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Abstract: Specific emitter identification (SEI) refers to the task of distinguishing similar emitters,
especially those of the same type and transmission parameters, which is one of the most critical
tasks of electronic warfare. However, SEI is still a challenging task when a feature has low physical
representation. Feature representation largely determines the recognition results. Therefore, this
article expects to move toward robust feature representation for SEI. Efficient multimodal strategies
have great potential for applications using multimodal data and can further improve the performance
of SEI. In this research, we introduce a multimodal emitter identification method that explores the
application of multimodal data, time-series radar signals, and feature vector data to an enhanced
transformer, which employs a conformer block to embed the raw data and integrates an efficient
multimodal feature representation module. Moreover, we employ self-knowledge distillation to miti-
gate overconfident predictions and reduce intra-class variations. Our study reveals that multimodal
data provide sufficient information for specific emitter identification. Simultaneously, we propose the
CV-CutMixOut method to augment the time-domain signal. Extensive experiments on real radar
datasets indicate that the proposed method achieves more accurate identification results and higher
feature discriminability.

Keywords: multimodal model; specific emitter identification; transformer; conformer; data
augmentation; class-wise self-knowledge distillation

1. Introduction

Radar specific emitter identification (SEI) is an important electronic intelligence
(ELINT) activity that aims to recognize individual emitters using features related to the
so-called unintentional modulation on pulse (UMOP) [1]. These subtle features are called
the radio frequency (RF) fingerprint, are mainly caused by hardware defects in the manu-
facturing process, and play an important role in fields such as electronic reconnaissance
and physical-layer security [2]. Consequently, fingerprint feature representation is the key
to SEI.

The traditional SEI scheme is mainly based on manual feature extraction, which
classifies the signal by extracting the RF fingerprint features of the signal such as the pulse
width (PW), pulse repetition interval (PRI), radio frequency (RF), antenna scan type/period
(AST/ASP), and the intentional modulation on pulse (IMOP) [1]. However, in modern
electronic warfare (EW), identifying emitters based on traditional characteristics becomes
an increasingly challenging task. Due to the rapid development of deep learning (DL),
neural networks have achieved better performance at identification [3–6], but they are
mostly considered in single-modal scenarios. Multimodal data, such as feature vectors,
time-frequency diagrams, bispectral diagrams, etc., contain sufficient information. By
effectively utilizing multimodal data, SEI can achieve better results and can be applied to
few-shot learning [7–9].

Most prior efforts in this domain have focused on extracting the features of time-
domain signals or converting signals into images for further feature extraction. Aubry
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et al. [10] used the cumulants of the signal emitted by the radar system as the input to a
k-nearest neighbor (KNN) classifier. D’Agostino et al. [11] discussed basic subtle features
including the rise time, fall time, and overshoot of a square wave. Ding et al. [12] proposed
a deep-learning-based SEI approach that uses the features of the received steady-state
signals. Particularly, they calculated the bispectrum of the received signals as a feature. Zhu
et al. [13] proposed a compressed sensing mask feature in the ambiguity domain, which can
significantly improve the recognition rate of civil flight radar emitters. While this research
direction has remained popular in recent decades, its dependence on expert experience and
large, complex models pose challenges for specific emitter identification in real scenarios.

Recently, there has been a growing interest in exploring deep multimodal learning
for both time-domain data and feature data with the aim of constructing a common rep-
resentation space. Multimodal learning models, such as [3,5], have enabled derivation of
data–feature representations that improve the SEI task. Concurrently, since multimodal
data depict an object from different viewpoints, usually complementary or supplementary
in content, they are more informative than unimodal data [14]. So multimodal learning
is also widely used in other fields. Bharadwaj et al. [15] proposed MuSeLI, a multimodal
spoken language identification method, which delves into the use of various metadata
sources to enhance language identification. Tu et al. [16] introduced a dilated convolutional
transformer for modeling and estimating human engagement. Urbanelli et al. [17] pro-
posed a novel multimodal supervised machine learning approach to disambiguate hotspot
detection in order to distinguish between wildfires and other events. Multimodal learning
has great potential not only in SEI but also in medical image processing, speech recognition,
video annotation, and other fields.

Based on the above analysis, we introduce a multimodal learning approach designed
to enhance specific emitter identification. Inspired by [15], the proposed method utilizes a
transformer network enhanced by the conformer layers to generate data embedding. And
we use the weighted layer representation to implement multimodal data representation.
In addition, class-wise self-knowledge distillation is used in training to mitigate overcon-
fident predictions and reduce intra-class variations. Aiming to enhance the performance
and robustness of deep learning models, we involve the use of new data augmentation
techniques: “CV-CutMixOut” from “CutMixOut” [18]. In summary, the main contributions
of this paper are as follows.

• We propose a multimodal SEI model based on an improved transformer network
that facilitates the incorporation of diverse data called MuSEI, Multimodal Specific
Emitter Identification. By utilizing conformer layers [19], which are a combination
of self-attention and convolution to achieve global and local interactions, MuSEI can
obtain better recognition accuracy. A multimodal representation module employing
weighted layer representation has shown remarkable efficacy at merging multiple
modalities. Deep neural networks with millions of parameters might experience poor
generalization due to overfitting. In addressing this issue, this study employs a new
regularization technique, coined class-wise self-knowledge distillation (CSKD), which,
compared to cross-entropy loss, mitigates overfitting to a certain extent.

• We introduce a new data augmentation method: “CV-CutMixOut”. It integrates
k-fold cross-validation and CutMixOut to fortify data robustness while minimizing
information loss.

• Extensive experiments on a real dataset are presented to evaluate the performance
of MuSEI. Our proposed method achieves state-of-the-art results, outperforming the
previous public benchmarks.

