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Abstract: A True Random Number Generator (TRNG) is an important component in cryptographic
algorithms and protocols. The Rosin Autonomous Boolean Network (ABN) digital TRNG has been
widely studied due to its nice properties, such as low energy consumption, high speed, strong
platform portability, and strong randomness. However, there is still a lack of suitable entropy models
to deduce the requirement of design parameters to ensure true randomness. The current model
to evaluate the entropy of oscillator-based TRNGs is not applicable for Rosin ABN TRNGs due to
low-frequency noise. This work presents a new, suitable stochastic model to evaluate the entropy of
Rosin ABN TRNGs. Theoretical analysis and simulation experiments verify the correctness and the
effectiveness of the model, and, finally, the appropriate sampling parameters for Rosin ABN TRNGs
are given for sufficient entropy per random bit to ensure true randomness.

Keywords: autonomous Boolean network; true random number generator; entropy models;
Allan variance

1. Introduction

The unpredictability of true random numbers provides a fundamental security guar-
antee for cryptographic algorithms and security protocols, and a high-performance TRNG
is also an important component to ensure network security [1]. Usually, there are two
methods to evaluate the randomness of the output sequence of a TRNG: One is to detect
whether it has obvious statistical deviation [2–6]. The other one is to establish a random
entropy model, and from this model, it is feasible to derive the requirements for the design
parameters of TRNGs, so as to guide the design of a TRNG in reverse.

The statistical tests cannot or have difficulties detecting the possible hidden weakness
inside TRNGs. Therefore, most scholars focus on the study of the entropy model of TRNGs.
The entropy model is a stochastic model used to evaluate the entropy of a specific TRNG,
and an accurate entropy estimation for this specific random number generator structure
in theory can be obtained by this stochastic model [7]. The entropy used in this article is
Shannon entropy. To model oscillator-based TRNGs, Killmann and Schindler proposed
a common stochastic model from the time domain [8]. However, only the lower bound
of output entropy can be obtained through this analysis method. In 2014, Ma et al. [7]
proposed a stochastic model to calculate the precise entropy for RO-based TRNGs, and put
forward the quality factor Q to assist the structural design. In 2018, Zhu et al. discussed the
calculation error between the standard variance in the counting results and approximate
Q in the entropy model proposed by Ma et al., thus giving a more accurate estimate of
jitter [9]. In 2019, Ma et al. proposed an entropy estimation method for TRNGs based on
ADC sampling [10]. In 2021, Markku-Juhani O. Saarinen et al. put forward a new lower
bound estimation formula for the entropy of ring vibration sources, which is more widely
used than the previous formula [11]. However, there is no suitable common stochastic
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model to calculate the precise entropy for common TRNGs, such as metastable state TRNGs,
ABN TRNGs, TRNGs with complex feedback behavior, and so on.

Among them, ABN TRNGs can play a huge role in embedded and other scale-limited
environments because they can be integrated on cheap and highly integrable electronic
chips. And their speed of generating random numbers is also very fast, which can consis-
tently meet the real-time requirements of modern communication and become an important
kind of TRNG. In 2013, Rosin et al. used an ABN to construct a new type of physical TRNG
which has a wide spectrum, a high frequency, and can achieve high-speed output through
parallel approaches. However, when the number of the nodes is low, the oscillation of
the Boolean Network is weakened and even degenerates [12]. In 2018, on the basis of
Rosin TRNGs, Yang Hui changed the time delay between logic links by adding invert-
ers, so that the structure can still output stable and available random numbers at low
nodes [13]. In 2020, Gong et al. highlighted the factors affecting chaotic Boolean Networks,
which provided a certain theoretical basis for the subsequent study of chaotic Boolean
Networks [14].

In this paper, based on the entropy model used for RO-based TRNGs [7], we estab-
lish a random entropy model for the TRNG of a Rosin Autonomous Boolean Network.
The proposed entropy model is verified on Rosin’s TRNG with different numbers of nodes.
The experimental results show that the proposed entropy model is correct and effective.
Different parameters are provided for different entropy requirements.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the TRNG based on Boolean Networks. Section 3 presents the proposed entropy model
and analyzes the difference between TRNGs based on oscillators and those based on
Autonomous Boolean Networks. In Section 4, the effectiveness and correctness of this
entropy model is validated and the optimal sampling parameters for different requirements
are given. In Section 5, we summarize this paper.

