Smith Chart-Based Design of High-Frequency Broadband Power Amplifiers
Abstract
:1. Introduction
2. Design
2.1. Optimal Load Analysis
2.2. Graphically Aided Approach
2.3. Efficiency Evaluation
3. Implementation, Simulations, and Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xuan, X.; Cheng, Z.; Zhang, Z.; Gong, T.; Liu, G.; Le, C. Design of an Ultra-Wideband High-Efficiency Power Amplifier Based on a Novel Impedance Matching Structure with Three Paths. IEEE Trans. Circuits Syst. II Exp. Briefs 2023, 70, 3973–3977. [Google Scholar] [CrossRef]
- Li, D.; Yang, F.; Guo, C.; Li, X. An Ultrawideband Power Amplifier Based on Negative Feedback. IEEE Microw. Wirel. Tech. Lett. 2024, 34, 536–539. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, W.; Bao, C.; Wu, X.; Wei, K.; Liu, X.; Luo, W. A High-Efficiency Continuous Class-F GaN MMIC Power Amplifier Using a Novel Harmonic Matching Network. IEEE Microw. Wirel. Tech. Lett. 2023, 33, 1321–1324. [Google Scholar] [CrossRef]
- Jiang, X.; Bao, C.; Wu, X.; Dong, Q.; Yang, S.; Wei, K.; Liu, X.; Luo, W. A Simple Design Method for Harmonic-Tuned GaN MMIC Power Amplifier Using Real-to-Real LPF Matching Network. IEEE Microw. Wirel. Tech. Lett. 2023, 34, 528–531. [Google Scholar] [CrossRef]
- Xuan, X.; Cheng, Z.; Zhang, Z.; Gong, T.; Liu, G.; Le, C. A 0.8–5.8 GHz Ultra-Wideband Power Amplifier Based on Dynamic Renormalized References. IEEE Microw. Wirel. Tech. Lett. 2023, 33, 1329–1332. [Google Scholar] [CrossRef]
- Han, W.; Dong, W.; Geng, L. Design of an Extended Continuous-Mode Class-GF Power Amplifier with Multioctave Bandwidth. IEEE Trans. Circuits Syst. II Exp. Briefs 2024, 71, 612–616. [Google Scholar]
- Moreno Rubio, J.J.; Angarita Malaver, E.F.; Mesa Lara, J.A. Ultra-Wideband Power Amplifier Design Strategy for 5G Sub-6-GHz Applications. Micromachines 2022, 13, 1541. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Cheng, Z.; Zhang, Z.; Le, C. Highly Efficient Ultrawideband Power Amplifier Based on a Novel Multi-Branch Matching Network. IEEE Microw. Wirel. Tech. Lett. 2023, 33, 1325–1328. [Google Scholar] [CrossRef]
- Moreno Rubio, J.J.; Quaglia, R.; Piacibello, A.; Camarchia, V.; Tasker, P.J.; Cripps, S. 3–20-GHz GaN MMIC Power Amplifier Design Through a COUT Compensation Strategy. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 469–472. [Google Scholar] [CrossRef]
- Moreno Rubio, J.J.; Angarita Malaver, E.F.; Lara Gonzalez, L.A. Wideband Doherty Power Amplifier: A Design Approach. Micromachines 2022, 13, 497. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.-J.; Zhu, X.; Xia, J.; Chen, p.; Yu, C.; Wu, X.; Chen, X. Highly Efficient Wideband GaN MMIC Doherty Power Amplifier Considering the Output Capacitor Influence of the Peaking Transistor in Class-C Operation. IEEE Trans. Circuits Syst. I Reg. Pap. 2022, 69, 1932–1942. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Zheng, Y.; Wang, W. Broadband Asymmetric GaAs MMIC Doherty Power Amplifiers with Simplified Peaking Matching Network and Output Capacitance Compensation. IEEE Microw. Wirel. Tech. Lett. 2023, 33, 1195–1198. [Google Scholar] [CrossRef]