The paper is arranged as follows: Section 2 discusses the related work on specific
emitter identification and categorizes it into two parts: traditional methodologies and
deep-learning-based approaches. Section 3 introduces an efficient multimodal model for
SEI and an enhanced data augmentation scheme. Section 4 shows and discusses the results
of comparative experiments on real datasets. Section 5 gives the conclusions.
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2. Related Works

Specific emitter identification has consistently remained a pivotal technology within
electronic reconnaissance, which itself holds paramount importance in the domain of
electronic warfare. Through the extraction of subtle features, often arising from variances
in hardware circuitry such as modulators, power amplifiers, and transmitters, within radio
frequency signals, radar emitters are identified. Previous research relied on manual feature
extraction [20–22]: encompassing attributes like pulse width, pulse repetition interval
(PRI), leading-edge slope, and rise time. However, this approach heavily relies on expert
experience. As the electromagnetic signal density continues to rise and the electromagnetic
environment becomes more intricate, depending solely on expert knowledge for feature
extraction diminishes adaptability. This presents a significant challenge for individual
identification of emitters.

With the substantial advancements in deep learning, its pervasive application spans
across domains like computer vision, natural language processing, and speech recognition.
Deep learning adeptly achieves diverse levels of feature representation and knowledge ab-
straction. In SEI, leveraging unintentional modulation on pulse (UMOP) features extracted
via existing analysis mechanisms and inputting them into a deep network allows for pro-
gressive enhancement of feature representation through hierarchical learning. This process
aims to elevate recognition performance, potentially attenuating the association between
individual feature generation mechanisms and extraction methods. Consequently, the
individual identification of radar emitters based on deep learning methods has emerged as
a prominent research focal point in recent years. O’Shea demonstrated that semi-supervised
learning techniques can be used to scale learning beyond supervised datasets to allow for
discerning and recalling new radio signals by using sparse signal representations based
on both unsupervised and supervised methods for nonlinear feature learning and clus-
tering methods. Roy et al. [23] implemented a generative model that learns the sample
space of the I/Q values of known transmitters and uses the learned representation to
generate signals that imitate the transmissions of these transmitters. Apfeld et al. [24]
investigated six approaches using several configurations to recognize unknown emitters
based on a hierarchical emission model that understands emissions as a language with
an inherent hierarchical structure. Sankhe et al. [25] presented a novel system based on
convolutional neural networks (CNNs) to identify a unique radio from a large pool of
devices by deep learning the fine-grained hardware impairments imposed by radio cir-
cuitry on physical-layer I/Q samples. Tan et al. [26] introduced semi-supervised learning
into SEI and proposed a self-classification generative adversarial network (GAN) using
bispectrum-based feature extraction. The aforementioned approaches can learn the inherent
features of different emitters: underscoring the ascendancy of deep learning in SEI. Yet
these methodologies mainly utilize single-modal data.

Recently, there have been an increasing number of studies exploring joint modeling
techniques for multimodal data with the aim of constructing a shared space for multimodal
representation. Satija et al. developed emitter identification based on variational mode
decomposition and spectral features (VMD-SF). They evaluated the performance of the
proposed methods using the probability of correct classification both in single-hop and in
relay scenarios by varying the number of emitters. Guo et al. [14] provided a comprehen-
sive survey of deep multimodal representation learning. They categorize deep multimodal
representation learning methods into three frameworks: joint representation, coordinated
representation, and encoder–decoder. Urbanelli et al. [17] proposed a novel multimodal
supervised machine learning approach to disambiguate hotspot detection to distinguish
between wildfires and other events. Tu et al. [16] introduced a dilated convolutional trans-
former for modeling and estimating human engagement by employing the modalities of
the three attributes as the signal. Through fusing multiple modalities, these methodologies
substantiate the extensive utilization and promising development prospects of multimodal
networks across various domains [17,27,28]. Multimodal representation is gradually being
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widely utilized in fields such as natural language processing, speech recognition, medical
impact analysis, and intelligent transportation [15–18,27].

Overall, current SEI has moved from transient features to steady-state features; from
linear, hand-crafted transformation to nonlinear, data-driven representation; and from
single-feature to multimodal transformation fusion [3]. In [3], the SEI problem is considered
in single-modal, dual-modal, and multimodal scenarios, respectively. Considering the
similarity between radar time-domain signals and signals such as speech and EEG, our
endeavor involves employing a multimodal model for specific emitter identification. This
approach aims not only to maximize the utility of collected radar time-domain signals but
also to proficiently fuse other pertinent information.

3. Methods

In this section, we introduce our method in two parts. The first part is to introduce
the “CV-CutMixOut” data augmentation method. Then, we introduce a multimodal model
MuSEI to learn multimodal representation of radar time-domain data and feature inputs.

3.1. Data Augmentation

To enhance the performance and robustness of deep learning models for the SEI task,
we propose a data augmentation method for radar time-domain data, which is improved
from [18]. Image augmentation techniques, specifically cutout and cutmix, are commonly
used for computer vision tasks and randomly mask a portion of an image. Fawakherji
et al. [18] apply these techniques to the text portion of the query input to create multiple
representations of the text. Considering the similarity between speech input and time-
domain signal data, we adopt a “CV-CutMixOut (cross-validated CutMixOut)” method:
amalgamating k-fold cross-validation and “CutMixOut” techniques.

“CutMixOut” merges the two augmentation strategies “cutout” and “cutmix” into
one strategy. To achieve cutmix, a binary mask M = [m1, m2, . . . , mn] of length n is used to
select a contiguous subsequence in raw signal S, for which the subsequences are substituted
with their corresponding parts from a shuffled duplicate of S. Note that the raw signal S
here and afterward refers to the envelope signal obtained by the Hilbert transform of the
collected radar signal. The results can be calculated as:

SCutMix = M ∗ S + (1 − M) ∗ S’ (1)

where S is raw data of length n, and S′ is a shuffled version of S.
Likewise, adhering to the principles of cutout, which involves the random removal of

segments from input data S, enables the generation of a more robust dataset for training.
Similarly, the aforementioned binary mask M remains applicable, wherein mi = 0 denotes
the removal of the input and mi = 1 otherwise. The new data SCutOut are calculated as:

SCutOut = M ∗ S (2)

Then, the CutMixOut is obtained by randomly choosing between SCutMix and SCutOut:

SCutMixOut =

{
SCutMix with probability pCutMix
SCutOut with probability pCutOut

(3)

Here, pCutMix and pCutOut are assigned a certain probability for each operation. How-
ever, random cropping or replacement that is too extensive will lead to severe loss of subtle
features, thereby affecting recognition accuracy. Therefore, we use k-fold cross-validation
to find the appropriate size of CutMixOut in contrast to random processing of the raw data:
a methodology referred to as “CV-CutMixOut”. The implementation steps are as follows:

1. Split the data into k parts.
2. Try different CutMixOut sizes: size Scom = [com1, com2, . . . , coml ], where l is the

number of selectable sizes and comi is the number of mi = 0.
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3. For each size, we utilize one subset of the data as the test set and the rest as the training
set to capture the model’s performance.

