections allow the network to directly access
shallow features at deeper layers, which promotes feature reuse and may help the network
learn fine-grained features better. Moreover, by adding shortcut connections, the capacity of
the model can be increased without significantly increasing the computational burden, thus
improving the expressiveness of the model. More importantly, in deep networks, features
at different levels may contribute to the final task to different degrees, while shortcut
connections help to combine these different levels of features efficiently.

Throughout the course of the training and the net improvements, the fusion loss with
Soft Cross Entropy Loss and Lovasz Loss at a 1:1 weight ratio can apply to these subtasks.

Fusion loss can act as a regularizer to some extent by combining different loss functions,
preventing the model from overfitting on a particular loss. Fusing these two loss functions
allows the model to make progress in both pixel classification and segmentation quality,
like in boundary optimization.

Furthermore, fusion loss can handle category imbalance. In remote sensing images,
some categories may be more sparse or smaller in area than others, which can lead to the
category imbalance problem. With fusion loss inserting Lovasz Loss, this problem can be
alleviated, to some extent, because it focuses directly on IoU, which is a performance metric
that does not depend on the category distribution.

The trick of fusion loss can also balance the learning focus for the net. By fusing the
two loss functions, the model does not overly focus on one aspect, like optimizing only
the pixel-level classification of responsible Soft Cross Entrophy loss, but finds a balance
between the pixel-level classification and segmentation quality of responsible Lovasz Loss.

In practice, a 1:1 fusion ratio may not always be optimal, and the ratio needs to be
adjusted according to the specific task, dataset, and model performance. For some tasks,
more attention may need to be paid to boundary optimization, so the weight of Lovasz
Loss can be increased; for other tasks, more attention may need to be paid to classification



Electronics 2024, 13, 436 19 of 21

accuracy. Then, the weight of Soft Cross Entropy can be increased. The changeable weight
fusion loss can make the network more generalized and robust.

5. Conclusions

The U-shaped symmetric encoder and decoder structure, using the Swin Residual
Transformer for remote sensing images, embedded with scale adaptive block and com-
bined with the fusion loss training trick, realizes the interaction of long-term, long-distance
semantic information, supplements contextual information, and effectively balances the un-
derlying and high-level features, which significantly advances its global–local recognition
and promotes the net learning visual–semantic space. Moreover, it breaks the restric-
tion of input features into the Swin Transformer and raises the network’s generalization
and efficiency.

ResU-Former is benchmarked on diverse datasets: WHDLD, Vaihingen, and postdom.
Rigorous testing on several remote sensing datasets demonstrated the generalization of
ResU-Former. Our method consistently outperformed existing mainstream nets across
various landscapes and object classes. The metrics OA and MIoU are extra high, which
fully demonstrates that the network’s overall segmentation accuracy, full grasp of global
semantic information, local detailed feature recognition, and average recognition for all
categories are distinguished.

The neural net has evolved along with information, from the earlier eras of the net,
which placed greater emphasis on the receptive fields of local features mostly improved
by convolution, to the present era, which uses self-attention macro models to address the
challenge of balancing the interaction of local and global semantic information.

The objectives set forth at the outset of this paper were successfully met, as evidenced
by the enhanced performance in both urban and rural settings. Our contributions not
only advance the field of remote sensing image segmentation by introducing an effective
architectural innovation but can also fully solve the practical problems of multi-scale
features in objects recognition in remote sensing imagery, imbalanced categories in terms
of quantity and size, and the insufficient exchange of global semantic information in
remote sensing scenes. ResU-Former also lies the groundwork for future exploration
into self-attention frameworks that could further exploit the unique advantages of the
Swin Transformer.

The wider impact of our work is significant, providing a robust foundation for ap-
plications that demand high precision in land cover and land use analysis. This includes
environmental monitoring, urban planning, and disaster management. Our approach’s
adaptability and scalability make it a valuable asset for the remote sensing community as
they tackle increasingly complex segmentation tasks.

This network requires some improvements in the future, such as the following:

1. Multi-scale fusion strategies in multi-scale experiments.
2. The incorporation of feature fusion modules or feature enhancement modules.
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