2. TRNGs Based on Autonomous Boolean Networks

A Boolean Network is a network composed of Boolean operations, such as AND, OR,
and NOT, as well as Boolean nodes with two states: on state 1 and off state 0. In Boolean
Networks, due to factors such as thermal noise, shot noise, and so on, the phase of the
circuit will produce a certain amount of jitter. When this kind of jitter undergoes nonlinear
walk within an Autonomous Boolean Network, its amplitude is amplified by about two
orders of magnitude, which will cause the weak entropy source with originally small jitter
to evolve into a strong entropy source with severe jitter. TRNGs of Autonomous Boolean
Networks with this characteristic have been widely studied by cryptography scholars due
to their nice properties of elegant structure and high speed [15–18].

A TRNG of a Rosin Autonomous Boolean Network with n nodes [12] is shown in
Figure 1. The nodes in this network have only one exclusive NXOR gate (denoted as ⊙),
and the others are exclusive XOR gates (denoted as ⊕, around the circumference of the
circle). Each node has three inputs, one output, and self-feedback. Adjacent nodes are
inputs to each other and arrow represents wire. The true random number is obtained
by sampling the XOR values (the red ⊕) of four network nodes through low-frequency
clock signals. Whether this network generates chaotic oscillation depends on the initial
conditions and the setting of delay, that is, ideally, there is no stagnation point.

Just as the author of [12] said, when we sample the proposed TRNG structure in
Figure 1 with a frequency of 100 MHz, the collected data should pass the National Institute
of Standards and Technology (NIST) SP800-22 [3]. However, when we verified this TRNG
structure on Altera Cyclone IV EP4CE6F with a sampling frequency of 100 MHz, some
groups of collected data were unable to pass the NIST test. This indicates that the Rosin’s
Autonomous Boolean Network TRNG differs on different FPGA models, and its platform
portability is challenged. To obtain the the parameters for this structure on different FPGAs,
we established an entropy model for this structure.
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Figure 1. TRNG of Rosin Autonomous Boolean Network.

3. Entropy Model of Rosin Autonomous Boolean Network TRNG

To establish a suitable model for this structure, we noted that the Rosin Boolean
Network TRNG and the oscillation-based TRNG have great similarity. Both of them use low-
frequency clock signals to sample high-frequency jitter signals to generate random numbers
and the source of their randomness is phase jitter. To this end, we first attempted to use
the TRNG entropy model based on an oscillation ring to analyze the Rosin’s Autonomous
Boolean Network; based on the differences between the two, we obtained an entropy model
that can be applicable to the TRNG based on Rosin’s Autonomous Boolean Network.

3.1. The Entropy Model of Ma Is Not Applicable to TRNGs of the Rosin Autonomous
Boolean Network

In traditional “low-frequency sampling of high-frequency” TRNGs, the sampling
parameters can usually be adjusted according the average and variance in the rising edge
jump transition number of the output sequence, so that the low-frequency sampling signal
can just sample at the jump transitions of the fast oscillating signal and obtain the best
random output sequence. In view of this, this section counts the number of jump transition
rising edges of the output sequence of the Rosin Autonomous Boolean Network TRNG
shown in Figure 1, and calculates the mean and variance of the counted values. The specific
experimental steps are as follows:

1. Implement the structure shown in Figure 1 using FPGA, with n = 16, and sample
the TRNG output with a 100 MHz system clock signal. The sampling method is as
follows: when the rising edge of the sampled signal jumps, the counter begins to
record the number of rising edges of the TRNG output signal; when the falling edge
of the sampled signal jumps, the counter outputs the number of rising edges counted
and performs a reset operation to obtain a total of 216 count values;

2. The average value is 128.6207, and the variance is 73.94592.

This result is not consistent with the assumption µ
σ ≪ 1 in Ma et al.’s stochastic entropy

model. The reason is described as follows.
In the frequency domain, let b be the output signal of the oscillation ring. If b is a zero-

mean stationary random process, the standard variance in signal b can be expressed as [19]

Var(b) =
2

∑
α=−2

hα

(πτ)2

∫ fh

0
f α−2sin2(πτ f )d f (1)

where fh is the cut-off frequency of the oscillation ring; α indicates the type of noise;
the α value is +2, indicating white noise phase modulation, +1, indicating flicker noise
phase modulation, 0, indicating white noise frequency modulation, −1, indicating flicker
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noise (low-frequency noise) frequency modulation, and −2, indicating random walk (low-
frequency noise) frequency modulation. According to reference [19], when f → 0, the
integrand function can be approximated as π2τ2 f α. At this point, if α = −1 or −2 is taken,
the integrand function will not converge.