4. Ultimately, we compare the model’s performance across all sizes to determine the
most suitable size.

3.2. MuSEI: Improved Multimodal Framework for SEI

A comprehensive overview of the proposed multimodal emitter identification system
is shown in Figure 1. MuSEI is based on [15], which processes speech and text multimodal
language recognition systems. The MuSEI framework is composed of three modules, i.e., a
raw data embedding module, a multimodal representation module, and a classification
module composed of transformer layers and a classifier. Sections 3.2.1 and 3.2.2 introduce
the main two modules, respectively. Section 3.2.3 introduces the improved loss function
with self-knowledge distillation. The raw data depicted in Figure 1 mean the time-series
envelope signal, while the feature vector is constructed from features extracted from the
envelope signal, Fi, i = 1, 2, 3 . . . , k denotes the feature parameter, and k is the number of
feature parameters. The transformer layers are composed of a stack of N identical layers.

Features Vector
Raw Data Embedding 

Module

Multimodalities Representation Module

Transformer Layers

Classifier

Class k

F1 F2 F3 ... Fk

Times-series Envelope 

Signal

Multi-head 

Self-Attention

Layer 

Normalization

Feed Forward

Layer 

Normalization

N× 

The First Stage

The Second Stage

The Third Stage

Figure 1. The overview of the proposed method.

The whole process of this method mainly consists of three parts: firstly, employing
the proposed data enhancement technique “CV-CutMixOut” to fortify both the robustness
of the data and the learning efficacy of the network; secondly, utilizing the raw data
embedding module to conduct latent representation; lastly, via a multimodal representation
module, raw data representation and feature representation are amalgamated to construct
a unified representation, facilitating SEI by employing transformer layers consisting of
multi-headed self-attention (MSA) [29], layer normalization (LN) [30], and MLP blocks [31].

3.2.1. Raw Data Embedding Module

Transformers excel at capturing long-range global contexts but struggle with extracting
precise local feature patterns. Conversely, convolution neural networks (CNNs) leverage
local data and serve as the de facto computational unit in computer vision tasks. They
harness position-based kernels over specific windows: preserving translation equivariance
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and adeptly capturing features such as edges and shapes [19]. However, relying solely
on local connectivity necessitates numerous additional layers or parameters to effectively
capture global information. Considering this, we propose the use of a conformer module to
embed the raw data.

Our raw data embedding module, which consists of a stack of conformer blocks,
initially processes the input to produce a latent signal representation. The conformer block
is illustrated in Figure 2. A conformer block is composed of four modules stacked together:
a feed-forward module, a self-attention module, a convolution module, and a second
feed-forward module at the end [19].

Feed Forward 

Module

Muti-head Self 

Attention Module

Convolution 

Module

Feed Forward 

Module
Layernorm

1/2x 1/2x

Figure 2. The conformer block.

The feed forward-module, which is also adopted by the transformer [29], is composed
of two linear transformations and a nonlinear activation in between. A residual connection
is added over the feed-forward layers, followed by layer normalization. The convolution
module contains a pointwise convolution with an expansion factor of two projecting the
number of channels with a gated linear unit (GLU) activation layer, followed by a 1-D
depthwise convolution. Batchnorm is deployed after the 1-D depthwise convolution to aid
training deep models.

Mathematically, the conformer block is as follows:

x̃i = xi +
1
2

FFN(xi)

x′i = x̃i + MHSA(x̃i)

x′′i = x′i + Conv(x′i)

yi = LayerNorm(x′′i +
1
2

FFN(x′′i ))

(4)

where, xi is input to a conformer block i, and yi is the output of the block.
The raw data S undergo processing through the raw data embedding module FRDE to

produce latent signal representation L. It is computed as:

L = FRDE(S) (5)

where RDE means the raw data embedding module.
As shown in Figure 1, the first stage of this method is raw data embedding and

estimation of feature vectors. Next, we introduce the establishment of feature vectors.
Feature vectors are extracted from the original signals. Guo et al. [32] proposed to use
the radio frequency (RF) features, including the duration, maximum derivative, skewness,
kurtosis, mean, variance, fractal dimension, Shannon entropy, and polynomial coefficients
of the normalized energy trajectory of a transient signal, as well as the area under the
trajectory curve extracted from time-domain transient signals for radar model identification.
The results show that the proposed AF fingerprint can be applied directly to radar model
identification.

In specific emitter identification, a raw signal of length n is S = [s1, s2, . . . , sn], and
the feature vector composed of signal rising edge time Trise, mean µ, variance σ, fractal
dimension f rac, Shannon entropy en, kurtosis kappa, and skewness sk extracted from the
original signal S is Φ = [Ttise, µ, σ, f rac, en, kappa, sk]. The calculation formulas for µ, σ,
kappa, and sk are shown in Table 1. The calculation formulas of the fractal dimension
and Shannon entropy are complicated; they are not listed here. The fractal dimension
and Shannon entropy of a one-dimensional signal are important metrics to assess distinct
aspects of the signal’s characteristics. The fractal dimension measures the complexity and
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regularity of a signal or dataset. Shannon entropy gauges the uncertainty or information
content of a signal.

Table 1. Feature parameter calculation formulas.

