
Citation: Karanik, M.; Bernabé-

Sánchez, I.; Fernández, A. Ontological

Modeling and Clustering Techniques

for Service Allocation on the Edge: A

Comprehensive Framework.

Electronics 2024, 13, 477. https://

doi.org/10.3390/electronics13030477

Academic Editor: Carlo Mastroianni

Received: 12 December 2023

Revised: 10 January 2024

Accepted: 19 January 2024

Published: 23 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Ontological Modeling and Clustering Techniques for Service
Allocation on the Edge: A Comprehensive Framework
Marcelo Karanik * , Iván Bernabé-Sánchez and Alberto Fernández

Centre for Intelligent Information Technologies (CETINIA), Rey Juan Carlos University, Av. Tulipán s/n,
Móstoles, 28933 Madrid, Spain; ivan.bernabe@urjc.es (I.B.-S.); alberto.fernandez@urjc.es (A.F.)
* Correspondence: marcelo.karanik@urjc.es

Abstract: Nowadays, we are in a world of large amounts of heterogeneous devices with varying
computational resources, ranging from small devices to large supercomputers, located on the cloud,
edge or other abstraction layers in between. At the same time, software tasks need to be performed.
They have specific computational or other types of requirements and must also be executed at a
particular physical location. Moreover, both services and devices may change dynamically. In this
context, methods are needed to effectively schedule efficient allocations of services to computational
resources. In this article, we present a framework to address this problem. Our proposal first uses
knowledge graphs for describing software requirements and the availability of resources for services
and computing nodes, respectively. To this end, we proposed an ontology that extends our previous
work. Then, we proposed a hierarchical filtering approach to decide the best allocation of services to
computational nodes. We carried out simulations to evaluate four different clustering strategies. The
results showed different performances in terms of the number of allocated services and node overload.

Keywords: IoT; service allocation; clustering; edge computing; knowledge graphs; ontologies

1. Introduction

In the last few years, we have witnessed the increasing development of the Internet of
Things (IoT), where physical devices form interconnected systems. In complex distributed
IoT-based applications, multiple and heterogeneous IoT devices are deployed in a given
environment. Those devices typically act as information input providers (e.g., sensor
networks) or actuators. Edge computing arose as a solution to reduce the high demand
for data traffic between IoT devices and the cloud that processes them. Moreover, several
notions have been introduced to shape the gap between the cloud and edge, like fog or mist
computing [1]. One of the current research areas is application/service orchestration in
the edge–cloud continuum [2], that is, deciding where to offload applications based on the
computing characteristics of heterogeneous edge nodes, as well as requirements such as the
network load, execution time and carbon emissions [3]. The aforementioned technologies
are essential components on which smart cities are based. This is also the case for large
smart areas suffering from harsh environments, with multiple IoT devices geographically
distributed. In these environments, devices may suffer frequent contingencies (e.g., loss
of connectivity, low battery autonomy, etc.) due to changing weather conditions or other
unexpected events. While assuring the correct functioning of complex IoT systems in
controlled environments (e.g., smart buildings) is not easy, doing so in large, hard and
changing environments is a real challenge. Many developments working for smart cities
are also useful for such complex smart areas. However, they require additional aspects to
face the mentioned issues.

In our research, we deal with the problem of assigning software tasks (services) to
devices according to their computational resources and capabilities. We are interested not
only in deploying applications but also in adapting their behavior and/or redeployment

Electronics 2024, 13, 477. https://doi.org/10.3390/electronics13030477 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030477
https://doi.org/10.3390/electronics13030477
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8848-3681
https://orcid.org/0000-0002-9229-3466
https://orcid.org/0000-0002-8962-6856
https://doi.org/10.3390/electronics13030477
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030477?type=check_update&version=2

Electronics 2024, 13, 477 2 of 22

according to the context (computing capability, expected connectivity, etc.), which may be
especially relevant in smart areas. In this context, we are interested in keeping the system
working smoothly during its operation. This requires methods that facilitate the dynamic
adaptation of the infrastructure when unexpected contingencies occur. Adaptations may be
of different types ranging from substituting unavailable devices (i.e., moving the software to
a different device) to balancing the processing tasks among different computing resources.

In this article, which is an extension of our previous work [4], we present a clustering
approach to load balancing in IoT infrastructures. First, we propose an ontology and
knowledge graph representation for describing available resources (computing devices)
and software service requirements. Then, a matching process finds the set of feasible assign-
ments among both sets. Finally, a clustering algorithm is used to decide the best allocation
of software tasks to physical devices. In particular, we propose to use agglomerative
hierarchical clustering (AHC) techniques [5,6]. Basically, given a set of data points in a
multi-dimensional space, AHC iteratively generates nested clusters from individual data
points as clusters to obtain only one cluster containing all data points. In this case, we
propose to group services and computing nodes according to a distance function and a
specific clustering strategy.

The rest of this paper is organised as follows. Section 2 presents the state-of-the-
art methods. Section 3 presents the solution proposed in this work, which consists of
three layers, namely computing, (ontology-based) information and assignment (clustering
approach) layers. Section 4 shows a use case example and the results obtained. Finally,
Section 6 concludes this paper and presents some future lines of research.

2. Related Works

One of the goals of edge computing is to bring computing resources closer to devices.
Edge computing [7] eliminates the need to use a cloud environment for extensive com-
putations because edge computing provides computing resources, such as memory and
processors, at the edge of the network (such as the base station [8]), so devices can use
these local computational resources and not the remote resources located in the cloud. In
edge computing, resource allocation mechanisms are used to assign computing resources
to tasks or services located at the edge of the network. Switching processing tasks between
computational resources is not an easy task because, if it is not performed correctly, the
computational resources may be exhausted or the tasks may not be able to be performed.
The environments formed by mobile devices, edge computing and cloud computing make
up ecosystems of computational resources where software can be deployed somewhere
in the system to be executed in the most suitable place. Resource allocation mechanisms
calculate the best location based on preset objectives. In this direction, several works
propose resource allocation mechanisms with different objectives, such as optimizing the
energy consumption, bandwidth or computation. In [9,10], allocation tasks are made to
reduce energy consumption. Goudarzi et al. [9] propose a model to optimize aspects of the
energy consumption and execution time in the distribution of tasks between IoT devices
and servers located in the fog or the cloud [10], unlike [9], which proposes a strategy based
on the allocation of physical resources to minimize the energy consumption and processing
time of the overall system. In [11], another type of problem is considered in which task
allocation is performed taking into account the energy consumption, connectivity time and
amount of data to be transferred.

Optimizing the allocation of resources according to aspects of the energy savings,
bandwidth or amount of data used is an important aspect in smart cities. However, the
optimization in the task allocation based on computing nodes’ capability is crucial for the
proper functioning of the services. In this line, several works propose solutions taking
into account computational aspects. For example, Pan and Li [12] propose to consider the
computing capability of the mobile device and then determine whether the task needs to
be offloaded. In that case, the algorithm transfers the tasks to the edge computing servers
with the highest capacity. In [13–15], virtualization mechanisms are proposed to allocate

Electronics 2024, 13, 477 3 of 22

resources to satisfy task requirements. Finally, other authors propose to use clustering
mechanisms to manage resources according to the task priorities [16] and the overload of
CPU, communications and I/O operations [17].

To explore the solutions mentioned above, various studies have introduced novel
mechanisms for managing these tasks, such as those presented in works such as [13,14].
Additionally, some works propose adapting pre-existing algorithms and applying them to
the specific domain of resource and task allocation, such as [15,18–20].

The solutions described have been designed for specific domains, and their application
to other domains is complicated by the fact that they have been designed for a specific
context. This implies that similar concepts appear in different works but are represented
differently. In addition, there is a gap between the concepts that people use and the data
that systems interpret. To overcome this problem, using semantic descriptions facilitates
the common definition of the elements between people and computers when handling
information. Semantic representation mechanisms provide a common language or structure
for modeling IoT devices and service data, irrespective of the format. Typically involving
a graph structure [21], semantic representation enables the interpretation of data beyond
textual information. This would imply reducing human intervention by reducing the rate
of errors introduced and increasing the speed of allocation.

