
Citation: Bayona, E.; Sierra-García,

J.E.; Santos, M. Comparative Analysis

of Metaheuristic Optimization

Methods for Trajectory Generation of

Automated Guided Vehicles.

Electronics 2024, 13, 728. https://

doi.org/10.3390/electronics13040728

Academic Editors: Sergio

Montenegro, Michael Strohmeier

and Nikolay Hinov

Received: 25 December 2023

Revised: 4 February 2024

Accepted: 6 February 2024

Published: 11 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Comparative Analysis of Metaheuristic Optimization Methods
for Trajectory Generation of Automated Guided Vehicles
Eduardo Bayona 1,2,* , Jesús Enrique Sierra-García 1,2,* and Matilde Santos 3

1 Department of Digitalization, University of Burgos, 09001 Burgos, Spain
2 UBU-MICHELIN Joint Research Unit in Automation and Smart Industry, Arainnov Michelin Aranda,

09400 Aranda de Duero, Spain
3 Institute of Knowledge Technology, Complutense University of Madrid, 28040 Madrid, Spain;

msantos@ucm.es
* Correspondence: ebayona@ubu.es (E.B.); jesierra@ubu.es (J.E.S.-G.)

Abstract: This paper presents a comparative analysis of several metaheuristic optimization methods
for generating trajectories of automated guided vehicles, which commonly operate in industrial
environments. The goal is to address the challenge of efficient path planning for mobile robots,
taking into account the specific capabilities and mobility limitations inherent to automated guided
vehicles. To do this, three optimization techniques are compared: genetic algorithms, particle
swarm optimization and pattern search. The findings of this study reveal the different efficiency
of these trajectory optimization approaches. This comprehensive research shows the strengths and
weaknesses of various optimization methods and offers valuable information for optimizing the
trajectories of industrial vehicles using geometric occupancy maps.

Keywords: automatic guided vehicle; metaheuristic optimization; industry 4.0; trajectories

1. Introduction

Automatic guided vehicles (AGV) are industrial vehicles that have favored the im-
plementation of industry 4.0. With the new and more recent technologies, they are also
becoming a pillar for industry 5.0, where the interaction of robots with humans is key.
These vehicles take care of many logistical tasks, tedious for the human operator. In many
cases, they share space with workers [1]. In the realm of autonomous guided vehicles
(AGVs), trajectory planning is crucial for safe and efficient navigation. Vagale et al. in [2]
emphasize the importance of path design methodologies and guidance laws, with a focus
on simplicity and efficiency. New models for path planning optimization, addressing the
complexity of manufacturing networks and the stochastic nature of AGVs as introduced
in [3]. The authors in [4,5] underscore the significance of safe trajectory planning, with the
authors in [4] specifically focusing on the safety aspect. Tamizi et al. in [5] discuss the impli-
cations of trajectory planning on the design and use of automatic machines. The selection
of an appropriate trajectory planning algorithm is crucial for achieving the safest trajectory
for AGVs. Even more, the generation of trajectories has to consider not only obstacle
avoidance but also the inherent constraints and limitations of this kind of industrial vehicle,
such as maneuverability, complex and non-linear dynamics, etc. [6]. Therefore, a research
topic of industrial interest is the development of optimal trajectories that are safe, efficient
and feasible.

The optimization of trajectories has been addressed using various methods, including
metaheuristic techniques. Metaheuristic optimization techniques are iterative procedures
that guide a search through the solution space to find the best possible solution, partic-
ularly useful for solving combinatorial optimization problems, nonlinear programming
and multi-objective optimization [7]. Metaheuristic search techniques, such as simulated

Electronics 2024, 13, 728. https://doi.org/10.3390/electronics13040728 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040728
https://doi.org/10.3390/electronics13040728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5598-3997
https://orcid.org/0000-0001-6088-9954
https://orcid.org/0000-0003-1993-8368
https://doi.org/10.3390/electronics13040728
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040728?type=check_update&version=2

Electronics 2024, 13, 728 2 of 25

annealing, genetic algorithm, and particle swarm optimization, have been applied in en-
gineering problems, demonstrating their versatility and effectiveness [8,9]. Furthermore,
metaheuristic optimization techniques have been used for optimization problems with
continuous variables, showcasing their applicability across different domains [10]. The se-
lection of an appropriate metaheuristic technique for a specific problem is contingent upon
the problem’s nature, the structure of the search space, and the problem’s constraints is
explored by the authors in [11]. Metaheuristic techniques encompass a diverse range of
methods, each with its own characteristics and suitability for specific types of problems as
explored in [12]. Currently, metaheuristic optimization techniques are the focus of active
research, and their application continues to expand as new approaches are developed and
adapted to emerging challenges in various domains [13].

The trajectory planning for mobile robots or vehicles is a critical aspect that requires
careful analysis and evaluation of different strategies. This work’s primary contribution is
the comparison and evaluation of three meta-heuristic optimization methods for AGV tra-
jectory planning: genetic algorithms (GA), particle swarm optimization (PSO) and pattern
search (PS). A strategy for general optimization, independent of the optimization method, is
proposed to obtain a solution that prioritizes a safe trajectory. The methodology to perform
the comparison is also described in detail. Three scenarios of increasing complexity are
created to test the different techniques. These optimization strategies have been widely ap-
plied in trajectory planning for robotic systems. The genetic algorithm, inspired by natural
selection, has demonstrated effectiveness in trajectory planning. Similarly, PSO, simulating
the social behavior of birds, has shown effectiveness in optimizing trajectories for robotic
applications. Furthermore, pattern search algorithms have been applied for trajectory
planning in diverse domains, offering a different approach to trajectory optimization.

Text is structured as follows: Section 2 summarizes some related works. Section 3
presents the general optimization methodology used, including the problem modeling
(occupancy map, the trajectory definition and the collisions with obstacles). It also presents
the configuration and application of the optimization strategies and the metrics used for
the comparison. Section 4 presents the experiments and the evaluation of the solutions for
each proposed scenario, discussing the problems found in each case. Finally, in Section 5
conclusions and future works are recommended.

2. Related Works

Metaheuristic optimization methods, such as genetic algorithms, particle swarm opti-
mization, and pattern search, have been widely applied in power engineering, engineering
optimization, and many other fields due to their ability to provide good solutions to com-
plex problems [14,15]. These methods are characterized by their flexibility and efficiency
in solving a wide range of optimization problems, making them suitable for real-world
applications [16]. The effectiveness of these methods has been demonstrated in various
environments and areas, in a wide range of domains [17]. The relevance of these strate-
gies is further supported by the authors in [18], which discusses decentralized motion
planning and scheduling of AGVs. Additionally, the study by Altché and Fortelle in [19]
considers trajectory planning and control for autonomous ground vehicles in the presence
of obstacles, emphasizing the importance of considering the link to the scheduling of
interacting machines. Furthermore, the authors in [20] focus on optimal trajectory op-
timization for robots, considering constraint conditions such as speed and acceleration.
These references collectively support the significance of evaluating and comparing different
trajectory-planning strategies for mobile robots and vehicles.

Some studies have explored the use of genetic algorithms for AGV path planning,
each proposing different improvements. The authors in [21] introduced real number
coding, heuristic population initialization, and obstacle avoidance and smoothness modules
to enhance the traditional genetic algorithm. Cao et al. in [22] focused on the use of
a grid model and chamfer operator to speed up convergence in AUV path planning.
The authors in [23] applied an improved genetic algorithm with three-exchange crossover

Electronics 2024, 13, 728 3 of 25

heuristic operators and double-path constraints for multi-AGV path planning. Based on
a constructed ground map, a hybrid path planning algorithm is proposed by Li et al.
in [24] to optimize the planned path. A genetic algorithm is used for global path planning,
and a local rolling optimization is used to constantly optimize the results of the genetic
algorithm. These studies collectively demonstrate the potential of genetic algorithms in
mobile robots in general, and specifically for AGV path planning, with each proposing
unique enhancements to improve efficiency and effectiveness.

