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Abstract: Arrhythmias are among the most prevalent cardiac conditions and frequently serve as a
direct cause of sudden cardiac death. Hence, the automated detection of arrhythmias holds significant
importance for assisting in the diagnosis of heart conditions. Recently, the photoplethysmography
(PPG) signal, capable of conveying heartbeat information, has found application in the field of
arrhythmia detection research. This work proposes a hybrid deep learning model, Res-BiANet,
designed for the detection and classification of multiple types of arrhythmias. The improved ResNet
and BiLSTM models are connected in parallel, and spatial and temporal features of PPG signals are
extracted using ResNet and BiLSTM, respectively. Subsequent to BiLSTM, a multi-head self-attention
mechanism was incorporated to enhance the extraction of global temporal correlation features
over long distances. The model classifies five types of arrhythmia rhythms (premature ventricular
contractions, premature atrial contractions, ventricular tachycardia, supraventricular tachycardia,
and atrial fibrillation) and normal rhythm (sinus rhythm). Based on this foundation, experiments
were conducted utilizing publicly accessible datasets, encompassing a total of 46,827 PPG signal
fragments from 91 patients with arrhythmias. The experimental results demonstrate that Res-BiANet
achieved exceptional classification performance, including an F1 score of 86.88%, overall accuracy of
92.38%, and precision, sensitivity, and specificity of 88.46%, 85.15%, and 98.43%, respectively. The
outstanding performance of the Res-BiANet model suggests significant potential in supporting the
auxiliary diagnosis of multiple types of arrhythmias.

Keywords: arrhythmia; photoplethysmography; ResNet; BiLSTM; attention mechanism

1. Introduction

Currently, cardiovascular disease is prevalent globally and is exhibiting a trend of
striking at a younger age, imposing a substantial burden on global health and the econ-
omy [1]. Arrhythmias constitute a prevalent category within cardiovascular diseases [2].
Arrhythmias are mainly caused by the origin and conduction disorders of cardiac activity,
leading to abnormal frequency and rhythm of heartbeats [3]. Arrhythmias can manifest
with varying degrees of impact on patients. Mild cases may experience mild discomfort
affecting daily life and exhibit symptoms like chest tightness and weakness. In severe
cases, it can lead to heart failure and even sudden death [4]. The prevention and diagnosis
of arrhythmias pose significant challenges, making the identification and detection of
arrhythmias a current focal point in research. Presently, doctors utilize 12-lead electrocar-
diograms or 24 h dynamic electrocardiograms as the prevailing diagnostic methods for
arrhythmia [5–8]. Additionally, researchers depend on these tools to automatically identify
arrhythmias through modern technological means [9]. Electrodes used for electrocardio-
gram monitoring must be connected to the human body, and the presence of multiple
lead wires can be burdensome and inconvenient for patients. In recent years, collecting
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photoplethysmography (PPG) signals has gained prominence due to its advantages of low
cost, portability, and wearability. Crucially, the PPG signal can convey heartbeat informa-
tion [10], making it invaluable in clinical and biomedical signal processing and detection,
with a wide range of applications [11,12].