In the Autonomous Boolean Network TRNG, the signal generated will amplify the
jitter to a hundred times its original amplitude, which means that the thermal noise and
flicker noise in the noise source will be simultaneously amplified by a hundred times,
at which point the flicker noise will be amplified (α = −1). The impact of low-frequency
noise cannot be ignored, as it accelerates the accumulation speed of jitter. The comparison
between the cumulative changes (the red shadow) in signal jitter on ABN TRNGs and the
cumulative changes in signal jitter based on traditional ring oscillators is shown in Figure 2.

Figure 2. Jitter accumulation comparison chart: (a) traditional TRNG jitter accumulation. (b) Rosin
Autonomous Boolean Network jitter accumulation.

The cumulative speed of jitter affects the oscillation speed of the output waveform,
as shown in Figure 3, which is a comparison of the output waveforms of an ABN TRNG
composed of 16 nodes and a single classical oscillation ring. The horizontal axis in the
figure is 25 ns/M. It can be observed that for every jump in the output of the classical
oscillation ring, the output of the Rosin Autonomous Boolean Network oscillation ring has
already jumped dozens or even hundreds of times.

Figure 3. Comparison of output waveforms between a single Rosin Autonomous Boolean Network
TRNG (sig 1) and a single oscillation loop TRNG (sig 2).

Therefore, the random entropy model proposed by Ma et al. cannot be used to evaluate
the entropy of the Rosin Autonomous Boolean Network TRNG. It is necessary to improve
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the model and find more suitable parameters to describe the jitter in the Rosin Autonomous
Boolean Network.

3.2. Allan Variance Is More Suitable for Describing the Jitter of Rosin Autonomous Boolean
Network TRNGs

Allan variance is a variance used to analyze the phase and frequency instability of
oscillation loops [20]. Let b be the output signal of the oscillator loop and bi be the mean
value within the i-th interval of length τ. The Allan variance in the oscillator loop output
signal b in a dataset consisting of M mean samples within intervals of length τ can be
expressed as follows:

Avar(b) = σ2
b (τ) =

1
2(M − 1)

M−1

∑
i=1

(bi+1 − bi)
2

(2)

In the frequency domain, the Allan variance can be expressed as

Avar(b) = σ2
b (τ) =

2

∑
α=−2

2hα

(πτ)2

∫ fh

0
sin4(πτ f ) f α−2d f (3)

When f → 0, the integrated function can be approximated as π4τ4 f α+2. At this point,
even if the signal b is affected by low-frequency noise (i.e., with α taking values of −1
and −2), the integrated function still converges. Therefore, in the subsequent analysis,
the Allan variance, which is more friendly to low-frequency noise, is used to characterize
the magnitude of jitter in the Rosin Autonomous Boolean Network TRNG.

3.3. Entropy Model of the Rosin Autonomous Boolean Network TRNG

Based on the above analysis, an entropy model is established for the Rosin Au-
tonomous Boolean Network TRNG.

As shown in Figures 4 and 5, using the clock signal S2 as the control signal for the
counter, the counter counts the number of rising edges of the Rosin TRNG output signal
S1 when S2 is at a high level. When S2 is at a low level, the counter values are stored in a
register, and the counter is reset. τ is chosen as the interval, where each τ counter value
in the register forms a group. The mean µ is calculated for each group, and this mean is
considered the half-period length of the high-frequency signal S

′
1.

The slow clock signal S3 is used as a low-frequency signal to sample the transition
signal S

′
1.

Figure 4. Sampling diagram of the output waveform of the Rosin Autonomous Boolean Net-
work TRNG.
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Figure 5. Equivalent model.

Assuming the half-periods of the transition signal s
′
1, obtained by counting, are de-

noted as Xk, where k = 1, 2,. . . , and due to the presence of jitter, it can be assumed that Xk fol-
lows a normal distribution with mean µ and Allan variance σ2

a , i.e., Xk ∼ N(µ, σ2
a ). Let the

signal S3 have a period T3, and let Ri be the number of rising edges of S
′
1 within half a period

of S3. The sampled data for the i-th bit, denoted as bi, are given by bi = (bi−1 + Ri) mod 2.
The basic assumptions in our work are the same as those made in Ma’s stochastic model,
which was used to calculate the precise entropy for RO-based TRNGs [7]. Here, bi is
still the i-th sampled bit. Since the operation of adding Ri with bi−1 can be treated as
a type of post-processing, this operation causes no impact on the information entropy.
So, the equation bi = (bi−1 + Ri) mod 2 can be further simplified to bi = Ri mod 2. Let
Lk = X1 + X2 + . . . + Xk; thus,

