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Abstract: Wireless communication capability is vital for remote transmission between unmanned
aerial vehicle (UAV) coordination systems, but the communication link between highly dynamic
UAV systems is unstable and severely disturbed due to its rapidly time-varying channel. Current
channel estimation methods suffer from insufficient inter-symbol interference (ISI) and inter-carrier
interference (ICI) suppression and inadequate noise filtering. Therefore, a collaborative channel
estimation network (CoCENet) is proposed in this paper, and it can restrain the channel interference
by capturing the amplitude–phase and time–frequency correlation at the same time. Moreover,
CoCENet applies a multi-scale fusion strategy to optimize the purity of the estimated outcome. Our
experiment results demonstrate that CoCENet has preferable performance in terms of the suppression
of channel interference and noise in rapidly time-varying UAV systems in a complex environment
without stationarity assumption. At a signal-to-noise ratio (SNR) of −10 dB, the mean square error
(MSE) of CoCENet is improved by 1.7–2.3 dB compared to existing methods, and at a SNR of 20 dB,
the MSE is improved by 1.1–2.2 dB.

Keywords: wireless communication; channel estimation; rapidly time-varying channel; deep learning;
convolution neural network; feature fusion

1. Introduction

Unmanned aerial vehicle (UAV) systems play an important role in fields requiring
lightweight, flexible, and intelligent features, such as logistics transportation [1,2], remote
detection [3,4], communication relay [5,6], and military strikes [7]. Figure 1 shows a typical
UAV application scenario. Currently, the typically used high-mobility UAV networking
modes include ground–air command and air–air ad-hoc [8,9]. In UAV systems, various
nodes can be flexibly linked together through terminals, significantly enhancing the opera-
tional efficiency of each sector. However, the long-distance communication and high-speed
mobile connection between terminals pose challenges to the performance of the com-
munication system. For UAV collaboration systems in complex environments, whether
behavior control or image transmission, efficient and reliable information exchange be-
tween terminals is a crucial foundation for achieving synchronization. Ensuring the normal
operation of the wireless communication system is vital to maintaining the functionality of
UAV systems.
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Figure 1. A typical UAV wireless communication system.

However, frequent relative movements and powerful noise interference are present in
highly dynamic UAV networks [10], resulting in a fast-fading channel and high-disturbance
link, which severely distort receiving signals [11] significantly effect communication perfor-
mance. It is a challenge to determine how to effectively suppress the negative impacts on
channel in rapidly time-varying UAV systems, thereby ensuring the coordination between
terminals and UAV networking capability.

Channel estimation enhances anti-fading abilities by obtaining channel state informa-
tion (CSI) from pilots [12] and is therefore widely used in UAV systems [13]. However,
in traditional channel estimation algorithms, the least squares (LS) method is sensitive to
noise and has significant error at a low signal-to-noise ratio (SNR) [14]. The minimum
mean square error (MMSE) method is complex and time-consuming for calculating auto-
correlation matrices [15]. The linear minimum mean square error (LMMSE) requires prior
knowledge which is difficult to capture [16,17], thus having notable influence on the system
effectiveness. Further, traditional algorithms’ assumption of a channel stationarity cannot
be applied to rapidly time-varying channels.