Over the past decade, there has been a continuous increase in research on arrhythmia
detection using PPG signals [13]. Currently, two primary methods for automatic recognition
and detection are prevalent: machine learning (ML) and deep learning (DL). Machine learn-
ing methods include support vector machine (SVM) [14–17], random forest (RF) [16,18,19],
decision tree (DT) [16,20], and artificial neural network (ANN) [16,21–23], etc. These
machine learning methods heavily depend on manual feature extraction. The manually
extracted PPG signal features primarily encompass two types: peak interval [24] and signal
amplitude [25], along with their derived features [21,26]. Nevertheless, depending on
manual feature extraction poses the risk of losing crucial signal information, potentially
resulting in misdiagnosis. Consequently, deep learning methods, which eliminate the need
for manual feature extraction, are extensively utilized in the realm of automatic arrhythmia
detection [27–30]. At present, two primary deep learning methods used for arrhythmia
detection are convolutional neural networks (CNN) [27–30] and recurrent neural networks
(RNN) [28,29]. These studies encompass both single-type and multi-type arrhythmia de-
tection. However, the majority of studies focus on single-type arrhythmia detection, with
relatively fewer studies addressing multi-type arrhythmia detection. Shashikumar et al. [27]
proposed a CNN-based deep learning model for detecting atrial fibrillation using PPG
signals extracted from the wrist. This method converts PPG signals into two-dimensional
spectrograms and inputs them into the model for feature extraction, integrating the char-
acteristics of signal quality, achieving an accuracy of 91.8%. Cheng et al. [28] proposed a
method that combines deep learning and time–frequency analysis to detect Atrial fibrilla-
tion (AF). They converted one-dimensional signals into two-dimensional time–frequency
maps through time–frequency analysis, and then inputted the two-dimensional images into
a model combining CNN and LSTM for feature learning and classification. The accuracy,
sensitivity, specificity, and F1 score were 98.21%, 98.00%, 98.07%, and 98.13%, respectively.
Aliamiri et al. [29] proposed a CRNN deep learning model combining CNN and RNN for
detecting AF. This method employs a multimodal neural network to assess the quality of
PPG signals, achieving an accuracy of 98.19% for detecting AF in 19 patients. Liu et al. [30]
proposed a deep convolutional neural network based on 10 s PPG signals to classify six
rhythms, including sinus rhythm (SR), premature ventricular contractions (PVC), prema-
ture atrial contractions (PAC), ventricular tachycardia (VT), supraventricular tachycardia
(SVT), and AF. The overall accuracy of the VGGNet-16 model used for six heart rhythm
types is 85.0%. The micro average area under the working characteristic curve of the sub-
jects is 0.978, with an average sensitivity of 75.8%, specificity of 96.9%, positive predictive
value of 75.2%, and negative predictive value of 97.0%. Our research dataset is sourced
from this study.

CNN forms a deep network that can automatically learn features by stacking multiple
layers of convolutional layers, and achieves end-to-end arrhythmia detection through
dimensionality reduction. Long short-term memory (LSTM) [31] is a special type of RNN
that has the ability to remember long and short-term information. It can selectively deliver
information in long time sequences and does not cause useful information from long time
ago to be forgotten. Nevertheless, LSTM can only extract sequence information from front
to back and lacks the ability to capture information from back to front. Additionally, LSTM
is still unable to solve long-range time-dependent problems to a certain extent [32].

In this paper, we propose a hybrid deep learning model, Res-BiANet, to automatically
detect arrhythmias based on a dataset of multiple types of arrhythmia PPG signals. The
method comprises three primary components: data input, feature extraction, and classifi-
cation. The feature extraction module adopts a deep learning model based on improved
ResNet and BiLSTM for parallel learning of features. BiLSTM has the capability to per-
ceive both past and future information, capture richer contextual details, and enhance
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the model’s learning ability for PPG signals. After the BiLSTM module, a multi-head
self-attention mechanism is added to enhance the ability of extracting temporal features
over long distances and to alleviate the problem of time dependence over long distances.
Finally, the features learned in parallel are fused and input into the fully connected layer
for classification output.

2. Materials and Methods
2.1. Dataset

Liu et al. [30] disclosed the validation and test sets of their own PPG signal dataset.
The publicly available data were from 91 patients with arrhythmia who had undergone
radiofrequency ablation. Liu et al. [30] only disclosed 40% of the full data, but what were
disclosed were the complete data they used for validation and testing, including complete
arrhythmic rhythms for 91 patients. This article is based on the publicly available data
from 91 patients as a dataset for the study. The 91 patients had a total of 46,827 PPG signal
segments of 10 s each. The dataset contains one normal rhythm (SR) and five types of
arrhythmic rhythms (PVC, PAC, VT, SVT, and AF). The labels corresponding to the six
rhythms are 0, 1, 2, 3, 4, and 5, respectively. The description and quantity of each rhythm
type are shown in Table 1.

Table 1. Dataset description and statistics.

Type Label Description Number of Samples

SR 0 Sinus rhythm 14,604
PVC 1 Premature ventricular contraction 4425
PAC 2 Premature atrial contraction 3773
VT 3 Ventricular tachycardia 2179

SVT 4 Supraventricular tachycardia 5677
AF 5 Atrial fibrillation 16,169

Total / / 46,827

Data preprocessing is essential before analyzing data and developing algorithms. As
the publicly available datasets have already undergone data preprocessing and can be used
directly for algorithm development studies, data preprocessing is not performed in this study.

Introduction to data processing methods that data owners have already performed:
Firstly, down sample the original collected PPG signal from 250 Hz to 100 Hz, and then
use a 0.5–10 Hz bandpass filter to filter out the noise in the signal. After filtering, the PPG
signal is divided into 10 s non overlapping segments. Finally, standardize the PPG signal
every 10 s to ensure that all segments have the same scale. Examples of preprocessed PPG
signals for six rhythms are shown in Figure 1.