- Quaglia, R.; Shepphard, D.J.; Cripps, S. A Reappraisal of Optimum Output Matching Conditions in Microwave Power Transistors. IEEE Trans. Microw. Theory Techn. 2017, 65, 838–845. [Google Scholar] [CrossRef]
- Moreno Rubio, J.J.; Azad, E.M.; Quaglia, R. A Differential Combiner for Quasi-Complete Cancellation of Output Capacitance in mm-Wave Power Amplifiers With High-Q Devices. IEEE Trans. Microw. Theory Techn. 2024, 72, 5309–5318. [Google Scholar] [CrossRef]
- Colantonio, P.; Giannini, F.; Limiti, E. Power Amplifier Design. In High Efficiency RF and Microwave Solid State Power Amplifiers; Wiley: Chichester, UK, 2009; pp. 63–71. [Google Scholar]
- Moreno Rubio, J.J.; Camarchia, V.; Quaglia, R.; Angarita Malaver, E.F.; Pirola, M. A 0.6–3.8 GHz GaN Power Amplifier Designed Through a Simple Strategy. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 446–448. [Google Scholar] [CrossRef]
- Moreno Rubio, J.J.; Camarchia, V.; Pirola, M.; Quaglia, R. Design of an 87% Fractional Bandwidth Doherty Power Amplifier Supported by a Simplified Bandwidth Estimation Method. IEEE Trans. Microw. Theory Techn. 2018, 66, 1319–1327. [Google Scholar] [CrossRef]
- Cripps, S. A Theory for the Prediction of GaAs FET Load-Pull Power Contours. In Proceedings of the 1983 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 31 May–3 June 1983; pp. 221–223. [Google Scholar]
Ref. | BW (GHz) | Fr. BW (%) | G (dB) | (dBm) | PAE (%) | Size (mm2) |
---|---|---|---|---|---|---|
[1] | 0.5–4 | 115.6 | 9.5–12.2 | 39.5–42.2 | 57–79 * | 38 × 91.6 |
[2] | 0.33–3.7 | 167 | 7.2–12.8 | 42–44.8 | 57.6–71.3 * | N.A. |
[3] | 2.5–3.6 | 36.1 | 9.2–11 | 36.8–38.5 | 48–58.7 | 2.3 × 3.3 |
[4] | 2.6–3.6 | 32.3 | 8.5–12.1 | 39.2–40.8 | 42–50.8 | 3.5 × 3.8 |
[5] | 0.8–5.8 | 151.5 | 5–12 | 39.6–41 | 49.8–68.4 | N.A. |
[6] | 0.4–2.8 | 150 | 9–12 | 39–42 | 63–73.2 | 50 × 100 |
[7] | 0.1–4 | 190.2 | 9–14 | 40-42.5 | 48–68 | 50 × 120 |
[8] | 0.4–3.8 | 161.9 | 8–12.3 | 38–42.3 | 56–70 * | 35 × 108 |
This PA | 0.1–4.8 | 191.8 | 7–16 | 40.3–42 | 47–59 | 49 × 130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angarita Malaver, E.F.; Barrera Lombana, N.; Moreno Rubio, J.J. Smith Chart-Based Design of High-Frequency Broadband Power Amplifiers. Electronics 2024, 13, 4096. https://doi.org/10.3390/electronics13204096
Angarita Malaver EF, Barrera Lombana N, Moreno Rubio JJ. Smith Chart-Based Design of High-Frequency Broadband Power Amplifiers. Electronics. 2024; 13(20):4096. https://doi.org/10.3390/electronics13204096
Chicago/Turabian StyleAngarita Malaver, Edison Ferney, Nelson Barrera Lombana, and Jorge Julian Moreno Rubio. 2024. "Smith Chart-Based Design of High-Frequency Broadband Power Amplifiers" Electronics 13, no. 20: 4096. https://doi.org/10.3390/electronics13204096
APA StyleAngarita Malaver, E. F., Barrera Lombana, N., & Moreno Rubio, J. J. (2024). Smith Chart-Based Design of High-Frequency Broadband Power Amplifiers. Electronics, 13(20), 4096. https://doi.org/10.3390/electronics13204096