In recent studies, the non-linear fitting ability of deep learning (DL) has shown promis-
ing application prospects in data prediction and estimation [18–20]. DL-based channel
estimation methods construct cascaded mapping layers to fit the fast-fading channels,
achieving end-to-end estimation [21–24]. These methods mainly include three domains.
The first domain involves equalizing signal distortion. Mehran Soltani et al. pointed out
that the filling data estimated from pilots contains deviation caused by algorithm limita-
tions [25]; therefore, an equalizer can improve channel estimation performance. Rugui
Yao et al. used a channel parameter-based (CPB) algorithm to transfer Doppler character-
istics into a basis vector and proposed FC-DNN for basis matrix estimation [26], which
can weaken the specific effects of relative movements and reduce the influence of ICI in
results. Yi Sun et al. proposed ICInet to evade the limitations of stationarity by estab-
lishing a pre-extract module directly focusing on the Doppler mapping matrix [27], and
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this significantly intensified the equalization. Lyu Siting et al. proposed HNN to capture
the inherent characteristics of the received data and the channel [28]. Sanggeun Lee et
al. proposed a DL-based channel estimation method to refine the CSI of spatially corre-
lated channels [29]. The second domain involves suppressing noise interference. Liu et
al. believed that irregular and high-frequency amplitude changes have a negative impact
on channel estimation accuracy [30]. Inspired by DnCnn, Li et al. proposed a cascaded
model named ReEsNet with transpose convolution to denoise pilots [31], and ReEsNet can
ensure that the pilots are precise enough to provide guidance on up-sampling. Yong Liao
et al. focused on the temporal continuity of channel fading amplitude and used conditional
recurrent unit (CRU) to capture data correlation [32], improving the utilization of vital fea-
tures and avoiding high-frequency noise in communication links. Qi Peng et al. designed
CRCENet to combat the influence of noise on the attention mechanism [33]. Muhammad
Umer Zia et al. proposed a DL-based TDD, FDD, and a parametric channel model to avoid
pilot contamination [34]. The third domain involves optimizing the learning strategy. Kai
Mei et al., regarding the diversity in different scenarios, adopt online training to fine-tune
the weight parameters during the estimation process [35], so their model can achieve better
fitting in practical applications. Mao et al. pointed out that effective label-determined
samples are few, so they proposed meta-learning-based RoemNet [36], further enhancing
the model adapting capability in the actual communication environment.

However, signal distortion equalization typically analyzes the Doppler shift specifi-
cally, without considering that high-mobility UAV systems are also affected by dynamic
multi-path, neglecting the interference caused by adjacent symbols. Additionally, the
model used for noise suppression has a relatively fixed receptive field which does not
perform collaborative features on multiple modals and lacks the ability to capture noise
influence at different L2 distances. Learning strategy optimization requires high computa-
tional load, and the hardware resources occupied for fine-tuning are not conducive to the
miniaturization of the UAVs.

Motivated by these examples, we proposed a collaborative channel estimate network
(CoCENet) for rapidly time-varying UAV systems, which consists of a complex-valued
reconstructor (CVR) to restrain the channel interference simultaneously and a multi-scale
filter (MSF) to further purify the estimation results. Our main contributions are summarized
as follows:

1. We proposed CVR in CoCENet which captures collaborative features between time,
frequency, amplitude, and phase with 2D complex-valued convolution to enhance the
utilization of relevant features in initial estimation and match the characteristics of
rapidly time-varying UAV systems.

2. We proposed MSF in CoCENet to restrain the noise influence by providing multiple
receptive fields with a learnable fusion strategy. By effectively restraining the noise
effect in CSI, the estimation results can be better fit to the actual channels.

The rest of this paper is organized as follows: Section 2 elaborates the background of
our system model and explains the existing problems. Section 3 describes the structure and
process of CoCENet as well as the modules included. In Section 4, we present and analyze
the comparison experiment results. Finally, Section 5 concludes our work in this paper.

2. System Model and Problem Statement

Communication between UAVs requires the ability to receive and transmit information
in complex environments, so OFDM has become a widely used technical in UAV coordina-
tion systems due to its high spectral efficiency, strong anti-fading capability, and simple
hardware implementation [37]. Therefore, in this article, we describe our system model
with OFDM. The digital communication process of an OFDM frame with N subcarriers
and T symbols in discrete form can be represented by Formula (1)

Y(n,t) = H(n,t)X(n,t) + W(n,t) (1)
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where (n, t) is the index of current data in the OFDM frame, in other words, the t-th symbol
at the n-th subcarrier, n ∈ [0, N − 1], t ∈ [0, T − 1]. X represents the transmitted signal after
the pilot inserted, Y represents the received signal, W represents the Gaussian white noise
obeying N

