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Abstract: Geostationary (GEO) satellites are employed in optical frequencies for a variety of satellite
services providing wide coverage and connectivity. Multi-beam GEO high-throughput satellites offer
Gbps broadband rates and, jointly with low-Earth-orbit mega-constellations, are anticipated to enable
a large-scale free-space optical (FSO) network. In this paper, a power allocation methodology based on
deep reinforcement learning (DRL) is proposed for optical satellite systems disregarding any channel
statistics knowledge requirements. An all-FSO, multi-aperture GEO-to-ground system is considered
and an ergodic capacity optimization problem for the downlink is formulated with transmitted power
constraints. A power allocation algorithm was developed, aided by a deep neural network (DNN)
which is fed channel state information (CSI) observations and trained in a parameterized on-policy
manner through a stochastic policy gradient approach. The proposed method does not require the
channels’ transition models or fading distributions. To validate and test the proposed allocation
scheme, experimental measurements from the European Space Agency’s ARTEMIS optical satellite
campaign were utilized. It is demonstrated that the predicted average capacity greatly exceeds
other baseline heuristic algorithms while strongly converging to the supervised, unparameterized
approach. The predicted average channel powers differ only by 0.1 W from the reference ones, while
the baselines differ significantly more, about 0.1–0.5 W.

Keywords: atmospheric turbulence; deep reinforcement learning; deep neural network; free-space
optical; optical satellite; power allocation; policy gradient; scintillation

1. Introduction

The progressively demanding criteria of fifth-generation (5G) mobile communications
sparked the deployment of high-throughput short-range links and mesh topologies to
cater to the increased user capacity and to reduce energy consumption [1,2]. The sub-10
GHz radio frequency (RF) band is almost exhausted and strictly regulated. Consequently,
scientific research is moving towards the incorporation of millimeter and nanometer wave-
lengths [1,2]. Optical wireless communications (OWC) operate similarly to fiber optics by
modulating a coherent laser beam that propagates point to point and by line of sight [2–6].
Free-space optical (FSO) technology has excellent backhauling capabilities of ultra-fast
transfer of traffic between antenna towers and small cells [2–6]. FSO also mitigates the last
mile problem, i.e., congestion in the component linking the user to the Cloud/Internet [2–6].

Satellite communications (SatComs) cover a large portion of the Earth, including re-
mote locations, and enable a vast variety of forecasting and broadcasting applications [6,7].
Yet, the cost of designing and manufacturing them is substantial, satellite debris causes
“space pollution”, and a satellite constellation requires numerous satellites in addition
to very quick handovers to guarantee visibility and continuity [6,7]. Especially for high-
speed SatComs, FSO systems have exhibited great potential due to their easy installment
(<30 min), their operation with low initial expense and maintenance, no licensing require-
ments like RF systems, and their secure connections due to their large antenna gains,
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allowing several FSO links to be deployed in parallel and in proximity [2–6]. Nevertheless,
they demand advanced pointing, acquisition, and tracking components. The process of
creating a private encryption key between two parties is known as quantum key distribu-
tion (QKD) [7]. Fundamentally, QKD is an optical technology that can supply encryption
keys for any two locations connected by an optical link [7]. The application of QKD over
optical fiber, on the other hand, is restricted by exponential fiber losses. In this setting, QKD
over satellites is becoming more popular. The capacity to put up robust optical links and
guarantee a minimal quantum bit error rate (QBER) by overcoming numerous transmission
obstructions is critical to the success of QKD over satellites [7].

However, the FSO beam is susceptible to various problematic atmospheric phenom-
ena, i.e., absorption, scattering, cirrus clouds, and turbulence [2–6]. Physical obstructions,
geometric losses, and the blockage of the link caused by cloud occurrence are some of
the difficulties [8,9]. For mitigating the cloud occlusion, site diversity can be used [8].
Received irradiance scintillation is created from rapid changes in wind speed, pressure,
and temperature, which in turn induce changes in the refractive index [10–12]. The impact
of scintillation depends primarily upon the time of day, the elevation angle of the link, and
the altitude of the station [10–12]. In the daytime, at low elevation angles and low-altitude
stations (denser atmosphere), turbulence is more extreme [10–12].