Works such as [22] have explored the application of ontologies in cloud environments.
The mOSAIC ontology [23] is one of the most important examples. mOSAIC offers a
description detailed of cloud computing resources, and it is focused on interoperability
within cloud-based systems. However, this solution is not tailored to address the IoT
devices, such as sensors, actuators and gateways. Some ontologies have been specifically
developed to model those devices. For instance, the Semantic Sensor Network ontology
(SOSA/SSN) [24] is designed to describe sensor and actuator networks, detailing their
capabilities, characteristics of interest and observations. SOSA/SSN is used as the core
for the creation of other ontologies. Another relevant ontology is the Smart Applications
REFerence Ontology (SAREF) [25], which is specifically designed to model devices and
their functions. SAREF is aligned with the oneM2M base ontology [26], which enables
syntactic and semantic interoperability between devices and external systems. This strategic
alignment enhances the overall effectiveness of semantic representation in the IoT domain.

3. Proposed Framework

The architecture proposed in this work is shown in Figure 1. It tries to optimize the use
of computational resources of IoT systems according to the needs of the software services
that have to be computed. To do so, the solution executes an optimization process that
first identifies the software and hardware needs, then identifies the available resources and
finally performs the allocation of those resources to the software to be executed.

The proposed solution is composed of three layers: the computing layer, the infor-
mation layer and the assignment layer. The computing layer consists of the computing
nodes that will run software services and other functional resources such as sensors or
cameras. The information layer contains data about the compute nodes in the system and
their current available resources, as well as specifications of the services that need to be
executed. Finally, the decision layer is in charge of processing all this information and
planning the service assignments to the compute nodes.

In the following sections, we detail each of these layers.

Electronics 2024, 13, 477 4 of 22

Figure 1. Framework architecture.

3.1. Computing Layer

This layer is composed of hardware elements, which are mainly compute nodes and
input/output devices (e.g., sensors, cameras, etc.). Computing nodes are an abstract rep-
resentation for modeling computational devices of varying capacities. Examples of these
nodes are Arduino-based development boards, Raspberry Pi, laptops, tablets, smartphones,
servers, data centers, etc. Our work, in addition to taking into account the computa-
tional capacity, also considers functional resources offered by compute nodes. That is, a
smartphone-based computing node is very likely to have a camera or some other type
of sensor that the services can use. Or in the case of sensors connected to Arduinos or
Raspberry Pi, the possibility of using other sensors connected to these devices opens the
door to many possibilities. Our work also takes into account the physical location of each
computing node.

The node management (NM) is in charge of managing the information of the compute
nodes. The NM is responsible for collecting the information of each compute node and
deploying the services on each of the nodes. The NM communicates with the repository
manager (information layer) to update the list of available compute nodes and their re-
sources state at a given time, in particular after deploying services on nodes. The NM
receives, from the decision layer, the proposed allocation of services to computing nodes.

3.2. Information Layer

The information layer is in charge of managing all the existing information in the
system. This layer contains information on the services and computing nodes with which
the proposed system will work. This layer is composed of the information repository
(IR) and the repository manager. The information repository is formed by a knowledge
network that contains all the information related to the available computing nodes and the
services that demand resources. The repository manager (RM) is in charge of registering
the relevant information repository. The RM receives information about the compute nodes
from the NM, and then the RM collects this information and inserts it into the knowledge

Electronics 2024, 13, 477 5 of 22

network of the IR. The RM also receives the services to be executed by the compute nodes
and a description of them. The RM processes the description of the services and inserts the
information into the IR. The RM also stores those services in a repository connected to the
NM, and then the NM will deploy, from that repository, the services on the corresponding
compute nodes.

3.2.1. Knowledge Representation

For the management of the elements involved in such an ecosystem, we propose to
use knowledge graphs [21], not only to model all the information available in the system
but also to know how the information is related. The knowledge graph has a wide variety
of key concepts in the domain of communications and computing. The knowledge graph
proposed in this work is based on an extension of the OWL edge–cloud ontology (ECO) [27]
developed in previous works. In this work, new elements have been added to the ECO to
better represent and categorize the resources and requirements of the system. The ontology
consists of several classes, data and object properties, which are semantically interconnected
to accurately represent the relationships between concepts. The most relevant classes and
properties are shown in Figure 2. In the following paragraphs, we describe the main
elements of the ontology.

Figure 2. Main concepts and properties of the ontology proposed in this work. Origin and destinations
of arcs (properties) represent their domains and ranges, respectively.

In our framework, there are two main types of entities: services and computing nodes.
A service is the smallest software unit, and it can be of a certain type. For example, two
meteorological stations may be running the same software to provide weather information.
In this case, it is considered that they are two different services (of the same type), each of
them running on different stations (devices). Depending on the purpose of the service and
the functionality it provides, it can be deployed on IoT devices, on data centers hosted in
the cloud or on fog devices.

Services can be run on hardware devices and machines. We denote those hardware
elements as computing nodes. A computing node (CN) is hardware in which software can
be installed and run. Computing nodes may have different computing resources, ranging
from simple sensors and smart devices to powerful computers. Computing nodes have
some available resources, which can be of two different types, namely computational (e.g.,
disk, RAM, CPU) and functional (e.g., camera, temperature sensor) resources.

This structure is represented in the ontology as a class called Resource and subclasses
called ComputationalResource and FunctionalResource. Specific resources are represented
as instances of such classes, and they are associated with each node with the properties
hasComputationalResource and hasFunctionalResource, respectively.

Each service usually has a set of requirements. They refer to resources that services
require for their functioning. Thus, we again distinguish between functional and compu-
tational requirements. Functional requirements are those necessary for a service to carry
out its functions. For example, if the software requires special peripherals (e.g., a camera,

Electronics 2024, 13, 477 6 of 22

temperature sensor, etc.), such software can only be installed in those computing nodes
that provide those elements. Besides functional requirements, services may have some
computational requirements such as the minimum RAM, disk space, CPU power, etc. In
this case, instances of the same aforementioned (resource) subclasses are linked to services
through the properties hasComputationalRequirement and hasFunctionalRequirement.

The physical location of resources plays an important role in our framework, espe-
cially for functional resources. For example, the location of a sensor can determine if it
can be used for providing certain services. For this reason, we explicitly represent that
information in our ontology using the class location and several subclasses that allow for the
characterization of different types of locations (e.g., address, geolocation, etc.). This way,
different types of locations can be expressed at different levels of granularity, like specific
coordinates, regions or user-defined zones. The location of computing nodes and resources
can be specified with the property physicallyLocatedAt. This property is defined as transitive
(owl:TransitiveProperty), which means that it can be automatically inferred that, for example,
a sensor is located at a university campus if it is located at a building in that campus.

Some functional resources may be shared among different computing nodes if they
are located in the same physical location. For example, a service running on a computer
could use a camera connected to another device in the same location (i.e., to take pictures
from different fields). We assume each functional resource is connected to one computing
node (i.e., only one node has a specific functional resource). In addition, such resources
must be instances of the class shareable to distinguish which resources can be shared.

Table 1 summarizes the object properties of the ontology.

Table 1. Object Properties of the ontology, including the domain and range of each property. (Symm)
and (Trans) indicate that the properties are symmetric and transitive, respectively.

ObjectProperty Domain Range

hasRequirement Software Resource
hasComputationalRequirement Software ComputationalResource
hasFunctionalRequirement Software FunctionalResource
hasResource ComputingNode Resource
hasComputationalResource ComputingNode ComputationalResource
hasFunctionalResource ComputingNode FucntionalResource
installedOn Software ComputingNode
connectedTo (Symm) ComputingNode ComputingNode
physicallyLocatedAt (Trans) ComputingNode or Resource Location

In addition to these classes, the ontology provides a set of data properties to assign
literal values to the entities. Some of them are described in Table 2. The hasLatitude and
hasLongitude properties are used to represent the latitude and longitude of a geographical
location, allowing the assignment of numeric values that indicate the precise geographic
location of an entity. The hasUnit property is used to specify the unit of measure associated
with a numeric value, such as meters, kilograms or seconds. Finally, the hasValue property is
used to assign numeric or other values to an entity in the ontology, representing quantitative
information associated with that entity.