Pr(Ri ≤ k) = Pr(Lk ≥
T3

2
) (4)

where k is the minimum value that Lk ≥ T3
2 . According to the Central Limit Theorem,

the distribution function of Lk is given by Lk ∼ N(kµ, kσ2
a ). Therefore, we can further derive

Pr(Ri ≤ k) =
1√

2kπσa

∫ +∞

T3
2

e
− (t−kµ)2

2kσ2
a dt (5)

Let u = t − kµ, x = u/
√

2kσ. Then,

Pr(Ri ≤ k) =

√
2kσa√

2kπσa

∫ +∞
T3
2 −kµ
√

2kσa

e−x2
dx =

1
2
(1 − er f (

T3
2 − kµ√

2kσa
)) (6)

The probability of having k rising edges of signal within the duration of T3/2 can be
expressed as follows:

Pr(Ri = k) = Pr(Ri ≤ k)− Pr(Ri ≤ k − 1) =
1
2
(er f (

T3
2 − (k − 1)µ√

2(k − 1)σa
)− er f (

T3
2 − kµ√

2kσa
)) (7)

Let p1 be the probability of the i-th sampled bit bi, equal to 1, and p0 be the probability
of the i-th sampled bit bi, equal to 0. Then, we have

p1 = Pr(bi = 1) = Pr(Ri mod 2 = 1) = ∑k=+∞
k=0 Pr(Ri = 2k + 1) (8)

p0 = 1 − p1 (9)

Let Xn be the n-bit output and xj be the j-th bit. Since the counter is reset at every
period of S3, then, using the property of the Markov process, we obtain the probability
pXn = Pr(b1 = x1, b2 = x2, . . . , bn = xn) as follows:

pXn = Pr(Bn = Xn) =
n−1

∏
j=0

p0
1−xj p1

xj =
n−1

∏
j=0

(1 − p1)
1−xj p1

xj (10)
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When the random process Bn is in the ideal condition, i.e., a stationary random process,
the entropy rate for each bit of TRNG output is equal to

H = lim
n→∞

Hn

n
(11)

Hn = − ∑
Xn∈{0,1,...,2n−1}

pXn · log2 pXn (12)

Due to the fact that the output signal S1 of the Rosin Autonomous Boolean Network
TRNG is a strong random source, its correlation approaches zero in a short period of time.
Therefore, the correlation between each random number Xk is zero, indicating mutual
independence. As a result, the entropy rate for each bit of the TRNG output is equal to

H = −pblog2 pb − (1 − pb)log2(1 − pb) (13)

4. Model Verification

In this section, we validate the effectiveness and correctness of the entropy model.

4.1. Validation of the Effectiveness of the Entropy Model

In this subsection, we validate the effectiveness of the entropy model. The specific
validated steps are as follows:

1. Implement the structure shown in Figure 1 using an FPGA, with n = 16. Let the output
of this Rosin Autonomous Boolean Network TRNG be denoted as signal S1. Count
signal S1 using a clock signal S2 with a frequency of 100 MHz, resulting in a total of
216 count values.

2. Calculate the mean of the count values, µ = 128.6207.
3. Set τ = 4 and M = 8 in the formula for calculating the Allan variance. Utilizing 216

count values, use Matlab R2019b to compute the Allan variance:

Avar(b) = σ2
b (τ) =

1
2(M − 1)

M−1

∑
i=1

(bi+1 − bi)
2

(14)

The calculated Allan variance is 5.09782.
4. Given a lower bound on entropy, we can compute the corresponding value of the

quality factor Q, according to the relationship between the output entropy and quality
factor [21]:

Hlower = 1 − 4
π2 ln 2

e−4π2Q (15)

and

Q = ρ2υ, ρ = σb fhigh, υ =
fhigh

flow
(16)

where σb is the Allan variance. So,

Q =
σ2

b f 3
high

flow
(17)

For example, if Hlower is set to 0.9999, then Q = 0.2197. Assuming that the low-
frequency sampling clock signal S3 is without jitter, let f3 be the frequency of the low-
frequency sampling signal and f4 and σ4 be the frequency and jitter of the transition
signal s

′
1, respectively. The highest sampling frequency for the slow signal can be

obtained by f3 =
σ2

4 f 3
4

Q . The highest calculated sampling frequency under these
conditions is 18.2 MHz when Q = 0.2197.