(
0, σ2), and H(n,t) represents the frequency amplitude response of X(n,t) in the

current data frame.
The overall process of channel estimation can be broken down into two stages—

interval reconstruction and filtering optimization—as shown in Figure 2. Pt and Pt+1
represent the pilot at t and t + 1 time slot. The interval reconstruction obtains a complete
approximation matrix based on the pilots, with the goal of expanding data size to construct
an identity mapping for feature analysis [38]. Then the filtering optimization filters a noisy
CSI to obtain a pure estimated CSI. The effect of rapidly time-varying UAV systems is
mainly manifested in the channel changing over time [39], so, in this paper, we choose
a comb pattern as the pilot insert strategy. After obtaining the record of pilot positions,
it is necessary to calculate a complete CSI through rough estimation, which is generally
represented in the form of a channel frequency response (CFR) matrix. The UAV should
be adopted with a rough estimation method that does not require prior knowledge. The
LS is simple enough to implement and fast to operate [40], so it is proper to use the LS for
interpolation estimation. The process of LS calculating the CFR is shown in Formula (2)

ĤLS
p = YpX−1

p (2)

where p represents the data on pilot locations, and ĤLS
p represents the fading amplitude

obtained by LS from received pilots. In fact, the SNR is often low in typical UAV scenarios.
If MSEp represents the mean square error between the true CFR Hp and the LS estimation
result ĤLS

p , then there is a relationship as shown in Formula (3)

MSEp = E
[∥∥∥ĤLS

p − Hp

∥∥∥2
]
=

σ2
W

σ2
X

(3)

where σ2
W represents the variance of noise, and σ2

X represents the signal’s variation. It can
be seen that there is an inverse relationship with the SNR; that is, the greater the noise, the
more significant the deviation of LS results. Therefore, LS is fragile and sensitive, so to
obtain more accurate CFR, it is necessary to further deal with LS results.

Pilots Noisy CSI Estimated CSI

Filtering
Optimization

Noise 
Restrain

tP 1tP

tP 1tP

tP 1tP

tP 1tP

tP 1tP

Interval
Reconstruction

Pilot Capture

Sketchy 
Filling

Figure 2. Channel estimation process.

Formula (1) shows the process through which the signal is affected by the channel
during transmission, when the UAV moves relatively frequently and the electromagnetic
environment is complex. Therefore, in non-stationary and rapidly time-varying UAV
systems, the coherent bandwidth is occasionally less than the critical threshold. In addition,
the low signal rate may cause UAV-facing follower jamming. Those above will produce
dynamic multi-path effects on OFDM systems, so, except for adjacent subcarriers, the
symbols nearby will have a certain degree of information correlation with each other. In
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short, part of the amplitude attenuation of the signal comes from both the adjacent time
slot and the frequency point. Considering the influence of ISI and ICI, the received signal
can be shown in Formula (4):

H(n,t)X(n,t) =
N−1

∑
In=0

T−1

∑
It=0

H(In ,It)
(n,t) X(In ,It) (4)

where H(n,t) represents the combined effect of the signals from various locations on the
current location, where In and It represent the subcarriers and symbol indices that are
generating interference and H(In ,It)

(n,t) is the frequency-amplitude response of X(In ,It) at (n, t).
Moreover, when the signals undergo the influence from multi-paths and Doppler, its
time-domain form can be shown in Formula (5):

h(τ, t) =
N(t)

∑
n=0

αn(t)e−jϕn(t)δ(τ − τn(t)) (5)

where N represents the number of multi-paths, αn denotes the fading of each path, ϕn
stands for phase deviation, and τn indicates the multi-path delay. Formula (5) demon-
strates the impact of Doppler shift and multi-path superposition reflected in amplitude
and phase. Current DL-based channel estimation methods solely consider the subcarrier
direction and separately process the real and imaginary parts of signal while neglecting
the collaborative information between time and frequency and between amplitude and
phase. Therefore, during the interval reconstruction process, besides considering adjacent
subcarriers, simultaneously taking adjacent symbols along the time direction into account
can positively advance accurate prediction. Retaining the capability of signal processing
from both the real and imaginary parts enables effective extraction of their collaborative
information, which plays a crucial role in enhancing feature utilization and improving
estimation performance.