Table 2. Datatype properties of the ontology, including the domain and range of each property.

ObjectProperty Domain Range

hasLatitude GeoLocation xsd:double
hasLongitude GeoLocation xsd:double
hasUnit ComputationalResource xsd:string
hasValue ComputationalResource -

Note that when a computing node is running software, some resources are consumed
(e.g., RAM). It is important to keep up-to-date information on the amount of available

Electronics 2024, 13, 477 7 of 22

resources for each computing node. For this reason, it is expected that the value of this
(hasValue) property changes dynamically.

Figure 3 shows an example of computing nodes and services represented through the
entities defined in the ontology explained above. The main entities shown are service S1
and computation nodes CN1 and CN2. The model also indicates the requirements that S1
needs to function properly. These requirements are modeled through the hasComputational-
Requirement property (two arcs) specifying that S1 requires 10 MB of memory and 20 MB of
disk to work. This is represented by the entities of the types memory and disk, respectively,
through the data properties hasValue and hasUnit discussed above. S1 has two functional
requirements, represented through the hasFunctionalRequirement property: a camera and a
temperature sensor.

The figure also shows the computational and functional resources of computing nodes
CN1 and CN2. Using the hasComputationalResource property, the figure shows that CN1 has
a disk capacity of 32 MB and 20 MB of memory. The property hasFunctionalResource is used
to indicate that CN1 has a camera (Camera1), a humidity sensor and a temperature sensor.

Camera1 is shared by making it an instance of the shareable class. Thus, it is potentially
accessible to CN2 since both CN1 and CN2 are connected (connectedTo relation) and they are
physically located in the same place.

Note that, in this small example, S1 can be potentially deployed in CN1 (shown in
Figure 3 as a dotted line) since S1’s requirements are fulfilled by CN1.

Figure 3. Example of knowledge graph describing service requirements and computing nodes’
available resources. For the sake of clarity, we avoided the rdf:type relation for instances of the classes
disk, memory, sensor and camera. Nodes without identifiers are RDF blank nodes.

3.2.2. Inferencing and Querying the Model

Knowledge graph representations using formal ontologies (based on description
logics) provide simple, easy-to-understand and flexible models to represent information.
The model can be properly processed and automatic inferences can be carried out to obtain
relevant information not initially made explicit.

The most common type of inference is probably the subsumption among classes (i.e.,
rdfs:subClassOf relations). Instances of a class can be implicitly derived from the analysis of
the subclass-of relation in a taxonomy class structure.

Subproperty relations are less common but still very useful for inferring general
relations from more specific ones. This is the case, for example, for resource or requirement
types. Resources available at a node are those that are computational or functional resources
(or any further subproperty relation, if any). All of them can be obtained since each of the
three types of relations is defined as rdfs:subPropertyOf hasResource.

Electronics 2024, 13, 477 8 of 22

Moreover, more specific OWL characteristics can be exploited to endow the model
with higher expressive power. In particular, we take advantage of the symmetric connectedTo
property to represent logical networks of computing devices, without needing to make
explicit the bi-directionality of computer connections. Finally, we defined the physicallyLo-
catedAt property as transitive, which means that we can derive the location of any element
(e.g., a sensor) from the location of their container node.

The use of a knowledge graph to model the services and elements of a network over
an information system is not only beneficial to know the connections and relationships
between each of the elements of the infrastructure but also to model how some elements
can influence the operation of others.

SPARQL queries can be used over the inferred model to extract relevant information.
For example, Listing 1 shows a query that finds all computing nodes in which each service
can be deployed according to their disk and memory computational requirements. A
variation of that query can be easily generated on the fly to obtain all nodes with enough
resources to deploy a specific service by first obtaining all required resources and then
repeating the pattern in lines, e.g., 8–10 for each of them.

Listing 1: Example of query for obtaining pairs of services and computing nodes with
enough availability of RAM and HDD for some computational requirements.

1 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
2 PREFIX rdf : <http ://www. w3 . org /1999/02/22− rdf −syntax −ns#>
3 PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf −schema#>
4 PREFIX on : <ht tps ://www. i a . u r j c . es/ o n t o l o g i e s/networkOntology/>
5 SELECT DISTINCT ? serv ? cn
6 WHERE {
7 ? serv rdf : type on : S e r v i c e ;
8 on : hasComputationalRequirement ?hddS ;
9 on : hasComputationalRequirement ?memS.

10 ?hddS rdf : type on : Disk ;
11 on : hasValue ?valHDDS .
12 ?memS rdf : type on : Memory ;
13 on : hasValue ?valMemS .
14
15 ? cn rdf : type on : ComputingNode ;
16 on : hasComputationalResource ?hddCN;
17 on : hasComputationalResource ?memCN.
18 ?hddCN rdf : type on : Disk ;
19 on : hasValue ?valHDDCN.
20 ?memCN rdf : type on : Memory ;
21 on : hasValue ?valMemCN .
22
23 FILTER (? valHDDS <= ?valHDDCN)
24 FILTER (? valMemS <= ?valMemCN)
25 }

Another interesting query is shown in Listing 2. In this case, the query obtains all
available resources (of any type) of each computing node. It includes them directly through
both the computing node (line 5) and the shared resources owned by connected nodes
located in the same area (lines 9–15).

Those queries are examples of the potential of using knowledge graphs with ontologi-
cal schema. In Section 3.3, we present a method for assigning services to computing nodes
based on clustering strategies.

We propose to take advantage of this idea to extract the relevant information before
applying the clustering techniques presented in Section 3.3.2. In this paper, we optimize
the allocation of software services to compute nodes depending on the characteristics of
the nodes and the services. As described above, all this information is modeled in the
knowledge graph, and it only needs to be extracted appropriately.

We used Protégé (https://protege.stanford.edu/, accessed on 20 January 2024)) for
constructing the ontology. The Hermit OWL reasoner was used to check the consistency of

https://protege.stanford.edu/

Electronics 2024, 13, 477 9 of 22

the ontology. SPARQL queries and other automatic inferences were carried out using the
Apache Jena (https://jena.apache.org/, accessed on 20 January 2024) framework.

Listing 2: SPARQL statement to obtain a list of nodes with available resources.
1 SELECT DISTINCT ?computingNode ? re s
2 WHERE {
3 ?computingNode rdf : type on : ComputingNode .
4 {
5 ?computingNode on : hasResource ? re s .
6 }
7 UNION
8 {
9 ? l o c a t i o n rdf : type on : Locat ion .

10 ?computingNode on : physical lyLocatedAt ? l o c a t i o n .
11 ?computingNode on : connectedTo ?computingNode2 .
12 ?computingNode2 on : physical lyLocatedAt ? l o c a t i o n .
13 FILTER (? computingNode != ?computingNode2)
14 ?computingNode2 on : hasResource ? re s .
15 ? re s rdf : type on : Shareable .
16 }
17 }
18 ORDER BY ?computingNode

3.2.3. Formal Representation

In this section, we present a more formal and compact version of the information
provided by the information layer that is useful for the next stages of the assignment
problem we address in this work.

Let S be the list of all services in the system,

S = [s1, . . . , si, . . . , sn] (1)

where si represents the specific service identified by i.
Let CN be the list of all computing nodes,

CN = [cn1, . . . , cnj, . . . , cnm] (2)

where cnj represents a computation node.
The functional requirements for each service are in the list FRS of all functional

requirements:
FRS = [FRs1 , . . . , FRsi , . . . , FRsn] (3)

where FRsi is a list that defines the functional requirements that service si needs to operate.
FRsi is defined as follows:

FRsi = [locationsi , f rsi
1 , . . . , f rsi

k , . . . , f rsi
p] (4)

where locationsi represents a geolocated area of interest for service si and f rsi
k , k = 1, 2, . . . , p,

are boolean values indicating whether or not each of the p functional requirements are
needed by the service. The first element of the vector, locationsi , takes a value from a set of
possible zones depending on the application domain. This parameter is usually important
for services running on IoT devices (e.g., a temperature report on a specific field).