In [10–12], the power allocation (PA) problem is investigated for optical satellite
downlinks under weak turbulence and solved using a Karush–Kuhn–Tucker (KKT), water-
filling-inspired algorithm. However, the reported methodology depends on the knowledge
of the system and channel model. In [13,14], a radio-on-FSO (RoFSO) wavelength multiplex-
ing scenario is considered where the channel model is assumed unknown. The developed
model-free primal–dual deep learning algorithm (PDDL) strongly converges to the precise
solution derived from the model-based algorithm. In both studies, however, synthetic data
were employed while the optical satellite-to-ground scenario was not explored. Likewise,
in [15] a MIMO FSO system is studied and the PA problem is solved via reinforcement
learning (RL) in a deep deterministic policy gradient (DDPG) approach. More power allo-
cation problems regarding FSO, RF, and terrestrial and non-terrestrial networks exploiting
ML and deep RL techniques can be found in [16–22].

In this paper, several channel-model-free methodologies and heuristics are explored for
optimal PA, and then compared to the exact, model-based solution for an all-optical, multi-
aperture satellite downlink between a geostationary (GEO) satellite and an optical ground
station (OGS). Deep learning (DL) constitutes a powerful tool to handle data from complex
and fading communication channels [23–25]. Therefore, the PA problem is formulated as a
constrained learning optimization problem with peak and total expected power inequality
constraints. Specifically, a deep reinforcement learning (DRL) module is proposed that
assists the agents in producing actions via a stochastic policy gradient technique, given
channel state information (CSI) observations from the environment. The policy is structured
as a deep neural network (DNN) and trained according to the REINFORCE (REward
Increment = Nonnegative Factor times Offset Reinforcement times Characteristic Eligibility)
algorithm [26], but modified to include the power constraints, and the multi-agent optical
environment where the agents act, independently accessing only their local observations but
collaboratively trying to maximize the global reward. The proposed PA strategy is deemed
appropriate for difficult optical conditions since it learns explicitly from observation. Whilst
the optimization problem has been approached in the literature, it has never been presented
in a MIMO optical satellite scenario along with available experimental data.

Summarizing the main contributions of this paper:

- We propose a DRL-aided algorithm to optimally allocate power in an optical GEO-to-
ground multi-aperture system. The proposed method accurately adjusts the expected
power for each optical channel, without any knowledge of path losses and scintillation
conditions. Only CSI samples are utilized. The total expected power and peak power
are constrained. Although in an LEO/MEO scenario deep learning would be even
more beneficial, the GEO optical CSI is still unstable due to variations in the refractive
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index structure parameter along the slant path, thin clouds that may attenuate or
block the laser beam, and pointing and tracking errors. Thus, it is challenging to have
a more accurate system model and fading distribution knowledge in the short and
long term.

- Instead of simulated data, experimental irradiance time series from the European
Space Agency’s (ESA’s) ARTEMIS optical satellite sessions were employed to evaluate
the performance of the proposed methodology [27,28].

- The achieved ergodic system capacity from the application of the proposed algorithm
greatly exceeds the performance of the model-free Equal Power, Random Power, and
Deep Q-Learning Network (DQN) schemes [20–22] and approaches the model-based,
unparameterized solution with very good agreement.

- An investigation of the impact of the number of hidden layers and neurons, policy
distribution, and hyperparameter selection and overfitting effects was carried out.

- The proposed solution differs from other standard learning formulas because it ap-
plies to a multi-agent optical satellite PA problem based on the parameter sharing
approach, allowing centralized learning under a single policy for faster convergence.
The learning model is scalable as it has been tested in scenarios with a large number of
optical satellite downlinks and a great amount of data and retained its performance. It
is especially more scalable than the DQN algorithm because the Q-table is not scalable
when there are large, high-dimensional, and continuous state–action pairs [20–22].