Recent literature has also explored the use of particle swarm optimization (PSO) for
trajectory optimization in various contexts. For instance, its application in generating
stochastic trajectories for unmanned aerial vehicles (UAVs) is shown in [25]. Authors
in [26] provided a comprehensive review of swarm intelligence algorithms, highlighting
the wide application and discussion of extended algorithms. Additionally, recent studies
have focused on improving PSO for path planning, such as the work by Lu et al. in [27],
which introduced an improved simulated annealing PSO algorithm for mobile robot path
planning. Moreover, the research by Huang et al. in [28] proposed a novel PSO algorithm
based on reinforcement learning for autonomous underwater vehicle (AUV) path planning,
addressing the consideration of ocean currents.

Path planning is a critical aspect of autonomous systems, and the use of pattern search
algorithms has gained significant attention in recent research. The authors in [29] proposed
a mobile robot path planning method using globally guided reinforcement learning, demon-
strating its effectiveness across various map types and obstacle densities. Additionally,
Ma et al. in [30] introduced an improved Q-learning algorithm based on a continuous
local search policy for mobile robot path planning, emphasizing the exhaustive search of
state-action pairs in the environment. Furthermore, Ren et al. presented in [31] the Multi-
Objective Path-Based D* Lite algorithm, highlighting its efficiency in navigation through
unknown terrains. These recent studies underscore the growing interest in leveraging pat-
tern search techniques for enhancing path planning in dynamic and complex environments.

A comparison of genetic algorithm (GA) with particle swarm optimization (PSO) or
pattern search (PS) for trajectory planning reveals the strengths and weaknesses of each
approach. PSO has been found to be superior to GA in terms of searching speed and
convergence [32], and has been successfully applied in trajectory optimization of industrial
robots [33]. However, a novel stochastic gradient PSO algorithm has been proposed to
address the premature convergence and poor accuracy issues of standard PSO [34].

3. Optimization Methodology

This work compares three optimization algorithms for generating safe trajectories
for automated guided vehicles (AGVs) in industrial environments. Three different work
scenarios have been defined. To begin with, it is important to clearly define the comparison
methodology, the optimization strategy and the modeling of the elements involved in the
procedure. The comparison methodology is shown in Figure 1.

The mathematical modeling of the trajectories that are going to be generated by
the different methods and the steps of the process must be defined. For clarity reasons,
the problem modeling is explained in Section 3.1 and the optimization strategy proposed
is described in Section 3.2. As will be shown, the optimization strategy is independent of
the heuristic technique applied. Some meaningful metrics are defined and are recorded
for each iteration of the optimization methods. These values are used to evaluate and
compare the metaheuristic techniques at different points of the optimization process. These
metrics include, for instance, the time required to achieve a collision-free solution and the
time needed to obtain the best solution in each case. They are explained in Section 3.3.
In addition to these comparison metrics, is also necessary to define the scenarios to compare
the trajectories (Section 3.4). Once the whole frame is defined, the metaheuristic techniques
are configured as explained in Section 3.5, and then tested following the process described
in Section 3.6. For each run, a log file with the metrics to be evaluated is obtained. This

Electronics 2024, 13, 728 4 of 25

information is used to perform the comparison of techniques, and the results are discussed
in Section 4.

Problem Modeling

Metrics Selection

Optimization Strategy Design

Scenarios Selection

Metaheuristic Experiments

Techniques Comparison

Genetic Algorithm
(GA)

Particle Swarm
(Swarm)

Pattern Search
(PS)

Figure 1. Optimization methodology.

3.1. Problem Modeling

Figure 2 describes the trajectory generation process considering the specific require-
ments of the logistic application. The logistic task is defined by a computer-aided design
(CAD) occupancy map which contains the dimensions of the workspace and the obstacles,
together with the initial and final points and angles. The accurate definition of the initial
and final angles is necessary to ensure the docking at the stations. An automatic method,
shown by the authors in [35], analyzes the occupancy map to extract the obstacles list
which contains the polylines that define the boundaries of the obstacles. This methodology
simplifies the calculation of the distance between the vehicle and the obstacles and makes
the calculation of the fitness function of the optimization process more efficient.

Optimization
Process AGV

Logistic Application

Waypoints
(Coordinates)

Fleet ManagerObstacle
Export

Obstacles List TrajectoriesCAD Ocuppancy Map

Initial/Final waypoints
(Coord. & Output

Angles)

Figure 2. Trajectory generation process.

The user defines a set of waypoints to facilitate the work of the optimization tool and
this way helps accelerate the optimization process. This definition of the waypoints does
not need to be very accurate; indeed, the user can locate the obstacles in the occupancy
map and give some tentative points in the available space. This way the optimization
process only must focus on the optimization of the angles of the waypoints. Therefore the

Electronics 2024, 13, 728 5 of 25

optimization process receives the obstacles list, the start and end points with the angles,
and the list of waypoints selected by the user. Then, iteratively, it proposes different
trajectories to find the one that offers the best safety conditions, that is, the trajectory
furthest away from any obstacle. These trajectories can be sent to the AGV or can be
managed by a fleet control system.

To show the trajectories the kinematic variables, such as position and velocity, have
to be obtained, which gives an understanding of the dynamics of the vehicle. Differential
geometry is used to model these trajectories as it allows us to describe the behavior of an
object following a specific path in the space [36]. This discipline describes not only the
object’s trajectory but also specifies key parameters, such as the curvature and torsion of
the path. In some parametrization techniques, these variables are part of the differential
equations that describe the vehicle kinematics, such as in the Frenet–Serret equations [37].
In these curves, three elementary vectors are identified: tangent, normal and binormal
vectors. The Frenet–Serret formalism has been used in this work because it enhances
curve smoothness and the ability to avoid obstacles with more natural trajectories. Frenet
equations in (1) define a flat curve in R2, being T the tangent vector and N the normal
vector that satisfies this equation.

T′s = ksNs

N′s = −ksTs
(1)

where s is the distance from the origin at each point, k is the curvature of the trajectory, T(s)
is the tangent vector, N(s) is the normal vector, all of them at distance s, and the symbol ′

denotes the perpendicular vector.
Clothoid curves have various applications in planning and generating trajectories

for autonomous vehicles or robots. This article uses clothoid curves expressed through
Frenet formulas to determine paths of the AGV within the occupancy map. To do it,
an algorithm following the work of Bertolazzi and Frego in [38] is applied to solve the
G1 Hermite interpolation problem, obtaining a clothoid curve that connects two points
with unit tangent vectors in a plane. The interpolation problem is expressed as a set of
three nonlinear equations. Solutions for this optimization problem are defined as a set of
elements: θ(Nw), where Nw is the number of intermediate points and θ is the output angle
of the trajectory at those intermediate points. Therefore, the solution will have as many
elements as intermediate points. The angle range is between 0 and 2π. These conditions
are formally expressed in (2).