The list of computational requirements needed by services (CRS) is defined as follows:

CRS = [CRs1 , . . . , CRsi , . . . , CRsn] (5)

where CRsi represents the computational requirements of service si:

CRsi = [crsi
1 , . . . , crsi

l , . . . , crsi
q] (6)

https://jena.apache.org/

Electronics 2024, 13, 477 10 of 22

where crsi
l , with l = 1, 2, . . . , q, are quantities that represent the value for a given l-th

property (e.g., available RAM, available disk size, etc.).
Analogously to the definition of requirements for software services, we define func-

tional and computational resources available in computing nodes as follows.
The list of functional resources provided by the computing nodes is as follows:

FRCN = [FRcn1 , . . . , FRcnj , . . . , FRcnm] (7)

where FRcnj specifies the functional resources that computing node cnj provides. FRcnj is
defined as follows:

FRcnj = [locationcnj , f r
cnj
1 , . . . , f r

cnj
k , . . . , f r

cnj
p] (8)

Likewise, the computational resources provided by computing nodes are defined
as follows:

CRCN = [CRcn1 , . . . , CRcnj , . . . , CRcnm] (9)

where CRcnj specifies the computational resources that computing node cnj provides. CRcnj

is defined as follows:
CRcnj = [cr

cnj
1 , . . . , cr

cnj
l , . . . , cr

cnj
q] (10)

3.3. Assignment Layer

The assignment layer is responsible for processing the information registered in the
information repository (information layer) and calculates the allocation of services over the
available compute nodes at a given time. It works in two stages. First, a filtering process
is carried out in which compatible service–node pairs are matched (i.e., compute nodes
with enough available resources to run services). Second, a decision process finds the best
node–service allocation according to a given strategy.

3.3.1. Filtering

According to the framework in Figure 1, we need to obtain the possible allocations
for each service, i.e., matching the resources required by every service with the adequate
computing node. This matching process is made in two stages. First, we need to ensure
that the functional requirements of service si can be satisfied by the functional resources of
the computing node cnj. Formally,

FRsi = [locationsi , f rsi
1 , . . . , f rsi

k , . . . , f rsi
p] is covered by

FRcnj = [locationcnj , f r
cnj
1 , . . . , f r

cnj
k , . . . , f r

cnj
p]

if and only if locationsi = locationcnj and f rsi
k → f r

cnj
k ∀ 1 ≤ k ≤ p, where locationsi

and locationcnj are the place where si requires the functional resource f rsi
k and the place

where cnj offers the functional resource f r
cnj
k , respectively. Notice that f rsi

k → f r
cnj
k specifies

that all (boolean) functional requirements of service si are covered by their corresponding
functional resource of computing node cnj (i.e., if f rsi

k = true, then f r
cnj
k must be also true).

This can be easily performed using SPARQL or any other piece of software.
Under these considerations, this first stage returns all scenarios of possible allocations

for every service. For example, suppose that we have three services (s1, s2 and s3) and four
computing nodes (cn1, cn2, cn3 and cn4), which have the functional resources and locations
shown in Table 3.

According to the data of Table 3, FRs1 is covered by FRcn1 and FRcn4 ; FRs2 is covered
by FRcn1 , FRcn3 and FRcn4 ; and FRs3 is covered by FRcn2 .

Electronics 2024, 13, 477 11 of 22

Table 3. Functional and computational resources demanded by services (si) and offered by computing
nodes (cnj).

FR = (location, camera, temperatureSensor, humiditySensor)
CR = (diskSpace, RAM)

si FRsi CRsi cnj FRcnj CRcnj

s1 (zone1, true, true, f alse) (10, 8) cn1 (zone1, true, true, true) (20, 32)
s2 (zone1, f alse, f alse, f rue) (10, 24) cn2 (zone2, true, true, true) (40, 32)
s3 (zone2, true, true, f alse) (30, 20) cn3 (zone1, true, f alse, true) (30, 32)

cn4 (zone1, true, true, true) (20, 16)

Taking into account only the functional aspect, the possible allocation scenarios are as
follows: s1 can be allocated in cn1 or cn4; s2 can be allocated in cn1 or cn3 or cn4; and s3 can
be allocated in cn2. This result is graphically represented in Figure 4.

Figure 4. Functional resource filtering. Arrows represent feasible allocations for services si in black
computing nodes cnj. White nodes are not compatible with the given service.

The second stage implies considering the computational requirements of each service
and the computational resources of every computing node. In this case, we need to ensure
that the computational demand of service si can be covered by the computational resources
of computing node cnj. Formally,

CRsi : [crsi
1 , . . . , crsi

l , . . . , crsi
q] is covered by CRcnj : [cr

cnj
1 , . . . , cr

cnj
l , . . . , cr

cnj
q]

if and only if crsi
l ≤ cr

cnj
l ∀ 1 ≤ l ≤ q.

The example in Table 3 also includes two computational resources: disk space and
RAM (both expressed in GB). Consequently, CRs1 is covered by CRcn1 , CRcn2 , CRcn3 and
CRcn4 ; CRs2 is covered by CRcn1 , CRcn2 and CRcn3 ; and CRs3 is covered by CRcn2 and CRcn3

Therefore, taking into account the computational aspects, the possible allocation
scenarios are as follows: s1 can be allocated in cn1, cn2, cn3 or cn4; s2 can be allocated in
cn1, cn2 or cn3; and s3 can be allocated in cn2 or cn3. Computational nodes and services
can be represented in an n-dimensional space according to their available and required
resources, respectively. Figure 5 shows the 2D representation of our example. Each node
cni defines an area (colored differently, although there are some overlapping) in such a way
that services inside can be deployed in it. A different picture is presented for each service,
where black nodes allow for possible deployments in them, while white nodes do not have
enough resources.

Figure 5. Computational resource filtering. Black computing nodes (cni) can host the given service si

according to their computational resources.

Electronics 2024, 13, 477 12 of 22

Finally, unified scenarios from both functional and computational perspectives are as
follows: s1 can be allocated in cn1 or cn4; s2 can be allocated in cn1 or cn3; and s3 can be
allocated in cn2 (Figure 6).

Figure 6. Integrated filtering scenario. Dashed lines indicate possible allocations for services (si) to
computing nodes (cnj).

The filtering process can be easily implemented with different programming ap-
proaches. In particular, SPARQL queries can be easily created to carry out the filtering
task. We already presented in Listing 1 an example of filtering computing nodes that are
adequate for each service according to some computational requirements. For a specific
case, like the one shown in Table 3, the corresponding query can be created on the fly to
account for all the requirements (FR and CR) considered in the system.

3.3.2. Decision

Once the integrated filtering scenario has been obtained, we need to analyze the
computing resources adjustment to obtain an adequate allocation. This aspect is very
important because the quantity of requirements is bigger than the quantity of available
resources, and, consequently, bad allocation decisions could waste these resources.

Evidently, after the filtering process, there can be a large number of possible assignment
combinations and it can exponentially grow when more services and computing nodes are
added to the IoT infrastructure. Additionally, this type of environment is very dynamic, and
some resources are released when a service has finished its task, which requires revising
the allocations. Likewise, new services may appear on the fly and need nodes in which to
be deployed.

After the filtering process, each computing node has a list of services that it can host
considering both functional and computational aspects. The Possible Allocation Service
PAS list contains one list, pascnj , for each computing node, cnj, with all services si that it
could allocate. Formally,

PAS = [pascn1 , . . . , pascnj , . . . , pascnm] where pascnj is a list of services si assignable to
cnj with 1 ≤ i ≤ n.

For example, under these considerations, the PAS list for the integrated filtering
scenario of Figure 6 is as follows:

PAS = [pascn1 , pascn2 , pascn3 , pascn4] with pascn1 = [s1, s2], pascn2 = [s3], pascn3 = [s2],
pascn4 = [s1].

Because a computing node can execute multiple services at the same time and it is pos-
sible to allocate a service on any of several computing nodes, there is no single combination
of allocations. Here, we introduce a key concept, the distances between computing nodes
and services. These distances indicate the difference between computational resources
demanded by service si and the computational resources offered by computing node cnj.
In this way, it is possible to compute the distances between every computing node and
each service in its list. A distance equal to zero indicates a perfect match between the
computational resources demanded by si and the computational resources offered by cnj,

Electronics 2024, 13, 477 13 of 22

which means that all resources at cnj are dedicated to si. Evidently, with potentially many
possible combinations of allocations, the situation of a perfect match is not the usual, and
finding a good configuration is a complex task.