In Section 2, the optical carrier is described, the system model is presented, and the
PA problem is formalized as a learning program. In Section 3, the proposed DRL-aided
methodology is reported along with other heuristic, model-free strategies. In Section 4, the
ARTEMIS mission is briefly discussed, and experimental measurements are employed to
evaluate and compare the considered PA methodologies. Performance results are drawn
and commented on. Section 5 concludes this work.

2. Channel Model and Power Allocation Problem

The turbulent cells of the atmosphere, known as eddies, work as a prism that will
enhance or degrade a propagating optical signal [3]. If an eddy’s diameter is almost the size
of an incoming beam, it will result in received irradiance Ir fluctuations called scintillation,
which is the primary factor of deterioration in the FSO downlink [3]. The scintillation index
(SI) σ2

I constitutes the normalized ratio of the standard deviation of received irradiance
fluctuations to the mean received irradiance [3,29]:

σ2
I =

〈
I2
r
〉
− ⟨Ir⟩2

⟨Ir⟩2
(1)

where ⟨Ir⟩ represents the mean received optical irradiance in W/m2. In satellite downlinks
with σ2

I < 1 and elevation angle > 20◦, the atmospheric turbulence is considered weak [10–12].
In weak turbulence conditions, the optical channel follows the Lognormal (µ, σ2

I ) with
Probability Density Function (PDF) [5]:

f Ir (Ir) =
1

Ir
√

2πσI
exp

{
−
[
ln(Ir/⟨Ir⟩) + 0.5σ2

I
]2

2σ2
I

}
(2)

where µ = −0.5σ2
I .

The optical satellite downlink system under investigation is represented by the real-
valued channel matrix H ∈ RN×M where N is the number of ground receivers (Rx), and
M is the number of on-board transmitters (Tx). It is assumed that the covariance matrix
Σ = E

[
(H− E[H])(H− E[H])T

]
has zero non-diagonal elements, i.e., linearly uncorrelated

channels. In practice, this is achieved by having a distance between the Rx elements larger
than Fried’s parameter [1,29]. The CSI of the channels is denoted as

(
hij
)

1≤i≤N, 1≤j≤M
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and the allocated power as Pij
(
hij
)
. The channel capacity is Cij

(
Pij
(
hij
)
, hij
)
. The average

(ergodic) channel capacity is E
[
Cij
(

Pij
(
hij
)
, hij
)]

.
For independent channels, and a proportionate number of Rx and Tx: N = M = L

and i = j = l, the total average capacity maximization problem is mathematically formalized
as follows:

(OP) max
{Pl(hl):∀l}

L

∑
l=1

E[Cl(Pl(hl), hl)] (3)

s.t. 0 ≤ Pl(hl) ≤ Ps, ∀l
L
∑

i=1
E[Pl(hl)] ≤ Pav

(4)

where Ps is the maximum safety power allocated to a single channel, and Pav is the total
available power constraint.

3. Proposed Methodology
3.1. The Exact Solution and the Supervised Approach

The Lagrangian function to maximize is [30]

L(Pl(hl), υ)
0≤ Pl≤Ps

=
L

∑
l=1

E[Cl(Pl(hl), hl)]− υ

(
L

∑
l=1

E[Pl(hl)]− Pav

)
(5)

where υ is the dual variable.
If the statistical models fhl

(hl) are available, the average channel capacity is then [11,12]:

E[Cl(Pl(hl), hl)] =

∞∫
0

log2

(
1 +

Pl (hl)|hl |2

N0

)
fhl

(hl)dhl (6)

and the average transmitted power is then [11,12]:

E[Pl(hl)] =

∞∫
0

Pl (hl)fhl
(hl)dhl (7)