θi ∈ [0, 2π] ; i ∈ {N ≤ Nw} (2)

The calculation of the distance between obstacles and the vehicle uses the singular
points of the vehicle, i.e., the vertices of the vehicle, and the segments that delineate the map
obstacles. The location of the vertices of the AGV in the inertial frame S0 changes while
the AGV is following the trajectory. However, the position of the vertices in the coordinate
frame SR located at the center of the AGV, is constant. The set of vertices in the coordinate
SR is denoted by VR = (W/2, L/2), (−W/2, L/2), (W/2,−L/2), (−W/2,−L/2), where
W is the width of the vehicle, and L is its length. Given the position P = (Px, Py, 0) of the
center of the vehicle, and its orientation θ, both in the inertial frame S0; it is possible to
obtain the location in S0 of any vertex vR ∈ VR by using the coordinate transformation
defined in Equation (5). The vertex in S0 is v0 = (v0x , v0y). The translation matrix is Ttr and
Trot is the rotation matrix around the z-axis, as expressed in Equations (3) and (4), respectively.

Ttr(Px, Py) =


1 0 0 Px
0 1 0 Py
0 0 1 0
0 0 0 1

 (3)

Electronics 2024, 13, 728 6 of 25

Trot(θ) =


cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 (4)


v0x

v0y

0
1

 = Ttr(Px, Py) · Trot(θ)


vRx

vRy

0
1

 (5)

In Figure 3 the robot is represented, with the coordinate systems (S0) and (SR), and the
vertices of the vehicle. The centre of the vehicle P is shown in blue and the vertices in
yellow. It is possible to see how the location of the vertices in S0 depends on the orientation
θ and the position P, while the vehicle follows the trajectory.

Figure 3. Vehicle singular points representation in general and relative reference frames.

To determine the distance between the obstacle j and the vertices in the set V0, each
vertex v0 ∈ V0 is projected onto the lines containing the segments defining the obstacles on
the map. If the projection Q falls within the obstacle segment AB, the distance is calculated
as the norm of the vector connecting the point with its projection, ||Q⃗v0||. Otherwise,
the distance is obtained as the norm of the vector connecting the point with the nearest
vertex of the obstacle, ||A⃗v0||. The calculation of this distance is further explained in [39].
Let D(v0, A⃗B) be the distance of a vertex v0 ∈ V0 to the segment A⃗B, that is, the distance
from the vehicle boundary of the vehicle to the closest segment of the occupancy map, A⃗B.
If point Q belongs to the segment A⃗B, the distance is the norm of Q⃗v0. In case Q is outside
the A⃗B segment, the distance is the norm of A⃗v0, being A the nearest obstacle’s vertex to v0.

The distance D(V0, A⃗B) from the vertex v0 to the occupancy map is expressed as in Equation (6):

D(v0, A⃗B) =


||Q⃗v0|| =

√
(Qx − v0x)

2 + (Qy − v0y)
2 if Q ∈ A⃗B

||A⃗v0|| =
√
(Ax − v0x)

2 + (Ay − v0y)
2 if Q /∈ A⃗B

(6)

where (v0x , v0y) denotes the coordinates of the vehicle’s vertex in S0.
This calculation is repeated for all segments of all the obstacles, in order to detect

the closest segment. This distance is called Dijk, and it represents the distance from the
vertex k of the trajectory point i to the obstacle j. If the point is inside an obstacle, this
means collision and the distance is named Dcijk . Figure 4 shows examples of non-collision
minimum distance Dijk and collision minimum distance Dcijk to an obstacle j.

Electronics 2024, 13, 728 7 of 25

Figure 4. Graphical representation of metrics components.

3.2. Optimization Strategy

To determine the optimal trajectory of the automated guided vehicle (AGV), an iterative
computational procedure is proposed (Figure 5). The metaheuristic method gives the output
angles of the intermediate points θi. These optimized output angles θi, along with the coor-
dinates of the intermediate points (xi, yi) and the coordinates and angles of the start and end
points (xs, ys, θs) and (xe, ye, θe), are used to generate the trajectory described in Section 3.1.
The trajectory is tested with the obstacle list to assess distances to any obstacle D and the
collision checking Dc. This information is considered by the fitness function fc to evaluate the
solution quality. Then, the metaheuristic method receives the fitness function value to generate
a new set of angles θi and the iterative process continues.

Metaheuristic Method Trajectory Generation

FITNESS FUNCTION (fc)

Collision Checking (Dc)

Distance to Obstacles (D)

Obstacle
List

Waypoints
Coordinates

(xi,yi)

Waypoints
Angles (θ)

Starting and Ending
Points Angles

(θs,θe)

Figure 5. Optimization strategy.

The main parameters of this optimization problem are summarized below.

• Constraints and fixed parameters:

a. Coordinates of the start point: (xs, ys)
b. Output angle of the start point: θs
c. Coordinates of the end point: (xe, ye)
d. Input angle of the end point: θe

e. Coordinates of the way-points: (xi, yi) ∈ R2 i ∈ {N ≤ Nw}
f. Physical dimensions of the AGV

• Optimization variables:

g. Output angles of the way-points: θi ∈ [0, 2π] i ∈ {N ≤ Nw}
A dual fitness function has been defined to evaluate the best solutions in presence

and absence of collisions. The function is piece-wise and has two components. The first
component calculates the total invaded distance of the collision space for collision scenarios,
while the second component works with the average distance to the obstacles for collision-
free scenarios. To ensure continuity of the piece-wise function, both components are
normalized to 1. The fitness function is expressed formally as follows:

Electronics 2024, 13, 728 8 of 25

fc =


1 + ∑n

i=1 minj∈No ,k∈1...4Dcijk if Dc ̸= 0

1−
∑n

i=1 minj∈No ,k∈1...4Dijk/n
maxj∈No Dijk

if Dc = 0
(7)

where n is the number of points of the trajectory, No is the number of obstacles in the
occupancy map, Dijk represents the distance from the vehicle’s vertex k in the trajectory
point i to the obstacle j when there is no collision, and Dcijk is the distance when a collision
occurs. Dc is the sum of distances to all obstacles in a collision. Thus, when there is no
collision (Dc = 0), the fitness function aims to maximize the distance to obstacles. On the
other hand, when collision occurs (Dc ̸= 0), the fitness function is designed to minimize
the length of the trajectory inside the obstacles.

This optimization strategy can be synthesized and formalized with the Algorithm 1.

Algorithm 1 Optimization algorithm

Require: Nw ≥ 0, n > 0, |listobs| = No ≥ 0, W > 0, L > 0
fc ← ∞
while iter ≤ iterMAX do
{θi} ← fopt(fc), i ∈ {N ≤ Nw}
t f renet ← f f renet(θi, (xe, ye), (xs, ys), {(xi, yi)}), i ∈ {N ≤ Nw}{

Dijk

}
← getdis(t f renet, listobs, W, L), i ∈ {N ≤ n}, j ∈ {N ≤ No}, k ∈ {N ≤ 4}{

Dcijk

}
← getcol(t f renet, listobs, W, L), i ∈ {N ≤ n}, j ∈ {N ≤ No}, k ∈ {N ≤ 4}

Dc ← ∑n
i=1 ∑No

j=1 ∑4
k=1 Dcijk

if Dc ̸= 0 then
fc ← 1 + ∑n

i=1 minj∈No ,k∈1...4Dcijk

else

fc ← 1−
∑n

i=1 minj∈No ,k∈1...4Dijk/n
maxj∈No Dijk

end if
end while

listobs is the set of the obstacles, fopt denotes the function executed by the metaheuris-
tic algorithm, t f renet ∈ R3n denotes the Frenet trajectory, getdis denotes the function to
calculate the distances to the obstacles, and getcol indicates the function which computes
the collision distances.

3.3. Evaluation Metrics

• Non-collision time (NCT): The NCT measures how long it takes the optimization
algorithm to identify a solution that meets the safety condition of no collisions.

• Best-solution time (BST): The BST time measures the duration it takes the optimization
algorithm to pinpoint the trajectory that achieves the highest average distance from
obstacles, representing the most favorable outcome.