2.2. Overview of Proposed Model

The proposed Res-BiANet model adopts a parallel connection method based on CNN
and RNN to achieve arrhythmia detection of six rhythms. The main components of the
model are composed of a feature extraction module and a classification module. The overall
structure of the model is shown in Figure 2. The feature extraction module extracts the
spatial and temporal features of PPG signals. The spatial feature extraction module is a
residual network composed of nine residual blocks. The temporal feature extraction module
is composed of four layers of BiLSTM, which integrate multi-head self-attention mechanism
on the basis of BiLSTM to enhance the extraction of long-distance global temporal features
and enhance the correlation between different features. Concatenate the extracted spatial
and temporal features and input them into the classification module. The classification
module maps the learned feature representations to the label space of the samples through
two fully connected layers. Finally, the output layer outputs the predicted results for
six rhythms.
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2.3. Feature Extraction
2.3.1. Spatial Feature Extraction Module

Within the spatial feature extraction module, an improved ResNet is utilized to extract
the spatial features of the PPG signals. The use of ResNet can enhance the network’s learn-
ing ability, attributed to its residual structure, subsequently improving the spatial feature
extraction capability of the signal and enhancing the accuracy of heart rhythm detection.

Conventional convolutional neural networks are generally made by stacking a series
of convolutional and down sampling layers, but the network degradation problem occurs
when the stacking reaches a certain level [33,34]. In 2016, He et al. [35] proposed ResNet.
The ResNet network introduces the concept of residual connections to address the challenge
of deep network degradation. The residual structure retains the original features, ensuring
smoother and more stable learning of the network, thus enhancing the accuracy and
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generalization ability of the model. Additionally, to a certain extent, the complexity of
learning can be reduced. The structure of the improved ResNet is shown in Figure 3.
Adding a Batch Normalization (BN) [36] layer after a one-dimensional convolutional layer
accelerates the convergence of the model during training. ReLU [37] is the activation
function for each layer, and a Dropout [38] layer is added after the ReLU function to discard
parameters and alleviate overfitting. Dropout is set to 0.5. Table 2 shows the configuration
of the improved ResNet network structure parameters in the spatial feature extraction
module. This module mainly consists of a pre-convolutional layer and 18 convolutional
layers from 3 residual blocks. The final output dimension is 256.
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Table 2. Network structure parameters of spatial feature extraction module.

Layers Input Size Output Size Content

Layer 1 1 × 1000 64 × 500 1 × 7, 64, s 1 = 2, p 2 = 3

Layer 2 64 × 500 64 × 250 Max pooling (3),
s = 2, p = 1

Layer 3 64 × 250 64 × 250
[

1 × 3, 64
1 × 3, 64

]
× 3

Layer 4 64 × 250 128 × 125
[

1 × 3, 128
1 × 3, 128

]
× 3

Layer 5 128 × 125 256 × 63
[

1 × 3, 256
1 × 3, 256

]
× 3

1 stride; 2 padding.

2.3.2. Temporal Feature Extraction Module

Recurrent neural networks yield better results in handling sequence data. While RNNs
can theoretically capture the contextual information of sequences, the information of long
sequences tends to be lost as the backward propagation distance increases. Hoch Reiter
et al. [31] proposed a special RNN called LSTM in 1997. In comparison to regular recurrent
neural networks, LSTMs can propagate earlier information backward without forgetting it.
LSTMs exhibit superior performance in tasks involving sequences with longer time spans.
This study employed a bidirectional long short-term memory (BiLSTM) comprising both
forward and backward propagating LSTMs. The structure of BiLSTM is shown in Figure 4,
and the unit structure of LSTM is shown in the small window. The fundamental concept
behind BiLSTM is that the features learned at the current moment encompass both past
and future information. This accomplishes the simultaneous consideration of the global
context, enhancing the extraction of time-dependent global features. In this study, a 4-layer
BiLSTM with a hidden layer dimension set to 128 is employed.