The PA problem (3) and (4) is then convex [30]. The instantaneous optimal PA for the
ith channel is given in [11,12]:

P∗l (hl) = min
{

Ps, max
(

1
υ∗
− N0

hl
, 0
)}

(8)

where υ∗ is the optimal dual multiplier, and N0 is the optical noise variance.
The υ∗ is evaluated numerically from (4), (8) as follows:

L

∑
l=1

∞∫
0

P∗l (hl)fhl
(hl)dhl = Pav (9)

or via an iterative algorithm, e.g., sub-gradient method with decreasing step size η
as below [30]:

υk+1 =

[
υk − ηk

(
Pav − E

[
L
∑

l=1
Pl(hl)

])]
+

ηk+1 = ηk/(k + 1)
(10)

Note that the analytical expression (8) is valid as long as the N0 is constant and not
a function of Pl(hl). Also, (8) requires precise hl , and (9) demands precise channel PDF
knowledge to calculate υ∗. In practice, it is very hard to assume accurate model information,
CSI values, and constant optical noise.
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Supervised learning is a process of providing labeled input datasets to the learning
model to make predictions (regression) or decisions (classification) based on the labeled
samples. In a regression problem, the output node is continuous, ranging theoretically from
negative infinity to positive infinity. The mean square error (MSE) is the most common loss
function to employ. From (8) and (10), the exact solution is provided (no need for a brute-
force or exhaustive search), which can be utilized as ground truth to train a DNN to predict
the optimal power allocation. Non-linear regression fitting or a multi-layer perceptron
model may be implemented. However, this supervised approach is model-based.

3.2. The Proposed DRL-Aided Algorithm

DNNs consist of several layers of interconnected neurons and enable the learning of
complex non-linear functions. RL teaches an agent how to execute actions upon entering
a new state to maximize the cumulative future returns [23–25]. A DRL methodology
refines its policy by directly calculating the policy gradient to maximize the cumulative
rewards. The referred policy is a DNN that uses a continuous state as input and produces a
probability distribution as output. A continuous action is then sampled. The core idea is to

parameterize the policy using a DNN’s weights parameter θ ∈ Rw where w =
Q
∑

i=1
wiwi+1

assuming a DNN with Q layers, and each has a corresponding dimension wi [23–25].
Then, we denote the parameterized policy as the probability distribution of selecting

power Pt,l for the lth channel in time-step t, and from the state (ht,l , θ) [13,14]:

π(h, θ) = Pr[Pt,l
∣∣h t,l , θ] (11)

where ht,l represents recorded CSI data of lth channel, and Pt,l ∈ [0, Ps] is the allocated
power as derived from π(h, θ).

The agent’s reward-return rt+1 at the next time-step t+1 is the following expression [13,14]:

rt+1 = L(θ, υ)
0≤π(ht,l ,θ)≤Ps

=
L

∑
l=1

Ct,l(π(ht,l , θ), ht,l)− υ

(
L

∑
l=1

π(ht,l , θ)− Pav

)
(12)

Then, the discounted cumulative returns Gt are defined as

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
T

∑
t′=t+1

γt′−t−1rt′ (13)

where T is the duration of an episode, t = 0. . .T − 1, and γ ∈ [0, 1) is the discount
factor [20–22]. The objective function is the long-term discounted rewards [13,14]:

J(θ) = E[Gt|π(ht, θ)] (14)

In general, the gradient for a whole episode with duration T is

∇θ J(θ) =
∫

T
∇θπθ(T)G(T)dT (15)

If we apply the log-derivative trick ∇θπθ = πθ∇θ log πθ [13,14], then:

∇θ J(θ) = E[∇θ log πθ(T)G(T)] (16)

Then, we obtain a Monte-Carlo approximation of E[ .] in (16) for all the t = 0, 1, . . .,
T − 1 time-steps and l = 0, 1, . . ., L − 1 channels [31]:

∇θ J(θ) =
1
T

T−1

∑
t=0

L−1

∑
l=0

[∇θ log π(ht,l , θ)Gt] (17)
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To summarize, the proposed model-free, DRL methodology requires only hl samples
that can be observed, Cl values that can be experimentally measured, and a differentiable
policy to be optimized. The proposed methodology is summarized in Algorithm 1.