• Minimum distance to obstacles (MDO): The MDO is the minimum distance that the
vertices of the AGV will have to the obstacles of the occupation map. The calculation
involves determining the minimum distance to obstacles for each vertex of the vehicle
along the trajectory, and selecting the smallest value from this set of values. When there is
a collision registered, the MDO value is zero. Formally, this value is given by Equation (8).

MDO = mini∈1...n, k∈1...4(minj∈No Dijk) (8)

Being n the number of trajectory points and No the number of obstacles in the occu-
pancy map. Dijk denotes the distance from the vehicle’s vertex k in the trajectory point
i to the obstacle j when there is no collision.

Electronics 2024, 13, 728 9 of 25

• Average distance to obstacles (ADO): The average value of the set of minimum dis-
tances to obstacles from the vertices of the vehicle along the trajectory (ADO) is
formally expressed in Equation (9). This value analyses the average distance of the
trajectory to the occupation map, thus maximizing this metric means maximizing the
anti-collision safety conditions.

ADO =
∑n

i=1 minj∈No ,k∈1...4Dijk

n
(9)

3.4. Evaluation Scenarios

Three simulation scenarios were meticulously crafted to assess the effectiveness of the
optimization algorithms. All scenarios share dimensions of 13,500 × 11,000 mm and are
classified based on their complexity (low, medium and high) indicating varying levels of
intricacy and challenge. The complexity is derived from both the quantity and strategic
positioning of obstacles within the occupancy map. Figure 6 illustrates these scenarios,
depicting the starting and ending points of each trajectory, as well as their respective output
angles. The low-complexity scenario features a sparse distribution of obstacles, creating a
relatively straightforward environment for trajectory planning. In contrast, the medium-
complexity scenario introduces a moderate increase in obstacle density, demanding a
more intricate approach to trajectory planning. Finally, a more complicated waypoint
positioning within the obstacle arrangement is presented in the high-complexity scenario.
These complexity levels are further characterized by the inclusion of a greater number of
intermediate points, progressively elevating the optimization process’s complexity for the
selected methods.

In terms of design, the occupancy map of each scenario was constructed based on a
conceptual framework that emphasizes the strategic placement of blocks and waypoints to
find a trajectory through a network of obstacles. The idea behind this design approach is to
emulate different environments, allowing a comprehensive evaluation of the optimization
algorithms across a spectrum of complexity. In Figure 6, the images represent occupancy
maps, where blue polygons denote obstacles and white spaces indicate free areas within
the map. The inclusion of start and end points, along with small arrows indicating the exit
angle of the trajectory at these points, provides a visual representation of the experimental
setup. Taken together, these elements serve as important visual aids, providing a clear
understanding of the scenarios and facilitating the interpretation of the performance of the
optimization algorithm in different environmental conditions.

(a) (b) (c)

Figure 6. Graphical representation of the three scenarios considered for optimization experiments.
(a) Low complexity; (b) medium complexity; (c) high complexity.

Throughout the experimental evaluations, a specific guided automated vehicle (AGV)
is used. The AGV has some specific dimensions, 1800 mm length and 550 mm width. This
experimental setup allows for a comprehensive exploration of the algorithms’ adaptability
and performance under varying conditions.

Electronics 2024, 13, 728 10 of 25

3.5. Configuration of Metaheuristic Techniques

In this article, three different metaheuristic optimization methodologies are used to
compare their performance, advantages, and disadvantages: Genetic algorithms, particle
swarm optimization and pattern search. The configuration of each of them is as follows.

3.5.1. Genetic Algorithms

Genetic algorithms are used to optimize the output angles of the intermediate points
as tuning variables. Initial output angles are randomly generated subject to the constraints
previously established.

The population size is 50 individuals. The crossover operator randomly selects two
individuals (parents) and averages the corresponding variables of the parents to create
offspring. The averaging process introduces a random weight for each variable, enhancing
the diversity of the new individual.

Additionally, boundary mutation is adopted. This operator introduces random mod-
ifications to the selected variables of a solution within a range, in this case, 20% of the
total variable range. Individuals are then selected to generate a new population through a
combination of proportional fitness selection and elitism. The selection probability for each
individual is determined by normalizing their fitness values. At each generation, two elite
individuals, representing the best solutions of the current generation, are directly included
in the next generation. All these parameters are summarized in Table 1.

Table 1. Genetic algorithm parameters.

Parameter Value

Individuals per generation 50
Genetic Operator Crossover & Mutation

Chromosomes Number of intermediate waypoints
New population selection Hybrid (Proportional and Elitism)

3.5.2. Particle Swarm Optimization

The particle swarm optimization algorithm begins by creating the initial particles and
assigning them initial velocities. The fitness function is evaluated at each particle location,
determining the best value (lowest) and the best location. Subsequently, new velocities are
selected based on the current velocity, the best individual locations of the particles, and the
best locations of their neighbors.

The particle locations are iteratively updated, with the new location being the old one
plus the velocity, modified to keep the particles within the specified limits of velocities and
neighbors. In this case, the limits are set between 0 and 360 degrees, which represent the
possible output angles for the intermediate points of the trajectory. Additionally, an inertia
parameter of 0.5 is used. All these parameters are summarized in Table 2.

Table 2. Particle swarm parameters.

Parameter Value

Number of particles per swarm 50
New swarm particles Limits [0, 360]

Inertial Parameter 0.5

3.5.3. Pattern Search

Pattern search involves the iterative exploration of a multidimensional search space to
find the best solution, without requiring the calculation of gradients. Initially, a starting
point is established in the search space, which in this work is randomly chosen within

Electronics 2024, 13, 728 11 of 25

the limits of the solution (output angle of the waypoint). Then, searching directions are
generated and solutions are evaluated at nearby points. These search directions are scaled
by the current mesh size, which is dynamically adjusted during the process. The evaluation
of solutions on the mesh guides the update of the starting point and the generation of new
search directions, continuing the process until it converges to the best solution.

To decide the initial mesh size and the contraction and expansion factors, various
approaches can be considered. The initial mesh size can be adjusted based on the problem
domain and the scale of the variables. In this work, an initial mesh size of 1 has been used,
taking into account the optimization parameters used.

Regarding the contraction and expansion factors, small values of the contraction factor
and large values of the expansion factor can lead to a broader exploration of the search
space, while the opposite can focus the search on local regions. Based on experimenta-
tion and experience, contraction and expansion factors of 0.995 and 2, respectively, have
been selected. All these parameters are summarized in Table 3.

Table 3. Pattern search parameters.

Parameter Value

Initial Solution Random in [0, 360]
Mesh Initial Size 1

Contraction Factor 0.995
Expansion Factor 2

3.6. Simulation Experiments

The experiments were conducted systematically to provide a comprehensive insight
into the performance of the three optimization algorithms. Results plots and a detailed
occupancy map were generated to visually represent the results of the optimization algo-
rithms. Both the algorithms and the visualization figures were implemented and simulated
in Matlab r2022a software.

Generations of 50 individuals were established for both the genetic algorithm and the
particle swarm. For pattern search, an initial population was implemented by randomly
distributing 360 values between 0 and 360. In this case, three different tests were carried
out under identical conditions but with different initial populations.

For each scenario, specific conditions were established based on their complexity,
which are consistent across all selected methods. The iterative process was carried out with
the same fitness function, monitoring the results at each iteration. For each metaheuristic
technique, a log file was generated with the following information (one row in the log
was written per iteration): the timestamp, the corresponding generation, the individual
number within the generation, the fitness function value, the angle value of the solution,
the MDO and the ADO. This information allowed it to compare individual solutions
among the metaheuristic techniques, as well as the evolution of the metrics during the
optimization process.