Filtering optimization is a stage of noise suppression for reconstruction results. The
prior knowledge that traditional algorithms need, such as the auto-correlation matrix, is
difficult to obtain. The existing DL-based channel estimation methods present the problem
of a fixed and limited receptive field. However, the channel parameter momentum in
UAV systems is not a step but a continuous change. For data with strong correlation,
the larger receptive field can capture the overall dynamic trend, focusing on the analysis
of background information, while the smaller field can obtain the local details of noise
and signal, focusing on the analysis of foreground information. The combination of the
fields can achieve feature extraction from coarse to fine, further improving the filtering
optimization performance.

3. Structure of Collaborative Channel Estimation Network

In view of the limitations discussed in Section 2, in this paper, we propose CoCENet
to collaboratively analyze a variety of related features. The CVR and MSF are constructed
according to the interval reconstruction and filter optimization stage. The overall network
structure is shown in Figure 3. Y, H, and X are the multi-modal input, F is the feature
extracted, and i stands for the index of each element. The output of the CoCENet is the
estimated result, with warm colors representing high gain parts and cool colors representing
low gain parts. In this section, we will specifically explain the preprocessing and structure
of CVR and MSF in CoCENet, respectively.
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Figure 3. Overall structure of CoCENet.

3.1. Preprocessing Stage

Signals with different modulation modes show different fading forms after passing
through the channel. The achievements in blind estimation have proven that the signal
characteristics can guide the fading trend, so the collected signals have effective information
for channel estimation. The distortion at the receiving end is continuous and prone to
estimation errors. However, the discrete characteristics of the decoded symbols at terminals
help to correct and converge. Therefore, in the preprocessing stage, multi-modal data are
concatenated as the input of CoCENet. In Figure 3, Y, H, and X represent the received
signal, the complete CFR matrix obtained by LS, and the estimated transmission symbol
sequence calculated by them, respectively.

It should be noted that there are no further adjacent elements in the edge, and un-
reasonable padding strategies like zero padding will break the continuity of the data.
CoCENet’s sensitivity in terms of feature correlation may lead to sudden errors in the
results. Therefore, we adopt a cyclic padding strategy, using the same principle as cyclic
prefix (CP) and cyclic suffix (CS), for each OFDM frame, copying the data with a length
of Nt from the head of each dimension to the tail and the same length from the tail to the
head. This padding strategy preserves the convolutional cyclicity of the signal, reduces the
generation of edge effects in forward process, and avoids error propagation.

3.2. Complex-Valued Reconstructor

The key to solving the problems of insufficient ISI analysis capability and incomplete
interval reconstruction is to improve the utilization of collaborative information carried by
signals. Compared to ICI, the impact of ISI is mainly reflected in the time vector. When CFR
is regarded as a 2D matrix and the input of the neural network, time–frequency correlation
is also equivalent to spatial correlation. Inspired by Huang et al. [41], this article takes all
elements of each feature as the center one by one and establishes a total of N × T hyper-
estimation blocks B ∈ C(2×NI+1)×(2×NI+1) along each direction by including its nearby
NI elements. Each hyper-estimation block is sent to a refactoring unit (RU). Using hyper-
estimation blocks as the basic unit can expand the learning ability of local features, improve
feature utilization, and reduce convergence difficulty under low parameter growth. Each
RU consists of two complex-valued convolutional layers. The complex-valued structure is
shown in Figure 4.
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FIN and FOUT represent the input and output features of complex-valued convolution,
respectively. FR and FI represent the real and imaginary portions of input data. The real
portion FR of the input feature FIN undergoes a normal 3× 3 convolution to obtain FRR,
which means real portion to real portion as the intermediate feature, while the imaginary
portion FI also undergoes a normal 3× 3 convolution to obtain FIR, which means imaginary
portion to real portion. These two convolutional layers share weights in order to achieve
a common mapping. Subtracting FRR from FIR yields the real portion F′R of the output
feature FOUT . Similarly, FRI and FI I are obtained from FR and FI with same method, and the
two convolution layers also share weights. The difference is that, as part of the imaginary
multiplication, FRI and FI I perform addition to obtain the imaginary portion F′ I of the
output. F′R and F′ I are concatenated along the channel dimension to jointly form the
output of the complex-valued convolution. The complex-valued convolutions enable the
information extracted from the amplitude and phase portions to mixing sufficiently, which
can be represented by Formula (6):