5. To evaluate the Rosin Autonomous Boolean Network TRNG (n = 16) as shown in
Figure 1, collect 216 data points for four cases, that is, the sample frequencies are
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18.2 MHz, 15 MHz, 20 MHz, and 60 MHz, which correspond to the highest sampling
frequency, a lower sampling frequency, a higher sampling frequency, and a signifi-
cantly higher frequency. The corresponding entropy values are shown in Figure 6.

It is observed that the entropy value reaches the design standard 0.9999 at a sampling
frequency of 18.2 MHz. Below this frequency, the entropy value gradually increases,
while above this frequency, the entropy value gradually decreases, aligning with the
actual scenario.

Entropy at different sampling frequencies

0.99995 0.99994 0.99985

0.99845

15 18.2 20 60

sampling frequency

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

e
n

tr
o

p
y

Figure 6. Entropy values at different sampling frequencies.

On the other hand, utilizing the 216 count values obtained, the statistical variance is
calculated to be 73.94592. Plugging this value into Equation (14), the theoretical calculation
yields a maximum sampling frequency of 720 MHz for an entropy of 0.9999.

We collected data in three cases, that is, with a sample frequency of 100 MHz, the fre-
quency obtained by Ma’s model, and that by our improvement model. It was found that
after our improvement, the PROPORTION in the NIST test was increased and subjected
to an 800-22 NIST test, while, under the first two sample frequencies, there are cases that
cannot pass the 800-22 NIST test, that is, the proportion is lower than 0.987 (as show in
Table 1, marked with ∗). This indicates that the standard variance tends to overestimate the
jitter in the Rosin Autonomous Boolean Network.

Table 1. NIST test.

Proportion with a
Sample Frequency of

100 MHz

Proportion with the
Sample Frequency

Obtained from Ma’s
Model

Proportion with the
Sample Frequency
Obtained from Our

Improved Model

Frequency 0.971 ∗ 0.830 ∗ 0.993
Block Frequency 0.990 0.970 ∗ 0.991

Cumulative Sums 0.938 ∗ 0.851 ∗ 0.995
Runs 0.989 0.972 ∗ 0.991

LongestRun 0.982 ∗ 0.970 ∗ 0.993
Rank 0.985 ∗ 0.978 ∗ 0.996
FFT 0.991 0.971 ∗ 0.996

NonOverlappingTemplate 0.983 ∗ 0.934 ∗ 0.988
OverlappingTemplate 0.927 ∗ 0.788 ∗ 0.987
ApproximateEntropy 0.970 ∗ 0.930 ∗ 0.990
RandomExcursions 0.989 0.954 ∗ 0.989

RandomExcursionsVar 0.972 ∗ 0.955 ∗ 0.988
Serial 0.987 0.880 ∗ 0.990

LinearComplexity 0.982 ∗ 0.960 ∗ 0.994
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As we can see from Table 1, there were 8 and 15 stars, respectively, for the first two
cases, while for our case, all the tests were passed successfully.

4.2. Validation of the Correctness of the Entropy Model

This section aims to validate the correctness of the entropy model in Section 3.3.
Based on the actual sampling data, we know that the Allan variance is 5.09782. Using the
relationship between the count values and Allan variance in the entropy model, we can
obtain a theoretical value. If we can proof that the theoretical value of the Allan variance is
still equal to 5.09782, then we have proved the correctness of the entropy model. The specific
validation process is as follows:

1. Obtain 216 count values.
2. Calculate the mean µ using the count values.
3. Similar to Section 4.1, calculate the sampling frequency f3 using the count values.
4. Calculate the minimum value of k that satisfies Lk ≥ T3

2 .
5. Divide each k count value into a group, count the number of groups that satisfy

Lk ≥ T3
2 , and use the relationship Pr(Ri ≤ k) = Pr(Lk ≥ T3

2 ) to approximate the
probability value.

6. Substitute the statistical results of the above data into Formula (15) to calculate the
Allan variance; the result is shown in Table 2.

σa =
T3
2 − kµ√

2ker f−1(1 − 2Pr(Ri ≤ k))
(18)

Table 2. Allan Variance σ2
a corresponding to different count values in theoretical model.