The data were organized and saved in a CSV file, with the evolution of the metrics
throughout the process so as to be able to analyze the trajectories generated. It allows not
only to measure the quality of the final optimal solution but also the continuous evaluation
of all intermediate solutions. This methodology gives a detailed view of the dynamics of
the algorithm throughout the iterations, facilitating the analysis and understanding of the
effectiveness of the method in finding optimal solutions to the path optimization problem.

The evaluation process involves the analysis of the collected metrics, including times-
tamp, generation, individuals, fitness function, minimum and average distances to obstacles
and the time required to achieve collision-free and best solutions.

4. Results

This section compares graphically and numerically the results obtained by the ap-
plication of the three different metaheuristic techniques to the AGV trajectory generation

Electronics 2024, 13, 728 12 of 25

problem. To obtain the results, the Matlab r2022a software has been used, along with
the Global Optimization 4.7 and Navigation 2.2 toolboxes. The first allows you to run
genetic algorithms, pattern search and particle swarm algorithms. On the other hand,
the Navigation toolbox has been used to generate the Frenet routes. The representation
of the trajectory of the best solution found with each technique and the evolution of the
comparison metrics during the optimization process is shown.

The figures that show the trajectory of the best solution use the following code. Red
lines indicate the solution trajectories, with red dots representing the input parameters
(start point, end point, and intermediate points). The AGV at each point of the trajectory
is shown in blue. Additionally, yellow lines indicate the minimum distance between the
vehicle vertices and the obstacles in the occupancy map.

On the other hand, in the figures of the evolution of each metric, blue lines represent
the results of the GA, red lines are the results of the PS, and yellow lines are the results of
the PSO technique. As the simulation experiments are quite long a zoom has been applied
to better visualize the first part of the optimization process where more changes occur.

4.1. Low Complexity Scenario

To define the trajectories, a low-density occupancy map has been first used, with seven
obstacles in a small space. Additionally, three intermediate points are used along with
the start and end points. The output angles of the start and end points are given, while
the output angles of the intermediate points are considered the optimization variables.
The maximum optimization time to obtain the solutions has been set to 3600 s, that is,
one hour.

Figure 7 shows the optimal trajectories for the three metaheuristic methods, GA, PS
and PSO. As shown in Figure 7a,c, the GA and PSO methods successfully find a collision-
free solution within the given time, while PS is unable to do so as shown in Figure 7b. Due
to its mode of operation, if the initial conditions are far from the solution, the system may
not be able to reach it because it is a local optimization technique.

(a) (b)

(c)

Figure 7. Low complexity scenario, optimized trajectories. (a) Genetic algorithm. (b) Pattern search.
(c) Particle swarm.

Electronics 2024, 13, 728 13 of 25

Figures 8–10 show the results obtained. Figure 8 shows the evolution of the best fitness
function at each iteration for each technique during the optimization process. The time
indicates the elapsed time between the beginning of the optimization and the time when
the solution was found. Although GA and PSO reach similar final values, GA advances
faster in the optimization process, reaching feasible trajectories without collision more
quickly. PS not only fails to find a viable solution to the problem but also takes longer to
improve results as iterations progress.

Figure 8. Optimization methods, fitness function evolution in the low complexity scenario.

Figure 9 shows the evolution of the ADO. As expected, this value increases when the
fitness function reaches values smaller than 1, indicating the point at which the trajectory
enters the non-collision zone and moves away from obstacles as far as possible. When PS is
not in a non-collision state, the mean value is much lower than with the other techniques.

Figure 9. Optimization methods, ADO evolution in the low complexity scenario.

Figure 10 shows the evolution of the MDO. It is possible to see how the MDO for PS is
always zero. As anticipated, since these iterations always involve collisions, the minimum
distance to obstacles for PS will be always zero. In the case of GA and PSO, it can be
observed that, although the trajectories obtained seem to be practically identical, there is

Electronics 2024, 13, 728 14 of 25

a slight difference in the minimum values of the distance to obstacles obtained by each
algorithm. In this case, GA maintains a greater minimum distance in its final solution
than PSO.

Figure 10. Optimization methods, MDO evolution in the low complexity scenario.

Tables 4 and 5 list all analytical results shown in Figures 8–10. It includes data for the
first iteration where a collision-free solution was obtained, as well as the iteration with the
best solution during the optimization process.

Table 4. Low complexity scenario, first non-collision iteration analytic results.

Technique Non-Collision
Time (s)

Non-Collision
Iterations ADO [mm] MDO [mm] Fitness

Function

GA 4 3 647.07 403.99 0.9628
PSO 20 12 546.26 5.30 0.9686
PS - - - - -

Table 5. Low complexity scenario, best solution analytic results.

Technique Best Solution
Time (s)

Best Solution
Iterations ADO [mm] MDO [mm] Fitness

Function

GA 1929 1051 660.33 404.22 0.9624
PSO 2052 1151 659.21 327.61 0.9621
PS 6482 3521 178.93 0 3.1648

4.2. Medium Complexity Scenario

An occupancy map with intermediate obstacle density is also used, defined with seven
obstacles and larger occupancy space than the previous case, with four intermediate points
in addition to the starting and end points of the trajectory. The maximum optimization
time to obtain the solutions is set to 7200 s.

For each optimization technique, the best trajectories are shown in Figure 11. The GA
and PSO effectively find a collision-free solution within the allotted time (Figure 11a,c);
however, PS is unable to do so as shown in Figure 11b. As it happened in the previous
scenario, because of its randomization if the starting conditions are far from the final
solution, it might not be able to obtain a feasible solution.

Electronics 2024, 13, 728 15 of 25

(a) (b)

(c)

Figure 11. Medium complexity scenario, optimized trajectories. (a) Genetic algorithm. (b) Pattern
search. (c) Particle swarm.

The evolution of the fitness function for each approach during the optimization process
is shown in Figure 12. GA and PSO arrive at a similar final value and trajectory, and the
optimization process is approximately equally fast in reaching feasible paths without
colliding, although GA gets a better optimization value sooner. As iterations go on, PS
not only is unable to come up with a workable solution, but it also takes longer to get
better outputs.

Figure 12. Optimization methods, fitness function evolution in the medium complexity scenario.

The evolution of the ADO is shown in Figure 13. As the fitness function gets values
smaller than 1, this value rises, meaning the moment at which the trajectory leaves the
collision zone and travels as far away from obstacles as it can. Previous to that, the values
can get higher or lower given the colliding solutions the different iterations can reach.

Electronics 2024, 13, 728 16 of 25

The mean value for PS is significantly smaller than with the other methods due to its
inability to reach a feasible trajectory.

Figure 13. Optimization methods, mean minimum distance evolution in the medium complexity scenario.

Figure 14 shows the MDO. Again, it is possible to see that the MDO for PS is always
zero. As expected, the minimum distance to obstacles in this situation will always be
zero since these iterations always produce collisions. It is evident that in the case of
GA and PSO, the minimum distances to obstacles during the optimization differ widely,
taking some time for the algorithms to stabilize and converge into more similar values as
established in Tables 6 and 7.

Figure 14. Optimization methods, MDO evolution in the medium complexity scenario.

Analytical data from Figures 12–14 are shown in Tables 6 and 7. It contains information
from both the iteration with the best solution at the end of the optimization process and the
initial iteration where a collision-free solution was found.

Electronics 2024, 13, 728 17 of 25

Table 6. Medium complexity scenario, first non-collision iteration analytic results.

Technique Non-Collision
Time (s)

Non-Collision
Iterations ADO [mm] MDO [mm] Fitness

Function

GA 574 312 401.85 0.67 0.9769
PSO 853 462 358.70 37.26 0.9793
PS - - - - -

Table 7. Medium complexity scenario, best solution results.