LSTM conducts sequential computation and can only be computed either sequentially
from front to back or back to front. This sequential computation poses two problems:
(1) LSTM still encounters challenges in addressing long-range time-dependent problems to
some extent. (2) The computation result at the current moment depends on the computa-
tion result at the previous moment, and this dependency limits the parallel computation
capability of the model. The self-attention mechanism proposed by Ashish et al. [39] can
alleviate the above problems. Self-attention mechanism is a special type of attention mech-
anism. When processing a sequence, it calculates the relative importance of each element
and all other elements in the sequence, obtains distant dependencies between elements,
and captures richer information. The self-attention mechanism performs well in handling
tasks with long-distance global context. The self-attention mechanism can simultaneously
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compute all positions in the input sequence, enhancing its efficiency, particularly when
dealing with long sequences.
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Specifically, for each element in the sequence, the similarity between it and other
elements is first calculated and normalized to attention weights. Then, the attention
weights are weighted and summed to obtain the output of the self-attention mechanism.
The calculation of self-attention mechanism is shown in Equation (1).

Attention(Q, K, V) = Softmax

(
QKT
√

dk

)
× V (1)

where Q ∈ Rm×dk , K ∈ Rn×dk and V ∈ Rn×dv represent the three matrices Query, Key, and
Value vector, respectively. m and n are the number of Query vector and Key vector, respec-
tively. dk and dv represent the dimension of the Key vector and Value vector, respectively.

The dimensions of Q, K, and V are the same in the self-attention mechanism. In the
first step, each element of the input sequence is linearly transformed to obtain the respective
Q, K, and V vectors. In the second step, the dot products of the query vector Q and the key
vector K are computed and then divided by the scaling factor

√
dk to obtain the attention

score. The purpose of dividing by the scaling factor is to avoid gradient vanishing and
make the model converge better. In the third step, the attention score is mapped to a value
between 0 and 1 using the Softmax function to obtain the attention weights. In the fourth
step, a dot product operation is performed between the value vector of each element and
its corresponding attention weight to obtain the attention output.

The multi-head self-attention mechanism is developed from the self-attention mecha-
nism. The multi-head self-attention mechanism has multiple independent attention heads,
which calculate attention weights separately and concatenate or weighted sum multiple
results. Its structure is shown in Figure 5. Equations (2) and (3) are the calculation formulas
for the multi-head self-attention mechanism.

headi = Attention(Qi, Ki, Vi) = Softmax

(
QiK

T
i√

dk

)
× V, i ∈ [1, H] (2)

MultiHeadAttention(Q, K, V) = Concat(head1, head2, . . . , headH)Wo (3)

where H is the number of heads in the multi-head self-attention mechanism. Wo is the
weight matrix. The H heads of the multi-head self-attention mechanism independently
perform attention calculations to obtain their respective attention outputs, and concatenate
the attention outputs of the H heads to obtain the output. Current study adopts the optimal
self-attention mechanism with four heads.
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2.4. Experimental Environment

The model is implemented using the PyTorch 1.12.1 framework and Python 3.9. All
code runs on a computer equipped with NVIDIA GeForce RTX 3060 GPU, Intel (R) Core
(TM) i5-12490F CPU, and Windows 11 64-bit operating system.

2.5. Experimental Metrics

To validate the performance of the model, this study recorded the true positive (TP),
false positive (FP), true negative (TN), and false negative (FN) results. Evaluate the perfor-
mance of the model by using the above indicators to obtain the Precision (Pre), Sensitivity
(Sen), Specificity (Spe), F1 score, and Accuracy (Acc) for each category. The definitions and
calculation formulas for each evaluation indicator are as follows:

1. Pre: the proportion of all predicted positive samples to the actual positive samples.
The calculation formula is shown in Equation (4).

Pre =
TP

TP + FP
× 100% (4)

2. Sen: the proportion of samples that are actually positive and predicted to be positive.
The calculation formula is shown in Equation (5).

Sen =
TP

TP + FN
× 100% (5)

3. Spe: the proportion of samples that are actually negative and predicted to be negative.
The calculation formula is shown in Equation (6).

Spe =
TN

FP + TN
× 100% (6)

4. F1 score: the weighted average of model precision and recall. The calculation formula
is shown in Equation (7).

F1 score = 2 × Precision × Recall
Preccision + Recall

× 100% (7)

5. Acc: the proportion of correctly predicted quantities to the total sample size. The
calculation formula is shown in Equation (8).