Comp( f ) = [convr( fr)− convi( fi)] + i[convr( fi) + convi( fr)] (6)

Comp(·) represents complex convolution; convr(·) and convi(·) represent two inde-
pendent ordinary convolutions, where f represents the feature matrix to be processed; and
fr and fi are the real and imaginary parts extracted from it, respectively. Unlike real-valued
convolution, complex-valued convolution exchanges collaborative information between the
real and imaginary portions of the data, establishing a connection between the amplitude
and phase offsets of the signal, preserving the characteristics of the signal itself, and helping
to improve the ability to suppress interference from a new perspective.

The process of each RU can be represented by Formula (7):

F(n,t) = ∑ Comp2

(
∂
(

Comp1

(
B(n,t)

)))
(7)

Two Comp(·) represent two complex-valued convolutional layers, ∑ (·) represents
the sum of all elements in the matrix, and ∂(·) is the activation function and BN layer.

The overall process of CVR is described in Algorithm 1. The input hyper-estimation
blocks are sent into RU one by one. After the complex-valued process, the output can be
regarded as a correction factor. By performing the Hadamard product on input features, LS
results H(i,j) with the F(i,j), and the deviation caused by LS can be adjusted. For all N × T
hyper-estimation blocks contained in the input, the result will also generate N × T fading
amplitude data. All of them will be reorganized into a complete CFR matrix based on their
source indices, which will be used as the input of the MSF for further optimization.
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Algorithm 1 The process of the complex-valued reconstructor

Input: B: the hyper-estimate blocks set; H: the LS estimation result; Ns: the number of
symbols; Nc: the number of sub-carriers; f : the first complex-valued convolution layer;
g: the second complex-valued convolution layer; σ: the activation function ReLU and
batch normalization;

Output: F: reconstructed channel;
1: Random initialize f and g;
2: for i in [1, . . . , Ns] do
3: for j in [1, . . . , Nc] do
4: Convert B(i,j) into real part FR and imaginary part FI ;
5: FOUT ← σ

(
f j(FR, FI)

)
;

6: Convert FOUT into real part FR and imaginary part FI ;
7: FOUT ← gj(FR, FI);
8: F(i,j) ← ∑ FOUT ;
9: F(i,j) ← H(i,j) ⊙ F(i,j);

10: end for
11: end for
12: Concatenate

{
F(1,1), . . . , F(Nc ,Ns)

}
into F ∈ CNc×Ns ;

13: Return F;

3.3. Multi-Scale Filter

In addition to suppressed ISI and ICI, the communication environment of UAVs also
includes intense interference of complex types, so the reconstructed CFR from CVR requires
further filtering. Our use of a residual structure as the backbone network in MSF in the
filtering optimization stage in CoCENet is mainly due to the following two advantages:
First, by establishing an identity mapping from the noisy matrix to the noiseless one, the
model can ignore the similar information contained in both and focus on eliminating
high-frequency interference terms, thereby improving learning efficiency. Second, the
residual structure can solve the problem of gradient vanishing and reduce the difficulty of
convergence.

In Section 2, we mentioned the idea of feature fusion by combining multiple receptive
fields. Considering that the incidence levels with different L2 distances are unequal, the
weight of various features obtained from different receptive fields should also be judged.
Therefore, we use the learnable multi-scale feature fusion strategy proposed by Gao et al.
[42] to establish MSF. The outputs from different branches are non-linearly fused, and
the generated filter matrix will be used to suppress the noise of the estimated CFR. MSF
attains multiple receptive field branches by combining convolutions of different layers, and
the high-frequency noise components and low-frequency data components can both be
extracted from coarse to fine. The MSF contains four cascaded multi-scale extract units
(MSEU). The structure of each MSEU is shown in Figure 5. X1, X2, X3, and X4 represent
the four groups split from input features, and Y1, Y2, Y3, and Y4 represent the outcome of
each group.