Technique Best Solution
Time (s)

Best Solution
Iterations ADO [mm] MDO [mm] Fitness

Function

GA 2070 1152 403.42 0.33 0.9768
PSO 12,196 6984 403.51 0.004 0.9768
PS 3738 2095 291.63 0 1.1078

4.3. High Complexity Scenario

A map of occupancy is defined with a high density of obstacles. The scenario includes
eight obstacles and the largest occupancy space. The trajectory includes five intermediate
points in addition to the start and end points. The maximum optimization time to obtain
the solutions is set to 9600 s, that is, 160 min.

Figure 15 shows the optimal trajectories for the three optimization strategies. In this
case, all methods were able to reach a solution without collisions. This result shows the
sensitivity of the PS technique to the initial conditions and randomness. Indeed, as shown
in this case, depending on the initial conditions it may give good solutions in complex
scenarios meanwhile it was not able to obtain solutions in simpler cases.

(a) (b)

(c)

Figure 15. High complexity scenario, optimized trajectories. (a) Genetic algorithm. (b) Pattern search.
(c) Particle swarm.

Figure 16 shows the evolution of the fitness function for each strategy along the
optimization process. This scenario demonstrates that all methods have found feasible

Electronics 2024, 13, 728 18 of 25

solutions, although with small differences. This is evident in the evolution of the fitness
function, which tends to be below 1, indicating success in finding collision-free solutions.
It is noteworthy that the GA was the fastest in finding the optimal solution. Additionally,
this case highlights that PS is faster than PSO. Therefore, it can be concluded that when
the initial conditions of PS are suitable, it is faster than PSO but not faster than GA. This
highlights the importance of setting up PS with initial conditions aligned as closely as
possible with the final solution. PS should not be used in cases where the initial conditions
do not seem to have any relation to the possible final solution.

Figure 16. Optimization methods, fitness function evolution in the high complexity scenario.

As with the other results, Figure 17 shows the ADM fluctuation until the methods
find a collision-free solution. Afterwards, the average value increases in line with the
improvement of the fitness function. GA and PSO exhibit similar behavior, with GA
initially achieving better results without collisions. However, at around 2000 s, PSO begins
to obtain better solutions more quickly. Similarly, while PS gives a collision-free solution
during the process, subsequent improvements to the solutions are significantly smaller,
resulting in a lower-quality solution in terms of this parameter.

Figure 17. Optimization methods, ADO evolution in the high complexity scenario.

Figure 18 shows the MDO evolution for the most complex scenario. The plot above
represents the function over simulation time, while the plot below emphasizes the area near

Electronics 2024, 13, 728 19 of 25

the start to provide a clearer visualization of that part of the response. In this case, PS does
not have zero distance. Instead, it shows a saw-tooth-like evolution with an upward trend.
Although the minimum distance has a positive value, it remains lower than the values
achieved by GA and PSO. These last two solutions converge to a very similar minimum
value, although GA initially achieves better values during the iterative process.

Figure 18. Optimization methods, MDO evolution in the high complexity scenario.

Tables 8 and 9 present the analytical values obtained, indicating the first collision-free
solution and the best value of the whole series.

Table 8. High complexity scenario, first non-collision iteration analytic results.

Technique Non-Collision
Time (s)

Non-Collision
Iterations ADO [mm] MDO [mm] Fitness

Function

GA 52 25 461.53 172.46 0.9734
PSO 376 172 418.44 1.50 0.9759
PS 543 661 439.73 23.27 0.9747

Electronics 2024, 13, 728 20 of 25

Table 9. High complexity scenario, best solution analytic results.

Technique Best Solution
Time (s)

Best Solution
Iterations ADO [mm] MDO [mm] Fitness

Function

GA 13,970 6818 576.66 267.23 0.9668
PSO 18,874 9492 576.81 267.98 0.9668
PS 15,044 19,838 452.49 64.08 0.9739

Finally, Figure 19 compares the trajectories of the first solution without collision (blue
lines) and the best trajectories (red lines) of the three optimization techniques. It is possible
to see that in all cases there are significant differences between these trajectories.

(a) (b)

(c)

Figure 19. High complexity scenario, first non-collision solution and best solution trajectories.
(a) Genetic algorithm. (b) Pattern search. (c) Particle swarm.

Although the first collision-free trajectories are feasible, during the iterative process the
improvement of the trajectories with the best fitness function in terms of safety is notable.
The largest possible distance to the obstacles is considered the safest solution. This finding
shows the effectiveness of the method in improving safety, as the optimal solution manages
to maintain the largest average distance from obstacles.

4.4. Experimental Results

In order to demonstrate that the optimized trajectories can be followed by an AGV,
an experimental test has been carried out with an industrial AGV of the company ASTI
Mobile Robotics. The experimentation was conducted in a laboratory using a tow AGV
equipped with simultaneous location and mapping (SLAM) navigation. The best trajectory
obtained in the high-complexity scenario has been configured in the navigation software of
the AGV. This trajectory has been selected considering that is the longest and the hardest to

Electronics 2024, 13, 728 21 of 25

follow. We have observed that the AGV smoothly follows the trajectory and does not enter
any of the areas delimited by the obstacles.

Figure 20b illustrates the implemented trajectory in the AGV’s navigation software.
This visualization overlays the real trajectory on top of the graphical representation of the
occupancy map. Figure 20b shows the same trajectory obtained in MATLAB. It is possible
to see that both trajectories are equivalent.

(a) (b)

Figure 20. High complexity GA trajectory result. (a) Matlab representation. (b) Navigation software
implementation.

Figures 21–23 shows snapshots taken while the AGV follows the trajectory in the
laboratory. These images show the correspondence between the real position of the AGV
and its representation in the navigation software at specific moments. To improve visual-
ization consistency with laboratory test images, the trajectories in the navigation software
are rotated 180 degrees to match the perspective of the corresponding laboratory images.
To improve visual clarity, we have added yellow lines to all laboratory images. These
lines depict the boundaries of the obstacles in the occupancy map on the laboratory floor,
providing a clearer visual reference in an environment with multiple marked lines.

.

(a) (b)

Figure 21. High complexity GA trajectory result in laboratory experiment. First captured moment:
(a) Position representation in navigation system. (b) Laboratory representation.

(a) (b)

Figure 22. High complexity GA trajectory result in laboratory experiment. Second captured moment:
(a) Position representation in navigation system. (b) Laboratory representation.

Electronics 2024, 13, 728 22 of 25

(a) (b)

Figure 23. High complexity GA trajectory result in laboratory experiment. Third captured moment:
(a) Position representation in navigation system. (b) Laboratory representation.

The experimental results demonstrate the feasibility of implementing these trajectories
with industrial AGVs. The observations prove that the evaluated optimization techniques
have practical applicability in real-world scenarios, as the AGV perfectly follows the
trajectory configured. These experimental findings represent a significant step towards the
practical validation of the assessed optimization methods.

4.5. Discussion of the Results

Based on the results obtained, several conclusions can be drawn about the usefulness
of these three optimization methods to generate AGV trajectories. The first deduction is
that all three methods can be used to obtain optimal trajectories that AGVs can follow.

The time needed to obtain the first collision-free solution tends to grow with the
complexity of the scenario. It is just a tendency due to the randomness implicit in the
generation of solutions, so it does not always happen that way. A similar trend is also
observed for the time at which the best solution is found.

