
Citation: Kim, B.-H. VConMC:

Enabling Consistency Verification for

Distributed Systems Using

Implementation-Level Model

Checkers and Consistency Oracles.

Electronics 2024, 13, 1153. https://

doi.org/10.3390/electronics13061153

Academic Editor: Fernando De la

Prieta Pintado

Received: 9 February 2024

Revised: 7 March 2024

Accepted: 18 March 2024

Published: 21 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

VConMC: Enabling Consistency Verification for Distributed
Systems Using Implementation-Level Model Checkers and
Consistency Oracles
Beom-Heyn Kim

Department of Computer Science and Engineering, Hanyang University, Ansan 15588, Republic of Korea;
beomheynkim@hanyang.ac.kr; Tel.: +82-031-400-1036

Abstract: Many cloud services are relying on distributed key-value stores such as ZooKeeper, Cas-
sandra, HBase, etc. However, distributed key-value stores are notoriously difficult to design and
implement without any mistakes. Because data consistency is the contract for clients that defines what
the correct values to read are for a given history of operations under a specific consistency model,
consistency violations can confuse client applications by showing invalid values. As a result, serious
consequences such as data loss, data corruption, and unexpected behavior of client applications
can occur. Software bugs are one of main reasons why consistency violations may occur. Formal
verification techniques may be used to make designs correct and minimize the risks of having bugs
in the implementation. However, formal verification is not a panacea due to limitations such as
the cost of verification, inability to verify existing implementations, and human errors involved.
Implementation-level model checking has been heavily explored by researchers for the past decades
to formally verify whether the underlying implementation of distributed systems have bugs or not.
Nevertheless, previous proposals are limited because their invariant checking is not versatile enough
to check for the wide spectrum of consistency models, from eventual consistency to strong consistency.
In this work, consistency oracles are employed for consistency invariant checking that can be used by
implementation-level model checkers to formally verify data consistency model implementations of
distributed key-value stores. To integrate consistency oracles with implementation-level distributed
system model checkers, the partial-order information obtained via API is leveraged to avoid the
exhaustive search during consistency invariant checking. Our evaluation results show that, by using
the proposed method for consistency invariant checking, our prototype model checker, VConMC, can
detect consistency violations caused by several real-world software bugs in a well-known distributed
key-value store, ZooKeeper.

Keywords: cloud service; distributed key-value store; model checking; software testing;
data consistency

1. Introduction

Cloud services are becoming more and more popular these days. Among various cloud
services, cloud storage services are one of the most predominant ones, as data generated
by prolific smart devices have been increasing at an unprecedented pace. Cloud storage
services are often built on top of distributed key-value stores, e.g., ZooKeeper, MongoDB,
Cassandra, and HBase [1–4]. Distributed key-value stores are essentially distributed
systems, which are known to be notoriously difficult to implement without software bugs.
Indeed, there are many bugs in real-world open-source distributed systems as reported by
developers and researchers [5]. The reason why distributed systems are hard to execute
correctly is due to the difficulty of correctly reasoning about concurrent events involved in
complex distributed protocols. Additionally, distributed systems must be able to gracefully
handle various scenarios of unexpected failures. For instance, leader election protocols

Electronics 2024, 13, 1153. https://doi.org/10.3390/electronics13061153 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061153
https://doi.org/10.3390/electronics13061153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8650-6082
https://doi.org/10.3390/electronics13061153
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061153?type=check_update&version=1


Electronics 2024, 13, 1153 2 of 25

are one of the key components of distributed systems. Once elected, leaders are expected
to coordinate the order of distributed events to guarantee the consistency of replicas. In
addition, leader election and coordination mechanisms must work flawlessly, even in the
presence of unforeseeable failures. Any mistake made in the relevant code may introduce a
fork in the history of data, which can possibly lead to data corruption or data loss.