Concatenate Concatenate Concatenate

3x3 Conv 3x3 Conv 3x3 Conv

1X
2X

3X
4X

2X
3X

4X 4X
3X

4X

1Y 1Y
2Y

1Y
2Y

3Y
1Y

2Y
3Y

4Y

2Y 3Y 4Y

Figure 5. Process of multi-scale unit extraction.
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The overall process of MSF is shown in Algorithm 2. The input will be split into a
real part and an imaginary part and will then be encoded by the CSI encoder before being
sent into the MSEU. After multi-scale processing, both global and local information can be
captured, and the collaborative information from different receptive fields can be forcibly
fused during the segmentation and concatenation. The output of MSEU is regarded as a
filter matrix, and the noise will be effectively suppressed by adding it to the fulfilled CFR.
Finally, the output feature will be considered the final estimation result.

Algorithm 2 The multi-scale filter process

Input: F: the reconstructed channel; f : the CSI encoder; g: the MSEU; h: the CSI decoder;
Nl : the number of MSEU; Nb: the number of patches in MSEU;

Output: H̃: estimated channel;
1: Random initialize f , g and h;
2: X ← f (F);
3: for i in [1, . . . , Nl ] do
4: Split X into Nb non-overlap batches

{
X1, . . . , XNb

}
5: Y1 ← X1;
6: for j in [2, . . . Nb] do
7: YNb ← gNb−1

(
YNb−1 + XNb

)
;

8: end for
9: Concatenate {Y1, . . . , YNb} as X;

10: end for
11: H̃ ← h(X) + F;
12: Return H̃;

4. Experiments Results

In this article, we simulated a rapidly time-varying UAV system communication
environment based on SISO-OFDM with a Rayleigh and Rician channel to better match
the real situation in dynamic scenes. Based on that, a channel dataset with a total of
40,000 samples was created, which was divided into a training set, testing set, and validation
set in a ratio of 7:2:1. The initial learning rate of the model was set to 0.001 and was reduced
by 0.1 times each time the epochs of training reached 20 for a total of 200 epochs. The basic
parameters of the dataset are given in Table 1 below:

Table 1. Dataset channel parameters.

Attribute Parameters

Channel model Rayleigh, Rician
Number of subcarriers 128

FFT points 128
Modulation mode QPSK

Length of CP 32
Noise model Gaussian

Carrier frequency 2.1 GHz
Maximum paths 3, 7, 12

Maximum relative speed 30, 70, 120 km/h
Maximum bandwidth 1.6 MHz
Number of symbols 14

In subsequent experiments, we will use MSE, BER, and PSNR as our metrics for
evaluating the channel estimation capability of each model. MSE represents the difference
between the estimated channel and the actual channel. BER indicates the state of error
decoding after channel estimation in an actual UAV communication system. PSNR reflects
the extent to which irrelevant variables, such as noise, are suppressed in the channel
estimation results.



Electronics 2024, 13, 4702 10 of 15

4.1. Hyper-Estimation Block Evaluation

To verify the viewpoint that the simultaneous suppression of ISI and ICI has a positive
effect on channel estimate performance and select a reasonable size of the hyper-estimated
block, we conducted a size comparison experiment. Too large of a hyper-estimation block
will increase the convergence difficulty of the model, and one that is too small will lead to
incomplete feature acquisition. Therefore, we adopted different sizes of hyper-estimation
block NS ∈ [3× 3, 5× 5, 7× 7, 9× 9, 11× 11], under the same experimental configuration.
The experimental results are shown in Figure 6.
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Figure 6. Comparison of the results of different sizes of hyper-estimation blocks under different SNR.
(a) The MSE of each hyper−estimation block. (b) The BER of each hyper-estimation block. (c) The
PSNR of each hyper-estimation block.