Acc =
TP + TN

TP + FN + FP + TN
× 100% (8)
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3. Results
3.1. Model Training and Testing

The model proposed in this article is trained using the dataset described in Section 2.1
as input. Firstly, all the data in the dataset are randomly disrupted and divided into
training set, validation set, and test set in the ratio of 6:2:2. The numbers of training set,
validation set, and test set are 28,097, 9365 and 9365, respectively. The batch size for model
training is set to 32. During the model training phase, the cross-entropy loss function
is used to calculate the loss value, and backpropagation updates the model parameters.
In addition, the Adam optimizer [40] is chosen to automatically adjust the learning rate
by calculating the first-order and second-order moments of the gradient, and Adam also
has the advantages of high computational efficiency and low memory usage. The initial
learning rate of the Adam optimizer is 0.0001. Simultaneously using the learning rate
exponential decay strategy, the decay factor gamma = 0.95. Early stopping strategy is
introduced in the training process; when the loss value of the validation set is not reduced
for more than 10 epochs, the early stopping strategy will be triggered, which can effectively
avoid the model overfitting problem.

Figure 6 shows the accuracy and loss curves during the model training process. It
can be seen from the figure that the model triggered the early stopping strategy when it
was trained to the 81st epoch, and the model has converged with good generalization. The
training and validation accuracies of the model reached 92.29% and 91.81% with losses of
0.2225 and 0.2255, respectively. Figure 7 shows the confusion matrix of the classification
results of the model on the test set. The numbers on the diagonal of the confusion matrix
represent the number of each type of rhythm classified correctly. The overall accuracy of
the model on the test set can be calculated to be 92.38%, indicating that the model has a
good overall classification of the six rhythms. Other information can also be seen through
the confusion matrix. The model classified SR and AF the best with an accuracy of 99.52%
and 97.29%, respectively. However, it classified the PAC and VT categories the worst, with
accuracies of 74.52% and 71.34%, respectively. More than 9.92% of PVC was misclassified
as PAC, 8.17% of PAC was misclassified as PVC, 6.35% of VT was misclassified as SVT, and
7.11% of SVT was misclassified as VT.

In order to provide a more detailed evaluation of the model performance, Table 3
lists the Pre, Sen, Spe, F1 score, and accuracy of the model for each rhythm on the
test set. From the table, it can be seen that almost all normal rhythms are recognized
with accuracy of 99.52%. Pre, Sen, Spe, and F1 score are 98.04%, 99.52%, 99.10%, and
98.77%, respectively. The order of recognition ability for five types of arrhythmias is:
AF > SVT > PVC > PAC > VT. The detection effect of AF is the best, with the accuracy of
97.29%, while Pre, Sen, Spe, and F1 score reached 94.55%, 94.55%, 97.12%, and 95.90%,
respectively. Only 2.71% of AF were identified incorrectly. The recognition ability of VT is
the worst, with accuracy of 71.34%, partly due to the minimum amount of VT data used
for training. The average Pre of the six rhythms is 88.46%, the average Sen is 85.15%, the
average Spe is 98.43%, the average F1 score is 86.88%, and the average accuracy is 85.60%.

Table 3. Detailed evaluation metrics for the model on the test set.

Type Pre (%) Sen (%) Spe (%) F1 Score (%) Acc (%) Overall Acc (%)

SR 98.04 99.52 99.10 98.77 99.52

92.38

PVC 83.89 82.78 98.29 83.33 82.78
PAC 77.95 74.52 98.23 76.20 74.52
VT 87.80 71.34 99.48 78.72 71.34

SVT 88.53 88.16 98.35 88.34 88.16
AF 94.55 94.55 97.12 95.90 97.29

Average 88.46 85.15 98.43 86.88 85.60

To visually represent the performance of the model on the test set, Figure 8a shows
the ROC curves for the six different rhythms. The ROC curve uses the false positive rate
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(FPR) as the horizontal coordinate and the true positive rate (TPR) as the vertical coordinate.
The larger the area under the curve (AUC), the higher the accuracy, indicating better
classification performance of the model. The average AUC for the six rhythms is 0.976.
Similarly, AF has the highest AUC of 0.995. This indicates a high overall accuracy and
good overall detection performance of the model for the six rhythms. Figure 8b shows the
PR curves for the six different rhythms. The horizontal and vertical coordinates of the PR
curve are the recall and precision rates, respectively, which can well represent the balance
of precision and recall under different thresholds. Similarly, the larger the area under the
curve (AUC), the higher the accuracy and recall, and the better the performance of the
model. The micro average AUC area for the six rhythms is 0.956. This proves the feasibility
of our model on imbalanced datasets.
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3.2. Result of Ablation Experiment

To verify the performance and advantages of our proposed Res-BiANet model, ab-
lation experiments were designed. Each module of the model was gradually removed
to obtain two models for ablation comparison experiments. And all experiments were
subjected to five-fold cross-validation. The two models designed are as follows:

1. ResNet: Remove the temporal feature extraction module from the proposed model,
leaving only the spatial feature extraction module.