Feature Parameter Calculation Formula

mean µ µ =
∫ ∞
−∞ t|u(t)|2dt∫ ∞
−∞ |u(t)|2dt

variance σ σ =

( ∫ ∞
−∞(t−µ)2|u(t)|2dt∫ ∞

−∞ |u(t)|2dt

) 1
2

kurtosis kappa κ =
∫ ∞
−∞(t−µ)4/σ4|u(t)2|dt∫ ∞

−∞ |u(t)|2dt

skewness sk sk =
∫ ∞
−∞(t−µ)3/σ3|u(t)2|dt∫ ∞

−∞ |u(t)|2dt

3.2.2. Multimodal Representation Module

Simultaneously, Hsu et al. [33] demonstrated that the final layer representation ac-
quired after multiple layers might not be optimal for all tasks. Consequently, we introduce
a learnable parameter βk in training, which corresponds to the kth conformer layer. It is
calculated by:

L = ∑
k

βkLk (6)

where Lk is the representation from the kth conformer layer.
To facilitate the merging of raw signal data and feature information, we employ a

multimodal representation module, as illustrated in Figure 3. We use the weighted combi-
nation of embeddings from the conformer blocks in Equation (6). Then, the concatenated
time-series signal and feature vectors are passed to the transformer layers. That is, firstly,
the raw data representation L and the feature vector Φ are concatenated to be R = [L; Φ].
Then, the concatenation R is input to the transformer layers [29] to capture the significance
of each modality effectively.

Weighted Combination

Raw Signal

Feature Vector

Conformer Block Conformer Block Conformer Block...

Concat

Weighted 

Representation

b1 b2 bk

Figure 3. The multimodal representation module.

3.2.3. The Improved Loss

To mitigate overfitting and minimize the intra-class variations, the module is trained
using the combination of the cross-entropy loss and the class-wise self-knowledge distil-
lation (CSKD) loss [34]. The cross-entropy loss is to enhance the discrimination between
different classes. The CSKD loss distills the predictive distribution of network between
different samples of the same class, as illustrated in Figure 4.
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Figure 4. The CSKD regularization scheme.

In Figure 4, sample 1 and sample 2 come from the same class. By matching the
predictive distribution of the network between different samples with the same label,
CSKD forces the network to produce similar predictions, thereby achieving the goals of
preventing overfitting and reducing the intra-class variations. The network samples a batch
from the training dataset, serving as sample 1, and extracts another batch from the training
dataset randomly with the same label, forming sample 2. Then, we use Equation (9) to
update the gradient until the parameters converge.

In the proposed method, given the input x and class y, S ∈ x, y ∈ 1, 2, . . . , k, the
posterior predictive distribution is:

P(y|x; θ, T) =
exp( fy(x; θ)/T)

∑k
i=1 exp( fi(x; θ)/T)

(7)

where fi denotes the logit of networks for class i, which is parameterized by θ, and T > 0 is
the temperature scaling parameter [34].

To enforce consistent predictive distributions in the same class, we obtain randomly
sample x′ with the same label y as the input x. The calculation is as follows:

Lcls(x, x′; θ, T) = KL(P(y|x′; θ̃, T)||P(y|x; θ, T)) (8)

where KL denotes the Kullback–Leibler (KL) divergence, and θ̃ is a fixed copy of the
parameter θ. To sum up, the total loss function is:

LCS−KD(x, x′, y; θ, T) = LCE(x, y; θ) + λcls · T2 · Lcls(x, x′; θ, T) (9)

where LCE is the standard cross-entropy loss, and λcls > 0 is a loss weight for the class-wise
regularization.

4. Experiments
4.1. Datasets and Parameter Settings

Our experimental system is Windows 11. The experimental setup involves PyTorch
1.2, a widely used deep learning framework, implemented using Python 3.9.

To evaluate our method, we use a real radar dataset consisting of data from six emitters
collected in the same environment for recognition tasks. The carrier frequency of the signal
is 9300 MHz, and the sampling frequency is 500 MHz. The dataset contains six types of
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single-frequency signal samples. It contains 3000 radar signals and 3000 feature vectors
extracted from the radar signals. The dataset is split into a training set and a test set in
a ratio of 7:3. Each radar signal is segmented into a length of 1 × 1024, and the feature
vector comprises a length of 1 × 7. We randomly select a sample with different labels from
the dataset to display. The original data are illustrated in Figure 5. The envelope data are
illustrated in Figure 6.
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Figure 5. The original data. (a) Class 0. (b) Class 1. (c) Class 2. (d) Class 3. (e) Class 4. (f) Class 5.
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Figure 6. The envelope data. (a) Class 0. (b) Class 1. (c) Class 2. (d) Class 3. (e) Class 4. (f) Class 5.

Figures 5 and 6 show the original pulse data and the corresponding envelope data.
Some classes, such as class 0 and class 2, are difficult to separate since their envelopes are
similar. Additionally, while class 4 and class 5 differ from others, distinguishing between
them remains difficult. The fractal dimension is one of the most used and significant
features in SEI [32,35–37]. Here, we provide the fractal dimension distribution. Figure 7
illustrates the distribution of fractal dimension features extracted from envelope data. A
box plot, also known as a box-and-whisker plot, is a graphical representation that displays
the summary of a set of data values. It provides a visual summary of the distribution and
key statistical measures of a dataset, including the median, quartiles, and potential outliers.
On each box, the center mark represents the median, and the bottom and top edges of the
box represent the 25th and 75th percentiles, respectively. The line will extend to the farthest
data point that is not an outlier, and the outlier will be drawn separately using the red
’+’ symbol.
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Figure 7. The boxplot representation of fractal dimension for different emitters.
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Emitters of different radars cannot be effectively identified using a single feature
parameter. From Figure 7, it is evident that there are overlapping regions in the feature
parameter value distribution, and they are relatively dispersed. Moreover, there are feature
parameters from different samples in the same class distributed in different ranges, which
also leads to difficulty in identification.

Firstly, we present the experimental results produced by using feature vector datasets
with SVM algorithms. The SVM algorithm is a supervised machine learning algorithm
for binary classification [38]. It is a representation of the training data as points in space
separated into classes by a clear gap that is as wide as possible. New data are then mapped
into that same space and are predicted to belong to a class based on which side of the
gap they fall on [32]. SVM is implemented in MATLAB (The MathWorks Inc., MATLAB.
v.9.12.0 R2022a, Natick, MA, USA)) toolboxes. The confusion matrix in Figure 8 shows the
classification accuracy for each emitter in the six-emitter mix.