To deal with this situation, we follow a clustering approach, in which the objective is to
create m clusters of services (one per computing node), each cluster containing the services
that will be allocated in each node. For each integrated filtering scenario, we propose to use
a variation of agglomerative hierarchical clustering (AHC) [5,6] based on computational
resource matching. In this case, when the best match is found and the service is allocated,
the resources of the corresponding computing node are decremented and the distances
between the rest of the services and the computing node are recomputed. This variant
of the AHC (that is, the recalculation of distances after assignment) is necessary since the
allocation of a service to a computing node decreases the available resources of the node.

As we said before, the distance between cnj and si (d(cnj, si)) is a measure that indicates
how adequate computing node cnj is to host service si. Depending on the context, d(cnj, si)
can be the Euclidean distance or any other similarity measure that considers the magnitude
of each computational resource. This measure is necessary to generate clusters according to
some clustering strategy to select the allocation order. Note that, due to the dynamics of
the allocation, the order of allocation is very important. For example, if the priority is to
assign services to the computing nodes that best fit their needs, each node will probably
only allocate one service. This implies that, after the assignment, the computing nodes that
have the greatest capacity might remain without assignments. On the contrary, if the nodes
with the highest capacity are assigned first with services that require few resources, the
services with higher requirements may be not allocated because the only computing nodes
available do not have sufficient resources.

In this work, we propose four clustering strategies for assigning a service si to a
computing node cnj:

(a) minMin. The minimum of the shortest distance of each pascnj . This strategy selects
the pair (si, cnj) from pascnj where the amounts of resources required by the service
and offered by the computing node are as similar as possible.

(b) maxMin. The maximum of the shortest distance of each pascnj . This strategy selects
the pair (si, cnj) from pascnj where the amounts of resources required and offered are
similar. That is, it selects the cnj whose minimum distance to services is the highest
among the computing nodes. It can be seen as a relaxation of minMin, where it still
prefers small distances but by selecting the maximum of the distance it leaves the rest
of the resources of cnj available for another possible allocation.

(c) minMax. The minimum of the greatest distance of each pascnj . This strategy selects
the pair (si, cnj) from pascnj where the amounts of resources required and offered
are quite different. This strategy promotes the allocation of services that require few
resources in computing nodes with a low availability of such resources.

(d) maxMax. The maximum of the greatest distance of each pascnj . This strategy selects
the pair (si, cnj) from pascnj where the amounts of resources required and offered
are very different. This strategy promotes the allocation of services that require few
resources in computing nodes with a high availability of said resources.

Although the minMin and maxMin strategies are similar to the single-link and
complete-link strategies, respectively [5,6], they are slightly different because when a service
is assigned to a computing node the service is not taken into account for the next distance
calculations. Because the resources of the selected computing node decrease, the distances
between all remaining services and the node must be recalculated.

The allocation process is made until all services si are allocated or there are no more
computing nodes cnj with an available capacity to allocate another service. Finally, the list
of services allocated in each computing node is stored in the allocated services (ASs) list.
This set contains a list ascnj , for each computing node cnj, with all services si allocated in it.
The whole process is shown in Algorithm 1.

Electronics 2024, 13, 477 14 of 22

Algorithm 1: Clustering-based allocation
Input: PAS, CRS, CRCN, clustStrategy, distFunction
Output: AS = [ascn1 , . . . , ascn−j, . . . , ascnm]

1 begin
2 for j = 1 to m do
3 ascnj = []
4 end
5 while ∃ pascnj ̸= [] in PAS with 1 ≤ j ≤ m do
6 DS = computeDist(PAS, CRS, CRCN, distFunction)
7 (sbest, cnbest) = f indBestMatch(PAS, DS, ClustStrategy)
8 ascnbest ← sbest
9 for l = 1 to q do

10 crcnbest
l = crcnbest

l − crsbest
l

11 end
12 for j = 1 to m do
13 removeService(pascnj , sbest)
14 end
15 end
16 return AS
17 end

Algorithm 1 receives the Possible Allocation Service (PAS) list, the Computational
Resources lists for each service and each computing node (CRS and CRCN, respectively),
the clustering strategy (clustStrategy) and the distance function (distFunction) to use. Note
that although the PAS list is obtained after the filtering process, it is necessary to know
specifically what the requirements of the services and the capabilities of the computing
nodes are; these data are contained in the CRS and CRCN. Additionally, it is also necessary
to know what clustering strategy will be used and how the distance between the service
requirements and the resources available in the computing nodes will be measured. These
last two characteristics provide great flexibility to the proposed model since any clustering
strategy can be used with any distance measure according to the problem domain. As
output, Algorithm 1 returns Allocated Services ASs list.

At the beginning (lines 2–4), each ASs list is initialized with the empty list to add
every service si to the corresponding best computing node cnj according to the specified
clustering strategy. The main process is made in the loop between lines 5 and 15.

The loop repeats while there are possible unresolved allocations (line 5), i.e., if there is
any non-empty list in the PAS list. If that is the case, using the PAS, CRS and CRNC lists
and the distFunction, the list of distances (DS) between all services of every list pascnj and
the corresponding cnj is calculated using the computeDist() function (line 6). In this way,
for every list pascnj in the PAS list, there is a corresponding list dscnj in the DS.

When all distances are computed, the f indBestMatch() function is used to obtain
the effective service allocation (line 7). This function returns the pair (sbest, cnbest) that
corresponds to the best allocation available according to the selected clustering strategy.

After that, service sbest is added to the Allocation Service list of node cnbest, i.e, ascnbest .
Notice that each list ascnj is built incrementally. If it is not possible to allocate any service to
any cnj, as its list will be empty after completing the process, i.e., ascnj = [].

Then, with the best allocation found, the required computational resources of the sbest
are discounted from the offered computational resources of the cnbest (lines 9–11). Notice
that this discount in the computing node is made for every type of resource.

Afterwards, the removeService() function removes sbest from all PAS lists that contain
it, and the process is repeated until there are no services that can be allocated to the
computing nodes (lines 12–14). Finally, the allocated services (AS) list is returned in line 16.

Electronics 2024, 13, 477 15 of 22

4. Allocation Experiments

In Section 3, we used a small illustrative running example to explain the different
aspects of our service allocation framework. In this section, we focus on evaluating the four
strategies proposed in Section 3.3.2.

Once the integrated scenario is obtained, that is, after the filtering stage, the effective
allocation of the services to the computing nodes must be carried out. To do that, only
the computational resources demanded by the services and offered by the computing
nodes should be considered. In this example, 250 services and 100 computing nodes were
generated. Two computational resources were considered: disk space and RAM. The
integrated scenario is shown in Figure 7.

Figure 7. Integrated scenario of services (magenta) and computing nodes (gray).

The disk space and RAM demanded by services, represented by magenta circles in
Figure 7, were uniformly generated in the range [0, 20] GB. Similarly, the disk space and
RAM offered by the computing nodes, represented by gray squares in Figure 7, were
uniformly generated in the range [18, 38] GB. The selection of these parameters was based
on the fact that the number of services is more than twice the number of computing nodes
and each node could host two services on average. Additionally, the distribution of the
magnitudes of disk space and RAM allows for a high number of combinations of possible
allocations. This aspect is very important to test the clustering strategies.

To make the allocation process efficient, it is necessary to consider simultaneously the
two dimensions, disk space and RAM. In this way, the Euclidean distance was selected to
determine the adjustment degree between the demand and offer of resources.

Under these considerations, the four clustering strategies described in Section 3.3.2
were tested. Specifically, using Algorithm 1, the minMin, maxMin, minMax and maxMax
strategies were used to allocate the services of the integrated scenario. The results are
shown in Figure 8.

Note that in Figures 7 and 8 the computing nodes were identified using a grayscale
according to the availability of their resources, that is to say, dark gray for computing nodes
with few available resources and light gray for those with many available resources.