Algorithm 1. DRL-aided Proposed Power Allocation Methodology

1:
Initialize number of channels L, number of episodes Ep, episode duration T, learning rate a, discount factor γ, and weights
θ of the policy network;

2: for i ← 0 to Ep − 1 do
3: Set ∇θ J(θ) = 0;
4: for t ← 0 to T − 1 do
5: for l ← 0 to L − 1 do
6: Fetch recorded CSI data

{
ht,l
}

for each tth time-step and lth optical channel;
7: Sample the allocated power

{
π
(
ht,l , θ

)}
using the current policy distribution;

8: Calculate the returns
{

rt+1, l
}

from (12);
9: Calculate Gt,l = ∑T

t′=t+1 γt′−t−1rt′ ,l from (13);
10: ∇θ J(θ)← ∇θ J(θ) +∇θ log π

(
ht,l , θ

)
Gt,l from (17);

11: end
12: end
13: θ ← θ + α∇θ J(θ)/T gradient ascent the policy parameter (DNN’s weights);

14: υ←
[

υ− α
T−1
∑

t=0

{
L−1
∑

l=0
π
(
ht,l , θ

)
− Pav

}
/T
]
+

update dual variable (total power constraint);

15: end

4. Simulation Results

In this section, the DRL-aided proposed PA methodology is applied to the experimental
ARTEMIS time series data along with other heuristic, model-free strategies, i.e., DQN, Equal
Power, and Random Power algorithms and the model-based supervised method.

The ESA’s data relay satellite mission ARTEMIS (Advanced Relay and Technology
Mission Satellite) took place in 2003 when the spacecraft attained GEO orbit, and involved
a variety of optical communication telescopes for satellite-to-ground and intersatellite
bi-directional links [27,28]. The experimental data to be utilized are recorded time series
from the downlink transactions from the laser terminal (OPALE) onboard ARTEMIS to the
reflector telescope (LUCE) installed on the Teide Observatory in Tenerife, 2400 m above sea
level [27,28]. The spacecraft’s location and communication features as well as LUCE’s and
OGS’s essential characteristics are given in Table 1.

Table 1. ARTEMIS, OPALE, LUCE, and OGS Characteristics.

Name Characteristic Value

ARTEMIS Longitude 21.5◦ East

OPALE

Latitude 0.0◦ ± 2.81◦ North
Altitude 35,787 km

Elevation Angle 37◦

Coverage Europe, Africa, and the Middle East
Wavelength 819 nm

Beam Diameter (1/e2) 125 mm
Transmitted Power 10 mW
Modulation Scheme Intensity Modulation—Direct Detection

Data Rate 2 Mbps (downlink), 50 Mbps (uplink)

LUCE Aperture Diameter 26 cm

OGS Altitude 2.4 km

In Figure 1, the normalized PDFs of five experimental time series are illustrated vs. the
normalized PDFs of synthesized data that are lognormally distributed [27,28]. It is obvious
that the PDFs derived from the retrieved ARTEMIS data accurately fit the lognormal PDFs,
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implying weak turbulence conditions, and that the channel model in (2) can be applied
to find the exact solution which will be used as labeled data for the supervised approach,
elaborated in Section 3.1.
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The channel samples are then employed to form a 5 × 5 diagonal Multi-Input Multi-
Output (MIMO) optical satellite-to-ground system. In general, the channels are assumed
cloud-free but suffer from propagation losses and turbulence-induced scintillation.