A confusion matrix is a way of describing the breakdown of classification accuracy for
a testing dataset. It makes the performance evaluation easier as one can see if a classifier
is confusing emitters [32]. In the confusion matrix, the rows (except the bottom one)
correspond to the classified emitters and the columns (except the far right one) correspond
to the actual emitters. The column on the far right of a confusion matrix shows the
percentages of all feature vectors predicted to belong to each classified emitter that are
correctly or incorrectly classified. The row at the bottom shows the percentages of all feature
vectors belonging to each actual emitter that are correctly or incorrectly classified. The cell
on the bottom right of a confusion matrix shows the overall classification accuracy [32].
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Figure 8. Confusion matrix for the SVM algorithm with feature vector for six-emitter mix. The green
cells show classification accuracy and number of correctly classified feature vectors for corresponding
actual emitter. Meanwhile, the red cells indicate the number of misclassified vectors from each
actual emitter for each classified emitter as well as its percentage of the total number of tested
feature vectors.

Emitter 2 has the lowest classification accuracy of 55.4%, while emitter 1 has the
highest classification accuracy of 84.4%. It can be seen that with the real feature vector
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dataset, the method with the SVM algorithm only achieves on average 75% classification
accuracy. The results demonstrate that it is hard to classify a real radar dataset and that
the feature vector dataset alone is inadequate for classifying and identifying real radar
emitters.

In addition, we simulated a dataset, called dataset II, with differences in pulse width,
rising edge slope, rising edge time, signal type, etc. Dataset II contains 5000 radar signals in
ten classes. The signal styles include linear frequency modulation signals, single-frequency
signals, etc. We add additive Gaussian white noise to the samples to further simulate the
influence of various additive noises on signals.

Then, the multimodal dataset is used to validate if the proposed method is suitable for
SEI. The parameter settings during the training are shown in Table 2. The learning rate is
a hyperparameter that controls the magnitude of parameter updates during the training
process. Batch size refers to the number of samples that are processed by the model in a
single iteration during training. An epoch signifies one complete pass of the entire dataset
through the neural network during the training phase. Weight decay, often used as a form
of regularization, introduces a penalty term to the loss function based on the magnitude of
the model weights. An optimizer is an algorithm that adjusts the model’s weights during
training to minimize the loss function.

Table 2. Training parameter configuration.

Signal Parameter Parameter Value

Learning rate 0.0001
Batch Size 64

Epoch 300
Weight Decay 0.0001

Optimizer AdamW

4.2. Performance Comparison

In experiments, the effectiveness of data augmentation “CV-CutMixOut” and multi-
modal MuSEI are tested. Experiment 1 evaluates the effectiveness of data augmentation on
recognition results. Experiment 2 assesses the performance of different models. Experiment
3 conducts comparisons using different loss functions.

4.2.1. Experiment 1: “CV-CutMixOut” effect on Recognition Performance

Based on the aforementioned analysis, our initial experiment aims to evaluate the
effectiveness of the data augmentation method for the SEI task. In MuSEI, the experiment
incorporates multi-modal inputs, whereas other one-dimensional networks exclusively
utilize time-domain radar signals as their input. The results are shown in Table 3. We use
the following models to test our method: RNN, LSTM, 1DCNN, transformer, and MuSEI.
Each of these models is evaluated both with and without data augmentation. The sizes for
CutMixOut we compared are Scom = [50, 100, 150, 200, 250]. Simultaneously, all networks
in Table 3 employ CSKD as their loss function. The results show that all models achieve
higher top-k accuracies with data augmentation than without. The largest improvement is
seen in the RNN model, which achieves a top-1 accuracy of 84.56% with data augmentation
compared to 73.21% without. The RNN model and LSTM show a significant improvement
in the top-3 accuracy with data augmentation. MuSEI shows less improvement, likely due
to its performance reaching saturation or model capacity limits. With data augmentation
techniques, both the transformer network and MuSEI achieved notable advancements in
recognition accuracy. Moreover, compared to scenarios without leveraged data augmenta-
tion, the network’s recognition accuracy exhibited substantial improvement.
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Table 3. Performance of different models with (✓) and without (×) data augmentation.

Model CV-CutMixOut Top 1 (%) Top 3 (%)

RNN × 73.21 87.41
✓ 84.56 92.78

LSTM × 80.69 90.70
✓ 89.78 95.77

1DCNN × 81.45 95.43
✓ 90.39 96.20

Transformer × 82.21 95.31
✓ 91.52 96.54

MuSEI × 92.01 98.87
✓ 96.67 99.02

4.2.2. Experiment 2: Identification Based on MuSEI on Real Dataset

In this experiment, we conduct comparisons based on the recognition accuracy of
different models, including single-modal networks and multimodal networks. Moreover,
we evaluate the effectiveness of each module in MuSEI.

Firstly, we evaluate the performance of different models for the SEI task. Figure 9
shows the loss curves for the training iterations. All models employ data augmentation
techniques in conjunction with the CSKD loss function. The enhanced multimodal model
achieves the highest performance: the fastest convergence of the loss curves. Furthermore,
as depicted in Table 3, the results show that it achieves the highest recognition accuracy.
The MuSEI loss converges to about 0.5, which indicates a strong fit between the model
and the data, showcasing the model’s adeptness at capturing intricate data characteristics
and patterns. The pronounced fluctuation in the convergence of the loss curve in the
RNN network may stem from its heightened sensitivity to imbalanced samples. The loss
convergence values of the MuSEI, transformer, and 1DCNN networks ultimately converge
to comparable levels. However, the MuSEI model achieves the highest recognition accuracy,
suggesting a relatively lower level of overfitting to the data.

Figure 9. The loss curves.