Simulations show that the best allocation results are obtained (i.e., more services
are allocated) when using the minMin and maxMin strategies (Figure 8a,c). The minMin
strategy (Figure 8a) has allocated all services, while only a few services have not been
allocated using the maxMin strategy (Figure 8c). This aspect is very important because
when the allocation is complete, the response time of the entire allocation system decreases.
Another interesting aspect is that, at the end of the allocation process, most of the nodes
have few resources available, i.e., below 10 GB for both disk space and available RAM.
This has two important considerations: on the one hand, there is an adequate use of the
available resources, but, on the other hand, there could be an overload on the computing
nodes. This second consideration indicates a drawback since if one of those overloaded

Electronics 2024, 13, 477 16 of 22

computing nodes goes offline there will be no availability in other nodes to reallocate the
services running on it.

Figure 8. Final configuration for each clustering strategy. Magenta points represent services that were
not allocated to any node due to the unavailability of resources.

Regarding the minMax and maxMax strategies, the final allocations are quite different
(Figure 8b,d). First of all, more than ten percent of services are not allocated to any
computing node. This is a drawback since, as seen previously for the minMin strategy,
there is a solution to this allocation problem in which all services are allocated to a node.
Consequently, since all those services mentioned have not been allocated, the response
time for these services will increase considerably, reducing the performance of the entire
allocation system. Furthermore, it can be observed that non-allocated services are those
that have a greater demand for computational resources. This shows that these strategies
do not adequately manage the use of resources. Contrary to what was observed with the
minMin and minMax strategies, there is not a great overload in all computing nodes, but
there is a great consumption of one of the two resources available in each node. Indeed, if
the available resources of several nodes of final allocation could be combined, all services
not allocated would be covered. This aspect is another drawback because if any computing
node goes offline, it is unlikely that another node that does not have enough resources can
be used to reallocate the services of the computing node that went offline.

The simulations indicate that the minMin strategy provides the best results for service
allocation. Although the simulations were configured with a fixed number of compute
nodes and services, it is also necessary to test the scalability of the model. This involves
analyzing the behavior of the model by varying the number of compute nodes and services.
To achieve this, we propose simulating assignments with 100, 200 and 300 computing nodes
while increasing the number of services from 0% (i.e., the same number of computing
nodes) to 400% more services than computing nodes (with increments of 50% for each
scenario). All simulations were conducted using Python 3.11.5 64-bit on an AMD Ryzen™
5 4500U with a Radeon™ Graphics 2.38 GHz processor and 8 GB of RAM. The results are
presented in Figure 9.

Electronics 2024, 13, 477 17 of 22

Figure 9. Analysis of scalability in terms of allocation time, unallocated services and resource usage
(disk space and RAM).

In Figure 9a, the allocation time for each number of compute nodes is shown as the
number of services increases. It can be observed that the computation time grows linearly
instead of exponentially, which is what one would expect. This is because after a 150%
increase some services cannot be allocated to any compute node and are removed from the
comparison process. As a result, the computation time is reduced significantly, and the
increase becomes linear. However, if we compare the time difference between the curves
for each number of nodes, we can see that the time increase is exponential. This is because
the number of initial comparisons for each number of compute nodes varies exponentially.
For example, initially, for 100 nodes there are 10,000 comparisons; for 200 nodes there are
40,000 comparisons; and for 300 nodes there are 90,000 comparisons. When we add the
increase in the number of services per simulation to this, the difference in allocation times
becomes significant.

In terms of the allocation time, it is observed that the performance drops considerably
for numbers of compute nodes above 100. This issue can be resolved by using more
powerful processors or applying distributed processing strategies. However, it is also
recommended to analyze and improve the allocation algorithms.

When considering the number of unallocated services, the minMin strategy works
effectively. For the simulations, it was assumed that a computing node could contain,
on average, more than two services, i.e., the number of services is 100% greater than the
number of computing nodes. The minMin strategy allocates services by searching for the
best possible combination at each point in time, as illustrated in Figure 9b. It can allocate
services up to 150% more than the number of nodes. However, beyond that point, the
number of unallocated services increases exponentially.

The graphs depicting RAM and disk resource allocations in Figure 9c,d show a similar
pattern to the previous description. When the number of services increases by over 150%
with regards to the compute nodes, the available resources drop to such a low level that
no further allocations are possible. This level remains constant no matter how much
the number of services is increased. As mentioned in the first simulation, the minMin
allocation strategy leads to an overload on the compute nodes. This is a significant factor

Electronics 2024, 13, 477 18 of 22

since the failure of any one compute node would release several services that could not be
re-allocated on other nodes.

To summarize, under the established conditions, the proposed model performs well
for scalability conditions in terms of the number of services that each computing node can
physically allocate.

5. Discussion

In this section, we include a discussion on several issues that remain open for further
investigation, in which we provide some initial ideas for further development. In addition,
we put our service allocation proposal in the context of other approaches.

5.1. Dynamic Adaptation of the Allocation Process

The distribution of services is a task that constantly changes, affecting the allocation
process. Changes in the environment can modify the allocation conditions, and appropriate
mechanisms are needed to maintain the system’s efficiency. The system itself is dynamic,
and changes to the execution or termination of a service, as well as modifications to
functional or computational requirements, can alter the environment. Some situations can
cause unforeseen disturbances, such as one or more compute nodes starting up or turning
offline. All of these alterations in the environment require adaptation mechanisms to ensure
the system functions correctly.

This paper proposes a model that is capable of handling various situations by utilizing
a repository manager to constantly monitor services and a node manager to supervise
computing nodes. The model can detect changes and make the appropriate modifications
to allocations. In this way, there are two types of tasks involved: monitoring and prediction.

Monitoring involves ensuring that the services are operating correctly on the nodes
and, if there are any changes, whether due to normal system operations or not, making the
necessary adjustments in the allocation. For instance, if a new service is requested, one of
the proposed strategies can be used to determine the most suitable computing node. When
a service is terminated and resources are released, it should be determined whether it is
necessary to transfer the service to another node that is less overloaded due to the release of
resources. Additionally, in the event of possible failures of computing nodes, the allocation
algorithm should be executed for services that have been left without a node to run.

The task of prediction involves determining whether the allocation strategy needs
to be changed to avoid node overload. This means that based on the current resource
occupancy values and service arrivals (quantity and resources demanded), the node and
repository managers must decide whether to modify the current allocations or not to
increase the overall system efficiency. It is important to note that this prediction task should
be performed alongside the monitoring task, as the primary objective is to ensure the
efficiency of the current operation.

5.2. Relation to Other Allocation Approaches

There are multiple mechanisms for the allocation of tasks on nodes, from traditional
approaches based on First-Come-First-Served (FCFS), Shortest Job First (SJF), Round Robin
(RR), Min-Min and Max-Min algorithms [28–30], and even to more complex approaches
based on machine learning (ML)- based intelligent approaches [31]. These works present
solutions to manage task allocation using virtualization technologies, for example, virtual
machines (VMs), in a cloud environment. These solutions assign tasks to the most ap-
propriate compute nodes that are configured, in the form of a virtual machine (VM), in a
cloud computing environment. Working in a cloud ecosystem facilitates the assignment
process between task and compute node because the compute nodes are very similar and
are geographically located in the same place. Works such as [32–34] present mechanisms
for task allocation over distributed nodes between fog and cloud environments. Taneja and
Davy [32] introduce an approach based on directed acyclic graphs where nodes have three
attributes, the CPU, RAM and bandwidth, and also proposes an algorithm to match each

Electronics 2024, 13, 477 19 of 22

task with its most suitable available node considering cloud and fog hosted nodes. In [33],
dynamic service placement is proposed to minimize the transmission time, computational
delay and migration delay when transferring the task to the corresponding node. In [34], a
Petri net-based strategy is proposed to predict the time and price required to complete a
task taking into account the reliability of the fog computing resources.

In general, these approaches do not take into account the heterogeneity of nodes and
tasks, which is important to consider. Other works such as [35,36] take into account the
heterogeneity of nodes and tasks and try to balance the load by minimizing the specific
resources to assign tasks to each node. In [35], a multi-objective algorithm was used to
optimize the time delay and energy consumption in a fog and cloud architecture. Xu
et al. [36] present an algorithm for load balancing and resource allocation among different
nodes based on their computational capacity, memory storage and bandwidth. Tasks
are ranked based on the requested compute nodes and the predefined start time. A
similar approach is explored in [37]. These approaches usually assume that all services
are requested at the same time, which makes their models unable to cope with dynamic
changes in traffic and different workload rates.