Counting Value Number of
Occurrences Proportion σ2

a

496 1 0.00001 5.53662

497 27 0.0004 5.18592

498 750 0.0114 5.09072

499 7644 0.1166 5.06602

500 24,191 0.3691 0
501 24,275 0.3704 5.15762

502 7819 0.1193 5.13982

503 798 0.00122 5.20862

504 31 0.0005 0

Regarding the results shown in Table 2, the presence of two zeros in the Allan variance
is due to the conditions T3/2 = kµ and er f−1(1 − 2Pr(Ri ≤ k)) = −∞. In these cases,
the variance is indeed 0, and therefore, these two zero values need not be considered.
From the table, it can be observed that the Allan variance obtained from the calculation
model is close to the experimentally measured Allan variance of 5.09782. This indicates
that our entropy model can be used to establish and analyze a random model for the Rosin
Autonomous Boolean Network TRNG.

4.3. Comparison of Results and Recommended Parameters

In order to achieve the optimal parameters for Rosin’s Boolean Network TRNG on
different FPGA models, it is necessary to analyze the impact of the frequency of the slow
clock control signal S3 on the output.

Firstly, let r = (T3/2) mod µ. If r = 0, the period value T3 of the control signal S3 is
exactly a multiple of the period value of the transition signal S

′
1. In this case, the edges

of the two signals coincide at any moment, meaning that the sampling point is precisely
located at the 0–1 transition edge of the S

′
1 periodic signal.
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If r = (s/2) mod µ = 0.5µ, the period value of the control signal S3 is half a period
value more than a multiple of the S

′
1 periodic value. In this scenario, the sampling point

is precisely located between two adjacent 0–1 transition edges of the S
′
1 periodic signal,

resulting in the maximum deviation in the sampled random number effect.
Based on the above analysis, let r = (s/2) mod µ = 0; by substituting parameters

µ = 128.6207, we could obtain T3 = 4µ = 514.4528. This result indicates that, ideally,
when sampling the transition signal S

′
1 with a slow signal S3 of 515 half periods, the output

entropy of the TRNG can be maximized. When using different FPGAs to port this structure,
the corresponding half-cycle length T3 and Allan variance σ2

a can be calculated based on
different count values, and then the entropy model can be used to obtain the highest
sampling frequency required to achieve entropy on different structures, in order to achieve
the fastest output speed.

Then, we utilize the proposed entropy estimation method to configure the structural
parameters of Rosin’s Boolean Network under the weakened and even degenerate case,
that is, where the number of the nodes are as low as nodes 5, 6, 7, and 8, and calculate
the entropy values. Using the model to determine sampling parameters at low nodes will
result in greater entropy and better improvement.

The mean, Allan variance, and the required half-period length for an entropy greater
than 0.9999 for the structure proposed by Rosin under nodes 5, 6, 7, and 8, obtained through
the experimental steps described in Section 4.1, are shown in the Table 3.

Table 3. Mean, Allan variance, and recommended half-cycle length under low-node Rosin structure.

5 Nodes 6 Nodes 7 Nodes 8 Nodes

Mean 129.1118 129.0564 130.1705 128.5994

Allan variance 5.1172 5.1372 5.1142 5.1032

Recommended
half-cycle length 12,136.5092 7488.4844 6508.525 3343.5844

Sample
frequency 1.055 MHz 1.71 MHz 1.967 MHz 3.829 MHz

Because Rosin ABN TRNGs may experience insufficient entropy or even degradation
at low nodes, we investigated the applicability of our model at low nodes. Under the same
structure, the entropy values obtained by directly sampling and those obtained after using
the recommended parameters are shown in Table 4. Through the comparison of the entropy
values, it can be observed that the entropy values of the Rosin structure significantly
increased under low-node conditions after using the recommended parameters. This also
validates the feasibility and correctness of our entropy model.

Table 4. Comparison of entropy values before and after using the recommended parameters between
the structure of this article and the Rosin structure.

5 Nodes 6 Nodes 7 Nodes 8 Nodes

Directly output
entropy value 0.933503 0.941833 0.943939 0.974506

Entropy value under
recommended parameters 0.99996 0.99994 0.99991 0.99997

5. Conclusions

This paper established a theoretical entropy model to evaluate the entropy and pre-
sented entropy calculation method for Rosin ABN TRNGs. The model replaces standard
variance with Allan variance, which is more suitable for estimating jitter in the Rosin
ABN. The correctness and effectiveness of this model was validated in Altera Cyclone IV



Electronics 2024, 13, 1140 11 of 12

EP4CE6F and Altera Cyclone IV EP4CE10F FPGA, and recommended sampling parameters
were provided to enhance the quality of the generated true random numbers. Future work
will focus on entropy modeling and analysis for broader Boolean chaos TRNGs.
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