Here, we compare our proposed method with some multimodal networks, such as
MuSELI [15] and DCTM [16]. In this experiment, we take the time-domain radar signal
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as one modality input and the feature vector as the other modality input—both use data
augmentation techniques—and we use cross-entropy as the loss function. The results are
shown in Table 4. MuSELI was proposed by Bharadwaj et al., who delved into the use of
various metadata sources to enhance language identification. In MuSELI, the metadata
text sequence T is input to the text encoder, which consists of a token embedding layer
to generate the latent representation [15]. However, considering the difference between
feature vectors and text signals, we opted not to employ the text encoder in our experiment.
Instead, we directly fed the feature vectors and time-domain radar signal representations
into the shared encoder. DCTM proposed an architecture for engagement estimation
that combines dilated convolution and transformers, which leverages signals from three
modalities—speech, pose, and face—as inputs, integrating them via the dilated convolution
block. However, in this specific experiment, only the radar’s time-domain signal is fed into
the dilated convolution block, followed by fusion strategies involving the feature vector.
Additionally, the experiment in [16] compares two types of fusion strategies: namely,
“self-attention fusion (SA)” and “multimodal gated fusion (GF)”. In this experiment, we
also compare them. The input for these models is the sequence of radar time-series data;
all other methods remain unchanged. MuSEI and MuSELI achieve higher identification
accuracy both with and without data augmentation compared with the other models.
This shows the effectiveness of the raw data embedding module, which consists of the
conformer blocks. Moreover, this reaffirms the efficacy of our proposed data augmentation
technique, underscoring its ability to enhance the model’s robustness. DCTM might prove
to be better suited for representing speech signals, pose signals, and other analogous data.
Simultaneously, in the experiments in [16], distinct regressors such as transformer and
LSTM were utilized. The divergent performances observed when implementing the GF
and SA feature fusion strategies across these models suggest potential variations in their
applicability, a discussion we opt not to pursue in this context.

Table 4. Comparison of multimodal network performance.

Method With Data Augmentation Without Data Augmentation

MuSEI 96.67 92.01
MuSELI 96.10 91.87

DCTM + SA 93.26 90.97
DCTM + GF 90.35 87.66

To further simulate the influence of different datasets and consider the influence of
various additive noises on the signal, we artificially add additive Gaussian white noise
to the simulated samples in the range of 5 dB–10 dB. Dataset II contains 10 classes, for
which the simulation parameters are different signal types, pulse widths, rising edge slopes,
rising edge times, etc. Figure 10 illustrates the identification results as the signal-to-noise
ratio changes. The experiment in Figure 10 uses the CSKD loss but not data augmentation.
As seen from Figure 10, our method achieve better results compared with MuSELI and
DCTM + SA. As the signal-to-noise ratio increases, our method improves the recognition
accuracy by nearly 11%. The recognition performance of MuSELI and DCTM + SA for
dataset II is relatively similar. Figure 10 demonstrates that although our proposed method
might be affected by additive noise, the effect is still less than that of other advanced
multimodal methods in the case of a low signal-to-noise ratio.

Table 5 demonstrates the effectiveness of different modules on MuSEI. To assess the
efficacy of each module, we conducted ablation experiments on the model. The initial
scenario involved substituting MuSEI’s embedding module with the conventional trans-
former embedding module; that is, the traditional embedding module in the transformer
replaces the raw data embedding module in Figure 1, denoted as “*traditional embedding”.
Subsequently, the second scenario utilized the final layer output of the conformer directly
as the feature representation; that is, the weighted representation substitutes for the last
layer representation, labeled as “*final Conformer” Single-modal input means we only feed
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raw time-domain signals into the network. All experiments in Table 5 use the CSKD loss
function and data augmentation techniques.
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Figure 10. Recognition accuracy under different signal-to-noise ratios.

Table 5. Ablation experiments on MuSEI.

Method Multimodal Input Single-modal Input

*traditional embedding 93.81 91.91
*final Conformer 94.40 93.87

Ours 96.67 94.53

In the single-modal model, these methods signify the processing of the original signal
embedding without generating any concatenated representations. The results in Table 5
suggest the advantage of our data embedding module and multimodal representation
module. The conformer module implements global and local interactions through a combi-
nation of self-attention and convolution. Moreover, the weighted representation scheme
performs more efficiently than using the final layer directly. The network employing the tra-
ditional transformer embedding module attained an accuracy of 93.81%, exhibiting about a
3% decrease compared to ours. This illustrates the limitation of traditional embedding in
striking a balance between capturing global and local features.

4.2.3. Experiment 3: Loss Function Comparison

Table 6 presents the results of our comprehensive experiments conducted with different
loss functions. All models in Table 6 use data augmentation techniques. The cross-entropy
loss quantifies the divergence between two probability distributions and is typically used
in classification tasks. The softmax function transforms raw output scores into probabilities
for multiple classes. The maximum entropy principle aims to find the most uncertain
probability distribution given a set of constraints or information. Table 6 shows that CSKD
outperforms other loss functions on the real radar dataset. We also observe that the top-1
accuracies of other loss functions are often worse than the cross-entropy loss. Compared to
the top-1 accuracy of 95.71% achieved by cross-entropy, CSKD elevated it to 96.67%.
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Table 6. Loss comparison.

Model Loss Function Top 1 (%)

MuSEI

Cross-entropy 95.71
Softmax 94.89

Maximum-entropy 93.76
CSKD 96.67

Figure 11 visualizes the feature spaces of raw data and MuSEI through t-SNE anal-
ysis [39], where 0–5 represent 6 classes of emitters. T-SNE is a visualization technique
that can map high-dimensional data into a lower dimensional space while preserving the
distances between similar sample points in both spaces. Figure 11 visually demonstrates
MuSEI’s efficacy in SEI tasks. Compared with the original data distribution, MuSEI can
achieve the goal of reducing intra-class variance and increasing inter-class distance to
generate more-distinct feature distributions and well-defined boundaries.

(a) (b)

Figure 11. Feature visualization. (a) The raw data distribution. (b) The feature distribution of MuSEI.

5. Conclusions

In this paper, we propose the multimodal model MuSEI based on an improved trans-
former for SEI tasks. MuSEI utilizes raw radar data as well as feature data as multi-modal
input. We highlight the benefits of utilizing multimodal data for SEI. The conformer block
can learn both position-wise local features and use content-based global interactions. The
multimodal representation module has been proven effective at mixing and finding the
most informative components. CSKD can effectively mitigate overfitting. Moreover, “CV-
CutMixOut” has demonstrated its effectiveness at enhancing data robustness. Extensive
experiments on a real radar dataset show that MuSEI outperforms several existing methods.
In the future, we will explore the processing of multipath problems[40,41] in real radar data
to obtain more effective input data. Meanwhile, we will further investigate the application
of multimodal models in SEI, such as combining semi-supervised methods[42].