Among concurrency bugs in distributed key-value stores, software bugs causing the
violation of data consistency models, so-called consistency bugs, are critical ones that
may confuse client applications to make incorrect decisions [5,6]. When consistency bugs
manifest, the violation of data consistency models (hereafter, ‘consistency model’ and ‘data
consistency model’ are interchangeably used) occurs. Imagine a social network application
where Alice and Bob post messages to exchange their opinions back and forth to make
some decision. This setting is widely known to be a good application scenario to use causal
consistency [7]. If some consistency bugs occurred and updates made by Alice and Bob
were unintentionally re-ordered, the causality among messages of Alice and Bob might not
be kept. Now, the third person, say Carol, who supposes those messages to be displayed in
the order that keeps the causal order, may unexpectedly read their messages in the incorrect
order and misunderstand the decision made earlier between Alice and Bob. If a similar
problem occurs in safety-critical scenarios like traffic control systems where autonomous
vehicles exchange their messages about the current positions, velocity, acceleration, etc.,
then very serious catastrophic failures can happen. Therefore, it is very important to find
such consistency bugs in distributed systems before they manifest.

Nevertheless, finding consistency bugs in distributed key-value stores is still an open
problem that previous proposals have not yet fully addressed. Finding bugs in distributed
systems has been explored by many researchers using various approaches to more ef-
fectively test corner cases of systems-under-test (SUTs). However, previous works have
not studied how to detect violations of consistency models well when they actually oc-
cur. One line of previous works either leverages random testing approaches like fuzzing
methods [8–13]. However, fuzzing cannot systematically explore the state space of SUTs;
therefore, it may miss some bugs. Although advancement of formal methods may be
used to develop formally verified bug-free distributed systems, it still has several limits,
such that it takes a lot of time and effort for non-researchers, cannot be directly applied to
existing implementations, and a formally verified design does not always imply a correct
implementation [14–16]. On the other hand, implementation-level model checking can
systematically enumerate the state space of SUTs [17–26] unlike fuzzing and can directly
verify the implementation of distributed systems without the limitations of formal method
approaches. However, model checking tends to focus on finding general types of concur-
rency bugs in distributed key-value stores. Thus, it lacks an effective generic invariant
checker that can detect the violation of a diverse consistency model.

We propose integrating flexible and interactive consistency oracles with implementation-
level model checkers to enhance model-checking approaches with the new capability of
detecting violations for various consistency models. We designed and implemented a
prototype implementation-level model checker, VConMC (VConMC stands for Verification
of Consistency using Model Checker), to demonstrate the effectiveness of the proposed
idea. It is an implementation-level model checker equipped with the consistency-specific
invariant checker based on consistency oracles [27]. Consistency oracles can tell us what
the valid values to read are for the given history of operations (i.e., reads and writes) with
respect to consistency models.

The major challenge is to find out how to prepare the inputs for the consistency
oracles. Consistency oracles require the history of operations that honor the actual order
of operations. From the client perspective, without knowing information associated with
the system’s internal mechanisms for ordering like clocks, it is very difficult to find out the
ordering information of concurrent operations. It is especially challenging if there were
concurrent failures during request handling because it affects the timing when operations
are actually applied. Instrumenting the source code may help to gain useful insights in the



Electronics 2024, 13, 1153 3 of 25

order of operations, but it requires heavy engineering effort, and the code instrumentation
itself may not be sustainable when the source code gets updated. Previous works offering
consistency invariant checking, including Jepsen [8], tend to employ exhaustive searches by
exploring all possible interleaving of concurrent events. Although the exhaustive approach
for consistency invariant checking may work for a small number of concurrent requests
and failures, its application to the realistic deployment scenario often faces with the state
explosion problem as the scale of the testing environment increases. With this, the state
explosion problem inherently embedded in the implementation-level model checking easily
becomes more severe.

The key observation is that there exists the partial-order exposing API, which enables
consistency invariant checking without the exhaustive search through every possible
interleaving of concurrent events. Although such an API is not mandatory for key-value
stores, it is desirable component that can be easily extended by developers because it can
enable consistency invariant checking without making state explosion problems more
severe. By exposing the partial-order information to clients, SUTs may reveal a hint of
the order of operations. Therefore, we can construct the history of operations, even in
the presence of failures during the request handling, only by inspecting the request and
response via the API layer of SUTs. With the history of operations and the given consistency
models, consistency oracles answer the query requests by providing the collection of valid
values that can be read. Then, comparing the answer from the consistency oracles and
the actual values read from the SUTs allows us to determine whether there has been any
violation of consistency guarantees or not.