2. Res-BiLSTM: Remove the attention mechanism from the temporal feature extraction
module to form a parallel network of ResNet and BiLSTM.

Figure 9 shows the average confusion matrices of the ResNet, Res-BiLSTM, and
Res-BiANet models on the test set. From the graph, ResNet has the worst overall classifica-
tion performance, followed by Res-BiLSTM, and Res-BiANet performs the best. The ResNet
model has 11.15% of PVC incorrectly identified as PAC, and 11.69% of PAC incorrectly
identified as PVC. The Res-BiLSTM model reduced the error recognition rates of PVC and
PAC to 8.17% and 11.50%, respectively. The Res-BiANet model reduced the error recogni-
tion rates of PVC and PAC to 7.48% and 10.56%, respectively. In the classification tasks of
VT and SVT, the Res-BiANet model performs the best, with 15.57% of VT being recognized
as SVT and only 3.15% of SVT being recognized as VT. In addition, the Res-BiANet model
reduced the proportion of PVC recognized as AF to 7.18%.
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Table 4 shows the average test results of three models in the ablation experiment.
Among the three models, the Res-BiANet model performed the best, possessing the highest
Pre, Sen, Spe, F1 score, and Acc, reaching 86.68%, 96.90%, 98.46%, 86.75%, and 92.22%,
respectively. ResNet had the worst accuracy in classifying the six rhythms, with 89.64%.
Next was Res-BiLSTM, with an accuracy of 91.43%. The F1 scores for the three models were
82.35%, 85.16%, and 86.75%, respectively. Res-BiANet had the highest overall classification
accuracy, reaching 92.22%. After adding the BiLSTM module for extracting global temporal
features on the basis of ResNet, the accuracy improved by 1.79%. The accuracy is improved
by 0.79% with the addition of a multi-head self-attention mechanism for globally extracting
temporal correlation features based on Res-BiLSTM. The results indicate that the added
BiLSTM module has the greatest improvement on the model. The performance of the three
models in the other three indicators is also ResNet < Res-BiLSTM < Res-BiANet. Overall,
due to the combined effects of the spatial feature extraction module, temporal feature
extraction module, and multi-head self-attention mechanism, our proposed Res-BiANet
exhibits the best performance.
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Table 4. Average results (Means + Sds) of ablation experiments.

Models Pre (%) Sen (%) Spe (%) F1 Score (%) Acc (%)

ResNet 83.09 ± 0.62 81.67 ± 0.68 97.87 ± 0.65 82.35 ± 0.60 89.64 ± 0.37
ResNet-BiLSTM 85.33 ± 0.29 85.08 ± 0.45 98.30 ± 0.04 85.16 ± 0.32 91.43 ± 0.18

Res-BiANet 86.68 ± 0.42 86.90 ± 0.45 98.46 ± 0.32 86.75 ± 0.23 92.22 ± 0.15

3.3. Result of Contrast Experiment

A comparative experiment is also designed to verify the performance advantages of
the model. There are the following explanations for the comparative experiment:

1. The dataset we received is not complete. The dataset publicly available from Liu
et al. [30] accounts for 40% of all data. A comparison under the same amount of data
is not feasible.

2. Prior to conducting this study, this publicly available dataset had not yet been found
to be used in public studies.

Due to the above two issues, we also conducted comparative experiments using
three classic deep learning models: AlexNet [41], VGG16 [42], and ResNet18 [35]. Table 5
presents the results of comparative experiments between the three classical models and our
proposed model.

Table 5. Average results (Means + Sds) between three classic models and the proposed model.