Author Contributions: Conceptualization, H.P. and K.X.; methodology, H.P.; software, H.P.; val-
idation, W.Z.; formal analysis, H.P. and K.X.; investigation, H.P.; resources, K.X.; data curation,
W.Z.; writing—original draft preparation, H.P.; writing—review and editing, H.P., K.X. and W.Z.;
visualization, H.P.; supervision, K.X. and W.Z.; project administration, K.X.; funding acquisition, K.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Guangdong Basic and Applied Basic Research Foundation
under grants No. 2021A1515010768 and No. 2023A1515011588 and the Shenzhen Science and
Technology Program under grants No. 202206193000001 and No. 20220815171723002.



Electronics 2024, 13, 651 16 of 17

Data Availability Statement: The data utilized in this experiment have been exclusively collected by
the research team for internal research purposes. They are not currently available for external sharing
or distribution.

Acknowledgments: The authors would like to thank the anonymous reviewers, the Associate Editor,
and the Editor for their constructive comments and suggestions, which have greatly improved
this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Talbot, K.I.; Duley, P.R.; Hyatt, M.H. Specific emitter identification and verification. Technol. Rev. 2003, 113, 113–130.
2. Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N.C. A Review of Radio Frequency Fingerprinting Techniques. IEEE J. Radio Freq.

Identif. 2020, 4, 222–233. [CrossRef]
3. Zhu, Z.; Ji, H.; Li, L. Deep Multimodal Subspace Interactive Mutual Network for Specific Emitter Identification. IEEE Trans.

Aerosp. Electron. Syst. 2023, 59, 4289–4300. [CrossRef]
4. He, B.; Wang, F. Cooperative specific emitter identification via multiple distorted receivers. IEEE Trans. Inf. Forensics Secur. 2020,

15, 3791–3806. [CrossRef]
5. Gong, J.; Xu, X.; Lei, Y. Unsupervised Specific Emitter Identification Method Using Radio-Frequency Fingerprint Embedded

InfoGAN. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2898–2913. [CrossRef]
6. Liu, Z.M. Multi-feature fusion for specific emitter identification via deep ensemble learning. Digit. Signal Process. 2021,

110, 102939. [CrossRef]
7. Chen, X.; Jiang, M.; Zhao, Q. Self-distillation for few-shot image captioning. In Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 545–555.
8. Gong, W.; Zhang, Y.; Wang, W.; Cheng, P.; Gonzalez, J. Meta-MMFNet: Meta-learning-based multi-model fusion network for

micro-expression recognition. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 20, 1–20. [CrossRef]
9. Nascimento, J.; Cardenuto, J.P.; Yang, J.; Rocha, A. Few-shot Learning for Multi-modal Social Media Event Filtering. In Proceedings

of the 2022 IEEE International Workshop on Information Forensics and Security (WIFS), Shanghai, China, 12–16 December 2022;
pp. 1–6.

10. Aubry, A.; Bazzoni, A.; Carotenuto, V.; De Maio, A.; Failla, P. Cumulants-based radar specific emitter identification.
In Proceedings of the 2011 IEEE International Workshop on Information Forensics and Security, Iguacu Falls, Brazil,
29 November–2 December 2011; pp. 1–6.

11. D’Agostino, S.; Foglia, G.; Pistoia, D. Specific emitter identification: Analysis on real radar signal data. In Proceedings of the 2009
European Radar Conference (EuRAD), Rome, Italy, 30 September–2 October 2009; pp. 242–245.

12. Ding, L.; Wang, S.; Wang, F.; Zhang, W. Specific emitter identification via convolutional neural networks. IEEE Commun. Lett.
2018, 22, 2591–2594. [CrossRef]

13. Zhu, M.; Zhang, X.; Qi, Y.; Ji, H. Compressed sensing mask feature in time-frequency domain for civil flight radar emitter
recognition. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15–20 April 2018; pp. 2146–2150.

14. Guo, W.; Wang, J.; Wang, S. Deep multimodal representation learning: A survey. IEEE Access 2019, 7, 63373–63394. [CrossRef]
15. Bharadwaj, S.; Ma, M.; Vashishth, S.; Bapna, A.; Ganapathy, S.; Axelrod, V.; Dalmia, S.; Han, W.; Zhang, Y.; van Esch, D.; et al.

Multimodal Modeling For Spoken Language Identification. arXiv 2023, arXiv:2309.10567.
16. Tu, V.N.; Huynh, V.T.; Yang, H.J.; Kim, S.H.; Nawaz, S.; Nandakumar, K.; Zaheer, M.Z. DCTM: Dilated Convolutional Transformer

Model for Multimodal Engagement Estimation in Conversation. In Proceedings of the 31st ACM International Conference on
Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 9521–9525.

17. Urbanelli, A.; Barco, L.; Arnaudo, E.; Rossi, C. A Multimodal Supervised Machine Learning Approach for Satellite-Based Wildfire
Identification in Europe. In Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium,
Pasadena, CA, USA, 16–21 July 2023; pp. 608–611.

18. Fawakherji, M.; Vazquez, E.; Giampa, P.; Bhattarai, B. TextAug: Test time Text Augmentation for Multimodal Person Re-
identification. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision 2024, Waikoloa, HI, USA,
4–8 January 2024; pp. 320–329.

19. Gulati, A.; Qin, J.; Chiu, C.C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y.; et al. Conformer: Convolution-
augmented transformer for speech recognition. arXiv 2020, arXiv:2005.08100.

20. Deng, S.; Huang, Z.; Wang, X. A novel specific emitter identification method based on radio frequency fingerprints. In
Proceedings of the 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), Beijing,
China, 8–11 September 2017; pp. 368–371.