In this work, we propose a solution to work in environments composed of heteroge-
neous nodes (formed by devices) that can also be geographically distributed. That is, the
available nodes are not located in the same data center, and each node can have unique
characteristics. In addition, we consider not only computational resources but also func-
tional resources and the possibility of sharing functional resources among multiple nodes
in order to satisfy the task needs.

5.3. Quantifying Distances between Computational Resources

The proposed clustering approach to allocate services to compute nodes requires some
notion of distance between nodes and services. Designing distance functions is natural if
nodes/services can be characterized in terms of a set of numerical attributes. This is the
case of the examples used in this paper, where RAM and disk space attributes are used
to define service computational requirements and available resources. In addition, these
numbers are further used to update (reduce) the newly available resources of a node if a
service is assigned to it. However, not all resources are easy to express with numbers. This
is the case, for example, of CPU processing power. It is not easy to represent with numbers
the processing capability of CPUs, the processing need of a service, how much processing
availability is reduced if a service is running in a CPU, etc. How to deal with these types of
attributes requires further research. One idea to address this is to describe a catalogue of
CPU types (maybe plus some configurations), which could be ordered by their computing
power. For example, the following could represent a preference order (x ≻ y, x is preferred
over y) among CPUs:

Apple M2 Ultra ≻ Apple M1 Ultra ≻ · · · ≻ Raspberry Pi 5 ≻ Raspberry Pi Zero ≻ Arduino
Mega 2560.

With such a definition, and assuming it is possible to identify which minimum CPU
type is required by a service, it could be possible to at least filter out the nodes that do not
comply with the minimum requirements. Calculating distances between CPU types is even
more complex. A simple way could be to use the distance in the preference-ordered list of
CPU types. However, that would assume a homogeneous distribution of different “CPU
power” values in the list.

6. Conclusions and Future Work

In this paper, a service allocation framework based on hierarchical clustering was
proposed and described. The proposed framework is divided into three layers. First, the
computing layer includes the hardware components (computing nodes) in which software
services are executed. Second, the information layer provides specifications of software ser-
vices’ requirements and computing nodes’ available resources. We presented an ontology-
based knowledge graph approach, which provides inference potential and flexibility for

Electronics 2024, 13, 477 20 of 22

model extension. Third, the assignment layer is in charge of deciding the best allocation
of services to nodes. This process is carried out in two stages: filtering and assignment.
The filter component contributes to reducing the number of allocation combinations by
analyzing functional and computational restrictions. Finally, the decision component builds
an integrated allocation scenario for all services and computing nodes and calculates the
assignment using hierarchical clustering. Four clustering strategies have been suggested to
decide the service allocation order, prioritizing the assignment of certain nodes (e.g., with
more capacity), establishing balancing conditions or preserving certain resources.

Experimental simulations were performed to test four clustering strategies using an
integrated scenario with a high demand for resources. Results show that the minMin and
maxMin strategies show similar behavior, allocating the services appropriately. Although
the minMin strategy has been the only one to allocate all services, the maxMin strategy
has not been able to find the perfect allocation for a few nodes. According to the results,
both strategies efficiently fit the resource requirements of the services to the availability
of resources in the computing nodes. However, this efficiency in allocation reduces the
execution time of services but produces a large overload on most computing nodes.

The results obtained also show that the minMax and maxMax strategies have some
similarities in their behavior. However, unlike the minMin and maxMin strategies, it can be
observed that more than ten percent of services are not allocated at the end of the simulation.
This drawback affects the overall response time of the services. Furthermore, an overload
of most of the computing nodes is observed, but unlike what happens with the minMin
and maxMin strategies, this overload is only on one of the two types of resources defined
for the simulations. This indicates poor efficiency in managing the available resources of
the computing nodes.

Finally, simulations show that it is possible to face the service allocation problem with
the proposed framework using the proper combination of the distance function with the
clustering strategy. In addition, the proposed framework is flexible and allows the use of
any distance measure and any clustering strategy, beyond those presented in this article.

There are several lines of research that we are focusing on. First, we are working on
richer semantic models to specify functional requirements/resources. Additionally, we are
working on testing different distance and similarity functions to use non-numeric values
for the clustering. Also, we are working on reconfiguration strategies to face dynamic
conditions, such as service arrivals, the releasing of resources and node reconfigurations.
In this sense, we are working on simulations extended over time, incorporating dynamic
events of both time-varying services and possible computing node crashes.

Author Contributions: Conceptualization, M.K., I.B.-S. and A.F.; methodology, M.K., I.B.-S. and
A.F.; software, M.K. and I.B.-S.; validation, M.K., I.B.-S. and A.F.; formal analysis, M.K., I.B.-S. and
A.F.; investigation, M.K., I.B.-S. and A.F.; writing—original draft preparation, M.K., I.B.-S. and A.F.;
writing—review and editing, M.K., I.B.-S. and A.F.; visualization, M.K. and I.B.-S.; supervision, A.F.;
funding acquisition, A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by grant VAE: TED2021-131295B-C33 funded by MCIN/AEI/
10.13039/501100011033; the “European Union NextGeneration EU/PRTR” through grant COSASS:
PID2021-123673OB-C32 funded by MCIN/AEI/ 10.13039/501100011033; “ERDF A way of making
Europe”; and the AGROBOTS Project of Universidad Rey Juan Carlos funded by the Community of
Madrid, Spain. Marcelo Karanik has been funded by the Spanish Ministry of Universities through a
grant related to the Requalification of the Spanish University System 2021–23 María Zambrano by
the Rey Juan Carlos University. Iván Bernabé Sánchez has been funded by the Spanish Ministry of
Universities through a grant related to the Requalification of the Spanish University System 2021–23
Margarita Salas by the Carlos III University of Madrid.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2024, 13, 477 21 of 22

References
1. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
2. Ullah, A.; Dagdeviren, H.; Ariyattu, R.C.; DesLauriers, J.; Kiss, T.; Bowden, J. Micado-edge: Towards an application-level

orchestrator for the cloud-to-edge computing continuum. J. Grid Comput. 2021, 19, 47. [CrossRef]
3. Kimovski, D.; Matha, R.; Hammer, J.; Mehran, N.; Hellwagner, H.; Prodan, R. Cloud, Fog, or Edge: Where to Compute? IEEE

Internet Comput. 2021, 25, 30–36. [CrossRef]
4. Karanik, M.; Bernabé-Sánchez, I.; Fernández, A. Edge Service Allocation Based on Clustering Techniques. In Proceedings of the

Trends in Sustainable Smart Cities and Territories; Castillo Ossa, L.F., Isaza, G., Cardona, Ó., Castrillón, O.D., Corchado Rodriguez,
J.M., De la Prieta Pintado, F., Eds.; Springer: Cham, Switzerland, 2023; pp. 429–441.

5. Miyamoto, S. Theory of Agglomerative Hierarchical Clustering; Springer: Singapore, 2022; Volume 15. [CrossRef]
6. Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. WIREs Data Min. Knowl. Discov. 2012, 2, 86–97.

[CrossRef]
7. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
8. Araldo, A.; Stefano, A.D.; Stefano, A.D. Resource allocation for edge computing with multiple tenant configurations. In

Proceedings of the 35th Annual ACM Symposium on Applied Computing, Virtual, 30 March–3 April 2020; pp. 1190–1199.
9. Goudarzi, M.; Wu, H.; Palaniswami, M.; Buyya, R. An Application Placement Technique for Concurrent IoT Applications in Edge

and Fog Computing Environments. IEEE Trans. Mob. Comput. 2021, 20, 1298–1311. [CrossRef]
10. Ning, Z.; Hu, X.; Chen, Z.; Zhou, M.; Hu, B.; Cheng, J.; Obaidat, M.S. A cooperative quality-aware service access system for social

Internet of vehicles. IEEE Internet Things J. 2017, 5, 2506–2517. [CrossRef]
11. Zhang, Y.; Zhao, L.; Liang, K.; Zheng, G.; Chen, K.C. Energy Efficiency and Delay Optimization of Virtual Slicing of Fog Radio

Access Network. IEEE Internet Things J. 2023, 10, 2297–2313. [CrossRef]
12. Pan, M.; Li, Z. Multi-user Computation Offloading Algorithm for Mobile Edge Computing. In Proceedings of the 2021 2nd

International Conference on Electronics, Communications and Information Technology (CECIT), Sanya, China, 27–29 December
2021; pp. 771–776. [CrossRef]

13. Deepika, T.; Rao, A.N. Active resource provision in cloud computing through virtualization. In Proceedings of the 2014 IEEE
International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 18–20 December 2014;
pp. 1–4.