GA and PSO techniques consistently produce acceptable results in terms of collision-
free trajectories, which typically deviate from obstacles as much as possible. PS depends
significantly on the initial conditions of the optimization process, producing feasible results
when these conditions are very close to the final result, but infeasible paths (including
collisions) when these conditions are far from the solution. Therefore, a good approach could
be the hybridization of these methods: it is suggested to use GA and PSO to explore solutions
in the entire search space when there is no initial information about the feasible solutions.
On the other hand, PS can be very useful to refine solutions obtained by GA or PSO.

When the optimization process runs for a long time, GA and PSO tend to provide sim-
ilar fitness function values. However, according to the experiments carried out, the fastest
algorithm to produce the first feasible collision-free solutions is GA. Another interesting
result is that if the PS has good initial conditions, the time needed to execute each iteration is
considerably less than the time required by GA or PSO. For example, in the high complexity
scenario, the average time to execute an iteration is 0.75 s for PS, 2 s for GA, and 1.98 s for
PSO. However, when the initial conditions are far from the solution, the average execution
times of the iterations are similar for all optimization techniques.

It is also possible to observe that the value of the fitness function during the first
iterations is higher for the PSO, although it decreases rapidly during the first iterations.
In fact, the largest changes in the fitness function in the initial iterations appear when PSO is
applied. For example, in the medium complexity scenario, PSO outperforms GA during the
first few iterations but then its rate of decline slows down as the iterations increase. Thus,
in the tested cases, PSO never reached a feasible trajectory faster than GA. Therefore, GA
stands out as the recommended method to optimize the generation of automated guided
vehicle trajectories.

In general, it can be concluded that this route optimization approach can be an aid for
the co-design of routes in real industrial scenarios, delineating them in a way that allows
trajectories that are efficient for the AGV tasks.

Electronics 2024, 13, 728 23 of 25

5. Conclusions and Future Works

In this work, three metaheuristic optimization techniques have been compared to
obtain collision-free trajectories of an AGV industrial vehicle. The results indicate that
genetic algorithms (GA) generally outperform particle swarm optimization (PSO) and
pattern search (PS) in finding optimal or collision-free trajectories in the given scenarios.
GA tends to converge faster and achieve better solutions. Optimization with PS, while
it can be effective in some cases, is sensitive to initial conditions and may have difficulty
finding viable solutions. In terms of speed, GA is consistently faster in reaching feasible
collision-free trajectories. PSO and PS show variability in their performance, with PSO
occasionally outperforming PS. The simulation experiments carried out show that it is
important to consider the specific characteristics and requirements of the optimization
problem in question when choosing a metaheuristic technique. The selection of the opti-
mization method may also depend on factors such as the nature of the search space and the
availability of computational resources. These findings underline the importance of select-
ing an appropriate optimization algorithm based on the problem characteristics, and in this
context, GA emerges as a reliable option for trajectory optimization in the given scenarios.

Based on the results obtained, there is potential to explore hybrid optimization ap-
proaches that combine different methodologies. This will allow exploiting the strengths of
each method and improve the speed and accuracy of obtaining feasible solutions. The pro-
posal is to use GA and PSO initially to acquire solutions quickly and efficiently, since both
methods have proven effective in converging towards optimal solutions at different stages.
These obtained solutions could serve as initial conditions to start the pattern search (PS)
process and this way, to reach solutions closer to a global optimum. The combination of GA
and PSO for initial solutions, followed by PS for refining and enhancing those solutions,
could be particularly beneficial in scenarios where the speed of obtaining results is crucial.
Furthermore, this strategy could contribute to better exploration of the search space and
overcome potential stagnation points that each method might encounter individually.

In summary, the application of hybrid optimization techniques, taking advantage of
the complementary characteristics of GA, PSO and PS, represents an interesting direction for
future research, provided there is prior analysis. This approach could be especially valuable
in applications that demand efficient and accurate results, approaching the prospect of
implementing real-time methods for trajectory optimization and similar problems.

Author Contributions: Conceptualization, E.B., J.E.S.-G. and M.S.; Software, E.B. and J.E.S.-G.;
Formal analysis, J.E.S.-G.; Investigation, E.B.; Writing—original draft, E.B., J.E.S.-G. and M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sierra-García, J.E.; Fernández-Rodríguez, V.; Santos, M.; Quevedo, E. Development and Experimental Validation of Control

Algorithm for Person-Following Autonomous Robots. Electronics 2023, 12, 2077. [CrossRef]
2. Vagale, A.; Oucheikh, R.; Bye, R.T.; Osen, O.L.; Fossen, T.I. Path planning and collision avoidance for autonomous surface

vehicles I: A review. J. Mar. Sci. Technol. 2021, 26, 1292–1306. [CrossRef]
3. Vis, I.F.A. Survey of research in the design and control of automated guided vehicle systems. Eur. J. Oper. Res. 2006, 170, 677–709.

[CrossRef]
4. Schouwenaars, T.; How, J.P.; Feron, E. Receding horizon path planning with implicit safety guarantees. In Proceedings of the

2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 6, pp. 5576–5581. [CrossRef]
5. Tamizi, M.G.; Yaghoubi, M.; Najjaran, H. A review of recent trend in motion planning of industrial robots. Int. J. Intell. Robot.

Appl. 2023, 7, 253– 274. [CrossRef]
6. Sierra-Garcia, J.E.; Santos, M. Combining reinforcement learning and conventional control to improve automatic guided vehicles

tracking of complex trajectories. Expert Syst. 2022, 41, e13076. [CrossRef]
7. Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [CrossRef]

http://doi.org/10.3390/electronics12092077
http://dx.doi.org/10.1007/s00773-020-00787-6
http://dx.doi.org/10.1016/j.ejor.2004.09.020
http://dx.doi.org/10.23919/acc.2004.1384742
http://dx.doi.org/10.1007/s41315-023-00274-2
http://dx.doi.org/10.1111/exsy.13076
http://dx.doi.org/10.1016/j.tcs.2005.05.020

Electronics 2024, 13, 728 24 of 25

8. Neto, A.; Canuto, A.; Xavier-Júnior, J. Hybrid metaheuristics to the automatic selection of features and members of classifier
ensembles. Information 2018, 9, 268. [CrossRef]

9. Adekanmbi, O.; Green, P. Conceptual comparison of population based metaheuristics for engineering problems. Sci. World J.
2015, 2015, 936106. [CrossRef]

10. Mohammadi, R.; Ghasemof, A. Performance-based design optimization using uniform deformation theory: A comparison study.
Lat. Am. J. Solids Struct. 2015, 12, 18–36. [CrossRef]

11. Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey. Appl. Soft Comput.
2011, 11, 4135–4151. [CrossRef]

12. Puchinger, J.; Raidl, G.R. Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and
Classification. In Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 41–53. [CrossRef]

13. Ramírez, A.; Barbudo, R.; Romero, J. An experimental comparison of metaheuristic frameworks for multi-objective optimization.
Expert Syst. 2021, 40, e12672. [CrossRef]

14. Radosavljevic, J. Metaheuristic Optimization in Power Engineering; Institution of Engineering and Technology: London, UK, 2018.
[CrossRef]

15. Bozorg-Haddad, O.; Solgi, M.; Loáiciga, H.A. Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization, 1st ed.;
Wiley: Hoboken, NJ, USA, 2017. [CrossRef]

16. Nesmachnow, S. An overview of metaheuristics: Accurate and efficient methods for optimisation. Int. J. Metaheuristics 2014,
3, 320. [CrossRef]

17. Kareem, S.W.; Hama Ali, K.W.; Askar, S.; Xoshaba, F.S.; Hawezi, R. Metaheuristic algorithms in optimization and its application:
A review. J. Adv. Res. Electr. Eng. 2022, 6, 7–12. [CrossRef]