Models Pre (%) Sen (%) Spe (%) F1 Score (%) Acc (%)

AlexNet 69.90 ± 0.76 64.93 ± 0.62 95.54 ± 0.09 65.41 ± 0.48 79.89 ± 0.41
VGG16 80.35 ± 0.75 77.49 ± 0.94 97.36 ± 0.10 78.59 ± 0.86 87.34 ± 0.44

ResNet18 80.74 ± 0.19 81.02 ± 0.69 97.75 ± 0.04 80.82 ± 0.34 88.67 ± 0.14
Res-BiANet 86.68 ± 0.42 86.90 ± 0.45 98.46 ± 0.32 86.75 ± 0.23 92.22 ± 0.15

In the comparative experiment, the AlexNet model had the worst performance, with
Pre, Sen, Spe, F1 score, and Acc of 69.90%, 64.93%, 95.54%, 65.41%, and 79.89%, respectively.
Compared to AlexNet, VGG16 is a model with a deeper depth and uses small convolu-
tion kernels instead of large ones, which reduces parameters and improves classification
accuracy. As a result, VGG16 is higher than AlexNet in all evaluation metrics, where the
accuracy is improved to 87.34%. As the depth of the model increases, VGG will have the
problem of vanishing gradients. In order to solve the problem of gradient vanishing, ResNet
introduces a residual structure to further increase the depth of the model and improve
accuracy. Consequently, ResNet18 performs better than VGG16, increasing the accuracy to
88.67%. Overall, with the same amount of data, the performance of the Res-BiANet model
is significantly improved compared to AlexNet, VGG16, and ResNet18.

4. Discussion

In this article, our proposed Res-BiANet model achieved accurate recognition of six
rhythms and demonstrated good performance. Res-BiANet is a parallel structured hybrid
deep learning model that combines residual networks and a bidirectional long short-term
memory network based on a multi-head self-attention mechanism. The model takes a 10 s
PPG signal as input, and two channels extract spatial and temporal features of the PPG
signal. The classifier accomplishes classification of six rhythms. The F1 score and overall
accuracy of the six rhythm classifications reached 86.88% and 92.38%, respectively, while
the Pre, Sen, and Spe were 88.46%, 85.15%, and 98.43%, respectively.

We conducted ablation experiments on the proposed model to assess the impact of each part
of the model on its performance. The results of the five-fold cross-validation experiment showed
that the addition of the BiLSTM module for extracting global temporal features improved
the F1 score by 2.81% and overall accuracy by 1.79%. Upon incorporating a multi-head self-
attention mechanism for extracting temporal correlation features globally, the F1 score and
overall accuracy improved by 1.59% and 0.79%, respectively. The added BiLSTM module



Electronics 2024, 13, 665 12 of 15

exhibited the most significant improvement in the model’s performance, followed by the multi-
head self-attention mechanism. Subsequent comparisons are made with three classical deep
learning models with the same amount of data. The results indicate that our proposed model
maintains performance advantages even when using the same amount of data.

Table 6 shows the comparison between this study and previous studies. As can be
seen in Table 6, different studies used different datasets and data volumes. Detection of
atrial fibrillation was the most common among the single category of arrhythmia detection.
Shashikumar et al. [27] proposed a CNN-based deep learning model for detecting AF from
wrist-extracted PPG signals. The method converted ninety-eight 30 s PPG signals into
2D spectrograms as inputs to the model and achieved 91.8% accuracy in detecting AF in
98 patients. Cheng et al. [28] used 28,440 PPG signal segments from three datasets totaling
102 patients for AF detection. The one-dimensional PPG signals were converted into two-
dimensional time–frequency maps by time–frequency analysis, and the two-dimensional
images were input into a combined CNN and LSTM model for feature learning and
classification. The accuracy, sensitivity, specificity, and F1 score of this study were 98.21%,
98.00%, 98.07%, and 98.13% for the AF detection task, respectively. Aliamiri et al. [29]
collected a total of 1443 PPG signal segments from 19 patients using a wearable device. A
hybrid CNN and RNN deep learning model, CRNN, was used, which detected AF with an
accuracy of 98.19% in 19 patients. For the task of detecting multiple types of arrhythmias,
Neha et al. [23] selected 670 PPG signal segments from 23 records in the publicly available
dataset PhysioNet MIMIC-II. A dynamic time-warping (DTW) method was used to extract
the warping features of the PPG signals as input to the ANN. The accuracy, sensitivity,
specificity, F1 score, and precision for the detection of four types of rhythms (atrial flutter,
normal, premature ventricular beats, and tachycardia) were 95.97%, 97%, 97%, and 96%,
respectively. Liu et al. [30] used a self-constructed dataset including 228 patients totaling
118,217 PPG signal segments. They used a deep convolutional neural network for six
types of arrhythmia detection, and the overall accuracy was 85.0%, while Pre, Sen, and
Spe were 75.2%, 75.8%, and 96.9%, respectively. In contrast, our proposed Res-BiANet
model shows better performance advantage with smaller data volumes, with an overall
accuracy of 92.22% and an F1 score of 86.75%. The figures are 86.68%, 86.90%, and 98.46%
for Pre, Sen and Spe, respectively. The results of our study are based on the data volume
of 91 patients totaling 46,827 PPG signal segments. From Table 6, it can be seen that the
dataset and data volume used in the arrhythmia detection task based on PPG signals are
not the same. Therefore, there are certain limitations in comparing our research results
with previous studies, especially the comparison with the data sources we used. The study
by Liu et al. [30] was based on 228 patients totaling 118,217 PPG segments, and the patient
data in the divided training, validation, and test sets were independent of each other, which
is different from our dataset division strategy, where we took the approach of disrupting
the data of the 91 patients used to divide the training, validation, and test sets.