21. Kennedy, I.O.; Scanlon, P.; Mullany, F.J.; Buddhikot, M.M.; Nolan, K.E.; Rondeau, T.W. Radio transmitter fingerprinting: A steady
state frequency domain approach. In Proceedings of the 2008 IEEE 68th Vehicular Technology Conference, Calgary, AB, Canada,
21–24 September 2008; pp. 1–5.

http://doi.org/10.1109/JRFID.2020.2968369
http://dx.doi.org/10.1109/TAES.2023.3240115
http://dx.doi.org/10.1109/TIFS.2020.3001721
http://dx.doi.org/10.1109/TIFS.2020.2978620
http://dx.doi.org/10.1016/j.dsp.2020.102939
http://dx.doi.org/10.1145/3539576
http://dx.doi.org/10.1109/LCOMM.2018.2871465
http://dx.doi.org/10.1109/ACCESS.2019.2916887


Electronics 2024, 13, 651 17 of 17

22. Brik, V.; Banerjee, S.; Gruteser, M.; Oh, S. Wireless device identification with radiometric signatures. In Proceedings of the
14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA, 14–19 September 2008;
pp. 116–127.

23. Roy, D.; Mukherjee, T.; Chatterjee, M.; Blasch, E.; Pasiliao, E. RFAL: Adversarial learning for RF transmitter identification and
classification. IEEE Trans. Cogn. Commun. Netw. 2019, 6, 783–801. [CrossRef]

24. Apfeld, S.; Charlish, A. Recognition of unknown radar emitters with machine learning. IEEE Trans. Aerosp. Electron. Syst. 2021,
57, 4433–4447. [CrossRef]

25. Sankhe, K.; Belgiovine, M.; Zhou, F.; Angioloni, L.; Restuccia, F.; D’Oro, S.; Melodia, T.; Ioannidis, S.; Chowdhury, K. No radio left
behind: Radio fingerprinting through deep learning of physical-layer hardware impairments. IEEE Trans. Cogn. Commun. Netw.
2019, 6, 165–178. [CrossRef]

26. Tan, K.; Yan, W.; Zhang, L.; Ling, Q.; Xu, C. Semi-supervised specific emitter identification based on bispectrum feature extraction
CGAN in multiple communication scenarios. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 292–310. [CrossRef]

27. Muppalla, S.; Jia, S.; Lyu, S. Integrating Audio-Visual Features for Multimodal Deepfake Detection. arXiv 2023, arXiv:2310.03827.
28. Zhou, H.Y.; Yu, Y.; Wang, C.; Zhang, S.; Gao, Y.; Pan, J.; Shao, J.; Lu, G.; Zhang, K.; Li, W. A transformer-based representation-

learning model with unified processing of multimodal input for clinical diagnostics. Nat. Biomed. Eng. 2023, 7, 743–755.
[CrossRef]

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]

30. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
31. Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [CrossRef]
32. Guo, S.; Akhtar, S.; Mella, A. A Method for Radar Model Identification Using Time-Domain Transient Signals. IEEE Trans. Aerosp.

Electron. Syst. 2021, 57, 3132–3149. [CrossRef]
33. Hsu, W.N.; Bolte, B.; Tsai, Y.H.H.; Lakhotia, K.; Salakhutdinov, R.; Mohamed, A. Hubert: Self-supervised speech representation

learning by masked prediction of hidden units. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2021, 29, 3451–3460. [CrossRef]
34. Yun, S.; Park, J.; Lee, K.; Shin, J. Regularizing class-wise predictions via self-knowledge distillation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 13876–13885.
35. Wu, L.; Zhao, Y.; Wang, Z.; Abdalla, F.Y.O.; Ren, G. Specific emitter identification using fractal features based on box-counting

dimension and variance dimension. In Proceedings of the 2017 IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), Bilbao, Spain, 18–20 December 2017; pp. 226–231. [CrossRef]

36. Guo, S.; White, R.E.; Low, M. A comparison study of radar emitter identification based on signal transients. In Proceedings of the
2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 0286–0291. [CrossRef]

37. Li, X.; Chen, Y.; Zhu, J.; Zeng, S.; Shen, Y.; Jiang, X.; Zhang, D. Fractal Dimension of DSSS Frame Preamble: Radiometric Feature
for Wireless Device Identification. IEEE Trans. Mob. Comput. 2024, 23, 1416–1430. [CrossRef]

38. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer: New York, NY, USA, 2009; Volume 2.

39. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
40. Gok, G.; Alp, Y.K.; Arikan, O. A new method for specific emitter identification with results on real radar measurements. IEEE

Trans. Inf. Forensics Secur. 2020, 15, 3335–3346. [CrossRef]
41. Satija, U.; Trivedi, N.; Biswal, G.; Ramkumar, B. Specific emitter identification based on variational mode decomposition and

spectral features in single hop and relaying scenarios. IEEE Trans. Inf. Forensics Secur. 2018, 14, 581–591. [CrossRef]
42. O’Shea, T.J.; West, N.; Vondal, M.; Clancy, T.C. Semi-supervised radio signal identification. In Proceedings of the 2017 19th Inter-

national Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 19–22 February 2017;
pp. 33–38.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCCN.2019.2948919
http://dx.doi.org/10.1109/TAES.2021.3098125
http://dx.doi.org/10.1109/TCCN.2019.2949308
http://dx.doi.org/10.1109/TAES.2022.3184619
http://dx.doi.org/10.1038/s41551-023-01045-x
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.1016/0925-2312(91)90023-5
http://dx.doi.org/10.1109/TAES.2021.3074129
http://dx.doi.org/10.1109/TASLP.2021.3122291
http://dx.doi.org/10.1109/ISSPIT.2017.8388646
http://dx.doi.org/10.1109/RADAR.2018.8378572
http://dx.doi.org/10.1109/TMC.2023.3235497
http://dx.doi.org/10.1109/TIFS.2020.2988558
http://dx.doi.org/10.1109/TIFS.2018.2855665

	Introduction
	Related Works
	Methods
	Data Augmentation
	MuSEI: Improved Multimodal Framework for SEI
	Raw Data Embedding Module
	Multimodal Representation Module
	The Improved Loss


	Experiments
	Datasets and Parameter Settings
	Performance Comparison
	Experiment 1: ``CV-CutMixOut'' effect on Recognition Performance
	Experiment 2: Identification Based on MuSEI on Real Dataset
	Experiment 3: Loss Function Comparison


	Conclusions
	References