18. Demesure, G.; Defoort, M.; Bekrar, A.; Trentesaux, D.; Djemai, M. Decentralized Motion Planning and Scheduling of AGVs in an
FMS. IEEE Trans. Ind. Inform. 2018, 14, 1744–1752. [CrossRef]

19. Altché, F.; Fortelle, A.d.L. Partitioning of the free space-time for on-road navigation of autonomous ground vehicles. In
Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 12–15
December 2017. [CrossRef]

20. Li, Q.; Ju, H.; Xiao, P.; Chen, F.; Lin, F. Optimal trajectory optimization of 7r robot for space maintenance operation. IEEE Access
2020, early access. [CrossRef]

21. Huang, F.; Guo, W.; Zhao, H. AGV Path Planning Based on Improved Genetic Algorithm. In Proceedings of the 2023 2nd
International Symposium on Control Engineering and Robotics (ISCER), Hangzhou, China, 17–19 February 2023; pp. 3323–3327.
[CrossRef]

22. Cao, J.; Li, Y.; Zhao, S.; Bi, X. Genetic-Algorithm-Based Global Path Planning for AUV. In Proceedings of the 2016 9th International
Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016; pp. 79–82. [CrossRef]

23. Han, Z.; Wang, D.; Liu, F.; Zhao, Z. Multi-AGV path planning with double-path constraints by using an improved genetic
algorithm. PLoS ONE 2017, 12, e0181747. [CrossRef]

24. Li, J.; Deng, G.; Luo, C.; Lin, Q.; Yan, Q.; Ming, Z. A Hybrid Path Planning Method in Unmanned Air/Ground Vehicle
(UAV/UGV) Cooperative Systems. IEEE Trans. Veh. Technol. 2016, 65, 9585–9596. [CrossRef]

25. Salamat, B.; Tonello, A. Stochastic Trajectory Generation Using Particle Swarm Optimization for Quadrotor Unmanned Aerial
Vehicles (UAVs). Aerospace 2017, 4, 27. [CrossRef]

26. Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems:
Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [CrossRef]

27. Lu, J.; Zhang, Z. An Improved Simulated Annealing Particle Swarm Optimization Algorithm for Path Planning of Mobile Robots
Using Mutation Particles. Wirel. Commun. Mob. Comput. 2021, 2021, 2374712. [CrossRef]

28. Huang, H.; Jin, C. A Novel Particle Swarm Optimization Algorithm Based on Reinforcement Learning Mechanism for AUV Path
Planning. Complexity 2021, 2021, 8993173. [CrossRef]

29. Wang, W.; Tao, Q.; Cao, Y.; Wang, X.; Zhang, X. Robot Time-Optimal Trajectory Planning Based on Improved Cuckoo Search
Algorithm. IEEE Access 2020, 8, 86923–86933. [CrossRef]

30. Ma, T.; Lyu, J.; Yang, J.; Xi, R.; Li, Y.; An, J.; Li, C. CLSQL: Improved Q-Learning Algorithm Based on Continuous Local Search
Policy for Mobile Robot Path Planning. Sensors 2022, 22, 5910. [CrossRef]

31. Ren, Z.; Rathinam, S.; Likhachev, M.; Choset, H. Multi-Objective Path-Based D* Lite. IEEE Robot. Autom. Lett. 2022, 7, 3318–3325.
[CrossRef]

32. Han, H.T.; Ji, W.F.; Zhang, Y.Q.; Sha, D.P. Comparative Study of Path Planning by Particle Swarm Optimization and Genetic
Algorithm. Appl. Mech. Mater. 2014, 687–691, 1420–1424. [CrossRef]

33. Zeng, Y.; Wu, Z. Time-optimal trajectory planning based on particle swarm optimization. In Proceedings of the 2015 IEEE
10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 1794–1796.
[CrossRef]

34. Li, Z.; Hu, C.; Ding, C.; Liu, G.; He, B. Stochastic gradient particle swarm optimization based entry trajectory rapid planning for
hypersonic glide vehicles. Aerosp. Sci. Technol. 2018, 76, 176–186. [CrossRef]

http://dx.doi.org/10.3390/info9110268
http://dx.doi.org/10.1155/2015/936106
http://dx.doi.org/10.1590/1679-78251207
http://dx.doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1007/11499305_5
http://dx.doi.org/10.1111/exsy.12672
http://dx.doi.org/10.1049/PBPO131E
http://dx.doi.org/10.1002/9781119387053
http://dx.doi.org/10.1504/IJMHEUR.2014.068914
http://dx.doi.org/10.12962/jaree.v6i1.216
http://dx.doi.org/10.1109/TII.2017.2749520
http://dx.doi.org/10.1109/cdc.2017.8263961
http://dx.doi.org/10.1109/access.2020.3008754.
http://dx.doi.org/10.1109/ISCER58777.2023.00066
http://dx.doi.org/10.1109/ISCID.2016.2027
http://dx.doi.org/10.1371/journal.pone.0181747
http://dx.doi.org/10.1109/TVT.2016.2623666
http://dx.doi.org/10.3390/aerospace4020027
http://dx.doi.org/10.1109/JAS.2021.1004129
http://dx.doi.org/10.1155/2021/2374712
http://dx.doi.org/10.1155/2021/8993173
http://dx.doi.org/10.1109/ACCESS.2020.2992640
http://dx.doi.org/10.3390/s22155910
http://dx.doi.org/10.1109/LRA.2022.3146918
http://dx.doi.org/10.4028/www.scientific.net/AMM.687-691.1420
http://dx.doi.org/10.1109/ICIEA.2015.7334402
http://dx.doi.org/10.1016/j.ast.2018.01.033

Electronics 2024, 13, 728 25 of 25

35. Bayona, E.; Sierra-García, J.E.; Santos, M. Generation of Optimum Frenet Curves by Genetic Algorithms for AGVs. In Artificial
Intelligence Applications and Innovations; Springer Nature: Cham, Switzerland, 2023; Volume 676, pp. 454–464. [CrossRef]

36. Alencar, H.; Santos, W.; Silva Neto, G. Differential Geometry of Plane Curves; Number Volume 96 in Student Mathematical Library;
American Mathematical Society: Providence, RI, USA, 2022. .

37. Martins, G.D.M.; Naruto, I.d.L.; Danner, P.; Frencl, V.B. A Trajectory Simulator Using Frenet–Serret Formulas Applied to Punctual
Objects. In Proceedings of the 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil,
12–14 November 2018; pp. 750–755. [CrossRef]

38. Bertolazzi, E.; Frego, M. G1 fitting with clothoids. Math. Methods Appl. Sci. 2015, 38, 881–897. [CrossRef]
39. Bayona, E.; Sierra-García, J.E.; Santos, M. Keeping Safe Distance from Obstacles for Autonomous Vehicles by Genetic Algorithms.

In 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023); Lecture Notes in
Networks and Systems; Springer Nature: Cham, Switzerland, 2023; Volume 750, pp. 300–310. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-031-34107-6_36
http://dx.doi.org/10.1109/INDUSCON.2018.8627338
http://dx.doi.org/10.1002/mma.3114
http://dx.doi.org/10.1007/978-3-031-42536-3_29

	Introduction
	Related Works
	Optimization Methodology
	Problem Modeling
	Optimization Strategy
	Evaluation Metrics
	Evaluation Scenarios
	Configuration of Metaheuristic Techniques
	Genetic Algorithms
	Particle Swarm Optimization
	Pattern Search

	Simulation Experiments

	Results
	Low Complexity Scenario
	Medium Complexity Scenario
	High Complexity Scenario
	Experimental Results
	Discussion of the Results

	Conclusions and Future Works
	References