Our experimental results show that as the size of the hyper-estimation block increases,
the MSE and BER of channel estimation decrease, and the PSNR increases accordingly.
Specifically, when the hyper-estimation block is smaller than 7× 7, MSE and BER signifi-
cantly decrease, and PSNR increases with increasing the hyper-estimation block size. This
indicates that there is a correlation between adjacent subcarriers and symbols and the cen-
tral element and that the more collaborative information included in the calculation within
an appropriate range, the better and more significant the performance improvement of the
model. This proves that the collaborative strategy adopted in CoCENet in this article is
effective, and the application of CVR in order to endow the model with a two-dimensional
feature utilization capability has a positive effect on reducing ISI and ICI and improving
channel estimation performance.

However, when the size of the hyper-estimation block is greater than 7× 7, the perfor-
mance improvement weakens, and the computational complexity increases exponentially.
The floating-point operations per second (FLOPs) of each parameter are shown in Table 2.
To balance model performance and computational load, all subsequent experiments con-
ducted in this paper adopt a hyper-estimate size of 7× 7.

Table 2. FLOPs with different sizes of hyper-estimation blocks.

Size of Hyper-Estimation Block FLOPs

3× 3 332.90 M
5× 5 345.55 M
7× 7 359.51 M
9× 9 380.80 M

11× 11 407.41 M

4.2. Performance Evaluation

To demonstrate the ability of CoCENet to improve feature utilization and channel
estimation performance by extracting collaborative features, this paper conducted com-
parative experiments on model performance under different signal-to-noise ratios using
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the same dataset. An LS algorithm was selected in the traditional algorithm field, and the
ChannelNet, ReEsNet, InvoNet, and CVR + ReEsNet methods were selected in the deep
learning field. The result are shown in Figure 7:
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Figure 7. Comparison of experiment results of various network models under different SNR with the
number of multi-paths set to 3 and the relative speed set to 30 km/h. (a) The MSE of each model.
(b) The BER of each model. (c) The PSNR of each model.

Our experimental results demonstrate that DL-based channel estimation methods
exhibit superior performance compared to traditional algorithms in rapidly time-varying
channels. Particularly when the SNR is over 0 dB, CoCENet has better convergence
bounds. Specifically, CoCENet achieves an MSE improvement of 4.6 dB compared to
the LS algorithm at an SNR of −10 dB and of 12.4 dB at an SNR of 20 dB when the
number of multi-paths is 3 and the relative speed is 30 km/h. These experimental results
confirm that CoCENet’s nonlinear fitting characteristics are able to eliminate the need for
the assumption of stationarity and are more applicable to UAV communication systems
compared to traditional algorithms.

Compared with other models without a multi-scale fusion strategy, such as InvoNet,
our experiment results show that the MSF in CoCENet has a more accurate estimation
performance at a low SNR condition of −10–0 dB and also lower convergence bounds
when SNR is over 0 dB. This proves that the flexible receptive field and learnable fusion
strategy in the filtering optimization stage help to filter out the influence of high-frequency
independent parameters. The idea that simultaneously maintaining the global and local in-
formation perception capability of CoCENet can optimize the filtering at low SNR has been
verified. CoCENet can provide a guarantee for UAV coordination systems in environments
with severe electromagnetic interference.

In fact, the rapidly time-varying UAV system is not only reflected in the distortion
caused by noise interference but also in the interference caused by the change of chan-
nel parameters. To verify the application significance of CoCENet in actual scenarios,
Figures 8 and 9 show the performance of CoCENet and comparison models at other maxi-
mum relative speeds, represented by V. Figures 10 and 11 show them at other maximum
numbers of multi-paths, represented by N.