In Table 2, the experimental optical channels’ mean powers and SIs are included. The
lower the ⟨Pr⟩ and the higher the SI, the worse the slant path conditions. The channels’
correlation is negligible; hence, they are safely considered independent and will be denoted
as ch.0, ch.1, ch.2, ch.3, and ch.4.

Table 2. Optical Channels’ Parameters.

Channel Experiment Parameters Values

0 10/09/2003 20:10 ⟨Pr⟩, σ2
I −13.34 dBm, 0.0101

1 10/09/2003 00:30 ⟨Pr⟩, σ2
I −15.79 dBm, 0.0142

2 12/09/2003 00:30 ⟨Pr⟩, σ2
I −19.78 dBm, 0.0274

3 13/09/2003 23:30 ⟨Pr⟩, σ2
I −20.94 dBm, 0.0485

4 16/09/2003 20:10 ⟨Pr⟩, σ2
I −13.85 dBm, 0.0121

To develop the proposed DRL-aided power allocation algorithm, the policy’s DNN
had to be accurately specified. In particular, the neural network’s layers, nodes, and
probability distribution must be chosen in a way to avoid overfitting, overhead, and high
inference time. In Figure 2, the results of an investigation of the optimal number of hidden
layers and neurons are shown. From Figure 2a, it is seen that one or two hidden layers are
sufficient as they achieve the maximum average capacity and loss function. From Figure 2b,
it is concluded that 256 neurons yield the best performance.
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Finally, the stochastic policy that will determine the agents’ actions was investigated.
In Figure 3, three different probability distributions, i.e., truncated Normal (µ, σ, 0, Ps), trun-
cated Weibull (k, λ, 0, Ps), and truncated Exponential (λ, 0, Ps) were tested and evaluated.
Normal and Weibull are two-parameter distributions while Exponential is one-parameter.
It is observed that the two-parameter distributions are the best choice and that truncated
Normal performs slightly better.
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Figure 3. Performance results for five optical satellite downlinks using three different policy dis-
tributions: truncated Normal (µ, σ, 0, Ps), truncated Weibull (k, λ, 0, Ps), and truncated Exponential
(λ, 0, Ps). Ps = 1.0 W, Pav = 2.5 W.

The finalized policy structure consists of a four-layer DNN, as reported in Table 3. In
addition, the truncated Normal (TN) distribution is selected as a stochastic power policy
for the five optical channels.

Table 3. Policy DNN Architecture.

Channel # Nodes Activation

Input 5 Linear
Hidden #1 200 ReLu
Hidden #2 100 ReLu

Output 10 Softplus

The output nodes are used as parameters of the five TN distributions—means and stan-
dard deviations. The optimization algorithm involved in the training is RMSProp with step
learning rate scheduling. Specifically, 5000 episodes with a duration of T = 100 time-steps
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are considered to have frequent weight updates. The initial learning rate is set to 0.001 and
the discount factor to 0.5 because fading negatively affects the impact of an agent’s actions
on his future expected returns [20]. Also, given the total power constraint, the agents’
behaviors affect others’ rewards due to the unpredictability of their neighbors’ actions.
Higher γ is also undesirable because it decelerates the response to channel fluctuations [20].
The proposed algorithm was implemented in PyTorch.

In Figure 4, the predicted average capacity (a) and the constraint function (b)
∑L−1

l=0 E[Pl(hl)]− Pav are depicted for Pav = 2.0 W. In Figure 5, the average channel pow-
ers are illustrated for the proposed, the supervised, the DQN, the Equal Power, and the
Random Power algorithms for Pav = 2.0 W. Likewise, in Figure 6, the predicted average
capacity (a) and the constraint function (b) are depicted for Pav = 3.0 W, and in Figure 7, the
average channel powers are illustrated for Pav = 3.0 W. Finally, in Figure 8, the predicted
average capacity (a) and the constraint function (b) are depicted for Pav = 4.0 W, and
in Figure 9, the average channel powers are illustrated for Pav = 4.0 W. The DQN is a
model-free, off-policy method that tries to predict the Q-values (expected future rewards)
for every state–action pair using the ϵ-greedy policy that alternates between exploration
and exploitation [20–22]. DQN employs discretized actions:

{
0, P/A− 1, 2P/A− 1, . . . , P

}
where A is the number of actions [20–22]. Here, A = 21 was chosen.
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The supervised algorithm was trained using the exact solution taken from the water-
filling algorithm as if the channel statistics had been known to the transmitter. That scenario
is expressed in Section 3.1 and incorporates (2), (8), and (10).