We have tried to use the PPG signals in the publicly available dataset PhysioNet MIMIC
II for arrhythmia identification and classification, but unfortunately the PPG signal segments
about arrhythmias in PhysioNet MIMIC II are not annotated with labels, and we were not
able to perform supervised learning. In addition, there is a single type of arrhythmia based on
PPG signals in PhysioNet MIMIC II, and the goal of our study was to develop an automated
detection method for multiple types of arrhythmias; therefore, we did not use PhysioNet
MIMIC II or other publicly available datasets that are used by most researchers.

While our model has enhanced its recognition ability for arrhythmia types with lower
recognition rates, such as PAC and VT, it still maintains an error recognition rate of nearly
25%. Moving forward, we will focus on these misclassified categories and continuously
improve and optimize the network model. We will enhance the model’s recognition ability
for such arrhythmia signals by improving the feature extraction ability of peak intervals
and amplitude sizes of PPG signals. Additionally, the method proposed in this article has
not undergone clinical trials. In the future, we plan to apply this method to practical life
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scenarios, such as using it as an auxiliary diagnostic tool for doctors and enabling portable
detection of arrhythmias on wearable devices.

Table 6. Comparison with previous studies.

References Database Number of
Subjects

Data
Volume Detection Method Result

Shashikumar et al. [27] Self-generated
database 98 98 AF CNN AUC: 0.95

Acc: 91.8%

Cheng et al. [28]

MIMIC-III
waveform database;

IEEE TAME
Respiratory Rate

Benchmark dataset;
Synthetic dataset

102 28,440 AF 2D-CNN + LSTM

Sen: 98.00%
Spe: 98.07%

F1 score: 98.13%
Acc: 98.21%
AUC: 0.9959

Aliamiri et al. [29] Self-generated
database 19 1443 AF CNN + RNN AUC:99.67%

Acc: 98.19%

Neha et al. [23] PhysioNet
MIMIC-II database 23 670

PVC, AFl, ST, and
normal sinus

rhythm
ANN

Pre: 96%
Sen: 97%
Spe: 97%

F1 score: 96%
Acc: 95.97%

Liu et al. [30] Self-generated
database 228 118,217 PVC, PAC, VT,

SVT, and AF DCNN

Pre: 75.2%
Sen: 75.8%
Spe: 96.9%
Acc: 85.0%

This work From the dataset in
Ref. [30] 91 46,827 PVC, PAC, VT,

SVT, and AF Res-BiANet

Pre: 88.46%
Sen: 85.15%
Spe: 98.43%

F1 score: 86.88%
Acc: 92.38%

5. Conclusions

The automatic detection of multiple types of arrhythmias is currently a popular
topic in auxiliary diagnosis, especially in the detection of arrhythmias based on portable
PPG signals. This article introduces Res-BiANet, a deep learning model that integrates
parallel CNN and RNN structures based on PPG signals for detecting multiple types of
arrhythmias. The CNN employs an improved ResNet network to extract spatial features of
PPG signals, while the RNN employs a BiLSTM network to extract global temporal features
and incorporates a multi-head self-attention mechanism to enhance the extraction of global
temporal correlation features. The experimental results demonstrated that Res-BiANet
performed well in the classification task of five types of arrhythmias and normal heart
rhythm. The F1 score and overall accuracy of six rhythm classifications reached 86.88% and
92.38%, respectively. Notably, with the addition of the temporal feature extraction module,
the model’s recognition rates for PVC, PAC, and VT increased by 7.79%, 9.74%, and 6.26%,
respectively. This finding suggests that our model has significantly improved recognition
abilities for arrhythmia categories with similar morphology. Therefore, our model has great
potential in the auxiliary diagnosis of multiple types of arrhythmias detection based on
PPG signals.
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