The above experiments analyzed the comparison of different maximum relative move-
ment speeds. CVR + ReEsNet and ReEsNet have different functions in the interval recon-
struction stage, so they have different abilities to suppress ICI. The experimental results
show that especially at a high SNR condition of 0–20 dB, CVR + ReEsNet has better perfor-
mance than ReEsNet, demonstrating that CVR is helpful in fitting channel response. This
proves that the 2D complex-valued convolution and the hyper-estimation block method
have positive effects in capturing channel characteristics. With the increase of relative
speed and number of multi-paths, CoCENet incurs a significant improvement compared
to ReEsNet. This indicates that the collaborative features between time–frequency and be-
tween amplitude–phase have a positive effect on the suppression of ICI. It also proves that
the CVR in CoCENet contributes to correcting the deviation of the internal reconstruction
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stage, which is helpful for improving the performance of channel estimation and resolving
the interference distortion caused by UAV communication channels.
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Figure 8. Comparison of the experiment results of various network models under different SNR with
the maximum number of multi-paths set to 3 and the relative speed set to 120 km/h. (a) The MSE of
each model. (b) The BER of each model. (c) The PSNR of each model.
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Figure 9. Comparison of the experiment results of various network models under different maximum
relative speeds with an SNR of 10 dB and the maximum number of multi-paths set to 3. (a) The MSE
of each model. (b) The BER of each model. (c) The PSNR of each model.
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Figure 10. Comparison of the experiment results of various network models under different SNR
with the maximum number of multi-paths set to 12 and the maximum relative speed set to 30 km/h.
(a) The MSE of each model. (b) The BER of each model. (c) The PSNR of each model.
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Figure 11. Comparison of the experiment results of various network models under different maximum
numbers of multi-paths with the SNR set to 10 dB and the maximum relative speed set to 30 km/h.
(a) The MSE of each model. (b) The BER of each model. (c) The PSNR of each model.

The above experiments analyze the comparison of different maximum multi-path
numbers. With an increase in number of multi-paths, the ISI effect in UAV is more severe,
which may be shown as the MSE ascending. CoCENet has better MSE, BER, and PSNR
when facing complex channels, and the loss does not significantly increase with an increase
in number of multi-paths, which proves that CoCENet can more effectively suppress ISI by
analyzing amplitude–phase correlation in the time–frequency dimension. The collaborative
features in time–frequency and amplitude–phase captured by CVR and MSF are conducive
to countering the ISI in rapidly time-varying channels in UAV communication systems.

Our experiments demonstrate that CoCENet possesses the capability to enhance
channel estimation by utilizing the hidden information between collaborative features.
Through the extraction of time–frequency- and amplitude–phase-related features in CVR
and the multi-scale-related features in MSF, the characteristics of the channel can be well
fitted. CoCENet not only eliminates the need for prior knowledge and channel stationarity
assumptions, but also exhibits strong capabilities in suppressing ISI, ICI, and noise under
complex channel parameters and low SNRs. CoCENet can play a significant role in
improving the accuracy of channel estimation in rapidly time-varying UAV systems.

5. Conclusions

In this paper, we proposed a DL-based channel estimation method—CoCENet—for
rapidly time-varying UAV systems. By constructing the CVR with time–frequency and
amplitude–phase analysis abilities and the MFS with a multi-scale fusion strategy, this
model has preferable interval reconstruction and filtering optimization stages and achieves
highly accurate channel estimation without negative impacts on the effectiveness of the
UAV communication systems. Our experimental results indicate that, when the maximum
relative speed is 30 km/h and the number of multi-paths is 5, compared to traditional
algorithms, CoCENet achieves an MSE improvement of 4.6 dB at a SNR of −10 dB and
of and 12.4 dB at a SNR of 20 dB. Furthermore, when the maximum relative speed in-
creases to 120 km/h and the number of multi-paths increases to 12 at a SNR of 10 dB, the
MSE of CoCENet improves by 7.9 dB and 10.8 dB, respectively. This demonstrates that
CoCENet can achieve high-accuracy channel estimation without relying on the assumption
of stationarity. Additional experiments reveal that, under time-varying channel parameter
conditions, CoCENet outperforms existing algorithms by 1.7–2.2 dB in MSE at an SNR
of −10 dB and by 1.1–2.3 dB at an SNR of 20 dB compared to other methods. It has been
proven that CoCENet possesses the ability to correct channel interference, suppress noise
impact, and enhance the performance of channel estimation in the model.

However, in the dataset used for model training, the presence of a certain number of
pilots is necessary. During missions with a significant pilot shortage or blind estimation,
performance loss is inevitable. Meanwhile, to ensure good model performance, the training
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cost is relatively high. Further exploration can be conducted in the future to balance the
large training costs with the accuracy of the model.
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