In Figures 4, 6 and 8, we observe that the proposed model-free DRL-aided solution
outperforms the three baseline algorithms, showing a predicted average capacity advantage
(18% better than Equal Power, 16% better than DQN, and 53% better than Random Power
for Pav = 2.0 W). Additionally, it approximates the supervised method with excellent
accuracy (2% worse performance for Pav = 2.0 W). The episode duration of T = 100 steps
causes some waveform fluctuation, which can be resolved by using more time-steps at the
cost of inference time. In Figures 5, 7 and 9, the average channel powers of the proposed
algorithm match very well with the supervised ones, i.e., more power is assigned to the
channels with better conditions, only differing by 0.1–0.2 W. The allocated channel powers
of the other schemes differ significantly more, about 0.1–0.5 W. The inference time of an
episode is 0.7–0.8 s including recorded data sampling, cumulative reward calculation,
gradient computation, and back-propagation.

In Figure 10, the means and standard deviations of the TN distributions for ch.0 and
ch.3 are depicted. Gradually, the values are stabilized according to their conditions in
Table 2. The mean value of ch.0 (~1.2) is greater than that of ch.3 (~0.85), and the standard
deviation of ch.0 (~0.2) is smaller than that of ch.3 (~0.5). Thus, ch.0 has a much higher
probability of being allocated with Ps = 1.0 W than the weaker ch.3.
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Finally, in Figure 11 the loss function is plotted for a training (two-thirds of original
dataset) and a validation set (one-third of original dataset), and for two fixed hyperparam-
eter λ values. The λ can be selected to adjust the trade-off between the power constraint
violation and the loss function. The training loss is on the same level as the validation loss;
therefore, no overfitting is observed.
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Figure 11. Loss function across the training and validation sets for two hyperparameter λ values
related to the total power constraint function. Ps = 1.0 W, Pav = 3.0 W. The relaxed λ = 0.2 allows
the power constraint to be violated, resulting in higher loss values, while the stricter λ = 1.0 yields
lower loss values. No overfitting is observed.

5. Conclusions

In this paper, several channel-model-free methodologies and heuristics are explored
for optimal PA and then compared to the unparameterized solution for an all-FSO, multi-
aperture satellite downlink between a GEO satellite and an OGS. A DRL-aided power
allocation methodology is proposed for optical satellite systems disregarding any channel
statistics knowledge requirements. Therefore, the PA problem is formulated as a con-
strained learning optimization problem with peak and total expected power inequality
constraints. A power allocation algorithm was developed, aided by a DNN which is fed
CSI observations and trained in a parameterized on-policy manner through a stochastic
policy gradient approach. The proposed method does not require the channels’ transition
models or fading distributions. To validate and test the proposed allocation scheme, exper-
imental measurements from the ARTEMIS optical satellite campaign were utilized. The
proposed scheme performs 18% better than Equal Power, 16% better than DQN, and 53%
better than Random Power, and it approximates the supervised method, with only 2% less
accuracy, for Pav = 2.0 W. The predicted average channel powers match very well with
the supervised ones, only differing by 0.1–0.2 W, while the allocated channel powers of the
other schemes differ significantly more, about 0.1–0.5 W. Two hidden layers, 256 neurons,
and two-parameter distributions are the optimal choices for the policy DNN. Finally, the
proposed PA strategy is deemed appropriate for difficult optical conditions since it learns
explicitly from observation.
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