14. Usman, M.J.; Samad, A.; Chizari, H.; Aliyu, A. Energy-Efficient virtual machine allocation technique using interior search
algorithm for cloud datacenter. In Proceedings of the 2017 6th ICT International Student Project Conference (ICT-ISPC), Johor,
Malaysia, 23–24 May 2017; pp. 1–4.

15. Wang, C.F.; Hung, W.Y.; Yang, C.S. A prediction based energy conserving resources allocation scheme for cloud computing. In
Proceedings of the 2014 IEEE International Conference on Granular Computing (GrC), Noboribetsu, Japan, 22–24 October 2014;
pp. 320–324.

16. Liu, X.; Yu, J.; Wang, J.; Gao, Y. Resource allocation with edge computing in IoT networks via machine learning. IEEE Internet
Things J. 2020, 7, 3415–3426. [CrossRef]

17. Ullah, I.; Youn, H.Y. Task classification and scheduling based on K-means clustering for edge computing. Wirel. Pers. Commun.
2020, 113, 2611–2624. [CrossRef]

18. Adhikari, M.; Nandy, S.; Amgoth, T. Meta heuristic-based task deployment mechanism for load balancing in IaaS cloud. J. Netw.
Comput. Appl. 2019, 128, 64–77. [CrossRef]

19. Somasundaram, T.S.; Govindarajan, K. CLOUDRB: A framework for scheduling and managing High-Performance Computing
(HPC) applications in science cloud. Future Gener. Comput. Syst. 2014, 34, 47–65. [CrossRef]

20. Behera, I.; Sobhanayak, S. Task scheduling optimization in heterogeneous cloud computing environments: A hybrid GA-GWO
approach. J. Parallel Distrib. Comput. 2024, 183, 104766. [CrossRef]

21. Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.;
et al. Knowledge graphs. ACM Comput. Surv. 2021, 54, 1–37. [CrossRef]

22. Imam, F.T. Application of ontologies in cloud computing: The state-of-the-art. arXiv 2016, arXiv:1610.02333.
23. Moscato, F.; Aversa, R.; Di Martino, B.; Fortiş, T.F.; Munteanu, V. An analysis of mosaic ontology for cloud resources annotation.

In Proceedings of the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland,
18–21 September 2011; pp. 973–980.

24. Guha, R.V.; Brickley, D.; Macbeth, S. Schema. org: Evolution of structured data on the web. Commun. ACM 2016, 59, 44–51.
[CrossRef]

25. Daniele, L.; den Hartog, F.; Roes, J. Created in close interaction with the industry: The smart appliances reference (SAREF)
ontology. In Proceedings of the Formal Ontologies Meet Industry: 7th International Workshop, FOMI 2015, Berlin, Germany,
5 August 2015; pp. 100–112.

26. Liquori, L.; Scarrone, E.; Peraldi-Frati, M.A.; Jeong, S.M.; Cimmino, A.; Castro, R.G.; Koss, J.; Khan, A.Q.; Kumar, S.; El Khatab, S.
ETSI SmartM2M Technical Report 103715; Study for oneM2M; Discovery and Query Solutions Analysis & Selection; Technical Report;
European Telecommunications Standard Institute: Sophia Antípolis, France, 2021.

http://doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1007/s10723-021-09589-5
http://dx.doi.org/10.1109/MIC.2021.3050613
http://dx.doi.org/10.1007/978-981-19-0420-2
http://dx.doi.org/10.1002/widm.53
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/TMC.2020.2967041
http://dx.doi.org/10.1109/JIOT.2017.2764259
http://dx.doi.org/10.1109/JIOT.2022.3211911
http://dx.doi.org/10.1109/CECIT53797.2021.00140
http://dx.doi.org/10.1109/JIOT.2020.2970110
http://dx.doi.org/10.1007/s11277-020-07343-w
http://dx.doi.org/10.1016/j.jnca.2018.12.010
http://dx.doi.org/10.1016/j.future.2013.12.024
http://dx.doi.org/10.1016/j.jpdc.2023.104766
http://dx.doi.org/10.1145/3447772
http://dx.doi.org/10.1145/2844544

Electronics 2024, 13, 477 22 of 22

27. Bernabé-Sánchez, I.; Fernández, A.; Billhardt, H.; Ossowski, S. Problem Detection in the Edge of IoT Applications. Int. J. Interact.
Multimed. Artif. Intell. 2023, 8, 85–97. [CrossRef]

28. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Load-balancing algorithms in cloud computing: A survey. J. Netw. Comput. Appl. 2017,
88, 50–71. [CrossRef]

29. Bhoi, U.; Ramanuj, P.N. Enhanced max-min task scheduling algorithm in cloud computing. Int. J. Appl. Innov. Eng. Manag.
(IJAIEM) 2013, 2, 259–264.

30. Chen, H.; Wang, F.; Helian, N.; Akanmu, G. User-priority guided Min-Min scheduling algorithm for load balancing in cloud
computing. In Proceedings of the 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH), Karnataka,
India, 21–23 February 2013; pp. 1–8.

31. Rjoub, G.; Bentahar, J.; Abdel Wahab, O.; Saleh Bataineh, A. Deep and reinforcement learning for automated task scheduling in
large-scale cloud computing systems. Concurr. Comput. Pract. Exp. 2021, 33, e5919. [CrossRef]

32. Taneja, M.; Davy, A. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proceedings
of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017;
pp. 1222–1228.

33. Wang, S.; Urgaonkar, R.; He, T.; Chan, K.; Zafer, M.; Leung, K.K. Dynamic service placement for mobile micro-clouds with
predicted future costs. IEEE Trans. Parallel Distrib. Syst. 2016, 28, 1002–1016. [CrossRef]

34. Ni, L.; Zhang, J.; Jiang, C.; Yan, C.; Yu, K. Resource allocation strategy in fog computing based on priced timed petri nets. IEEE
Internet Things J. 2017, 4, 1216–1228. [CrossRef]

35. Abbasi, M.; Mohammadi Pasand, E.; Khosravi, M.R. Workload allocation in iot-fog-cloud architecture using a multi-objective
genetic algorithm. J. Grid Comput. 2020, 18, 43–56. [CrossRef]

36. Xu, X.; Fu, S.; Cai, Q.; Tian, W.; Liu, W.; Dou, W.; Sun, X.; Liu, A.X. Dynamic resource allocation for load balancing in fog
environment. Wirel. Commun. Mob. Comput. 2018, 2018, 6421607. [CrossRef]

37. Fawwaz, D.Z.; Chung, S.H.; Lee, H. Dynamic IoT-Fog Task Allocation using Many-to-One Shortest Path Algorithm. In
Proceedings of the 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, 5–7
November 2019; pp. 244–247.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.9781/ijimai.2023.07.007
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1002/cpe.5919
http://dx.doi.org/10.1109/TPDS.2016.2604814
http://dx.doi.org/10.1109/JIOT.2017.2709814
http://dx.doi.org/10.1007/s10723-020-09507-1
http://dx.doi.org/10.1155/2018/6421607

	Introduction
	Related Works
	Proposed Framework
	Computing Layer
	Information Layer
	Knowledge Representation
	Inferencing and Querying the Model
	Formal Representation

	Assignment Layer
	Filtering
	Decision

	Allocation Experiments
	Discussion
	Dynamic Adaptation of the Allocation Process
	Relation to Other Allocation Approaches
	Quantifying Distances between Computational Resources

	Conclusions and Future Work
	References