To validate the proposed methodology, the prototype tool VConMC is applied to
ZooKeeper and demonstrates that the proposed methodology allows us to correctly detect
consistency violations. Initially, VConMC uses the systematic and exhaustive state space
enumeration of its model checking component to manifest bugs causing consistency vio-
lations. Then, when bugs are successfully reproduced, VConMC’s consistency invariant
checking component which is built on top of consistency oracles can detect violations.
As a result, the proposed methodology could effectively reproduce 3 real-world software
bugs in ZooKeeper and detect violations without being suffered from exploring various
interleaving of client requests.

Contributions

The main contribution in this work is the novel implementation-level model checker
integrated with consistency invariant checking based on consistency oracles. There has
been no bug finding tool that utilizes systematic and exhaustive state space exploration
along with a consistency invariant checker specifically designed for detecting violations of
various consistency models while mitigating the state explosion problem during invariant
checking. The key enabler is making the observation that there is some client API that
offers enough hints on the internal ordering of concurrent operations. Previous tools could
not avoid extra heavy engineering effort or additional computation costs because those
tools could not leverage the hints on the internal partial-order information exposed by
a client API. This work introduces the novel methodology of integrating the invariant
checker and the model checker by extensively leveraging such an API and demonstrates
its effectiveness.

In short, this work makes the following specific contributions:

1. Making the key observation that there is a client API exposing internal partial-order
information;

2. Building the consistency invariant checker by leveraging the aforementioned client
API and consistency oracles;

3. Integrating an implementation-level model checker with the consistency invariant
checker above;

4. Demonstrating the effectiveness of the proposed methodology by applying it to find
real-world consistency bugs in a well-known distributed key-value store.



Electronics 2024, 13, 1153 4 of 25

The rest of the paper is structured as follows: Section 2 provides background informa-
tion about consistency models. Subsequently, in Section 3, the prototype implementation-
level model checker VConMC and consistency oracles are discussed. Then, the proposed
methodology for consistency invariant checking follows. More specifically, we elaborate
the major challenge involved in consistency invariant checking that does not know any
ordering information and the novel methodology of constructing the history of opera-
tion using the partial-order information exposed via API through the example case study
with ZooKeeper. After that, Section 4 shows the evaluation results demonstrating the
effectiveness of VConMC followed by relevant discussion. In Section 5, related works are
summarized. Finally, the conclusion is given in Section 6.

2. Consistency Models

Various consistency models have different characteristics suitable for specific appli-
cation scenarios in terms of data consistency, availability, and latency [28,29]. Terry et al.
compiled a selection of consistency models that are supported by many distributed key-
value store systems in the context of cloud computing [30]. As this work focuses on
distributed key-value store systems for cloud storage services, the aforementioned selection
of consistency models is used in this work as a reference. However, it is also possible to
extend our proposed methodology to other consistency models. For example, there are
consistency models clarified by Higham et al. [31].

Applications relying on the data freshness prefer the strong consistency model to be
high availability or short latency. On the other hand, e-commerce applications can tolerate
some inconsistent data such as missing items in the shopping cart as customers can easily
find and fix this problem when they proceed to purchase. Those e-commerce applications
prefer servicing more customers with the least service disruption and with short latency.
To meet the needs of the former type of application, which prefers the strictness of data
consistency over high availability or short latency, distributed key-value stores employ
strong consistency, where concurrent operations are handled as if they are processed by a
single logical server. Meanwhile, for the latter type of applications, which favors the high
availability or short latency over the strictness of data consistency, the weak consistency
models such as eventual consistency have gained large attention from both the industry and
academia for the last decades. Moreover, there are various intermediate-level consistency
models that are between strong consistency and eventual consistency.

Various consistency models define their own ordering rules of concurrent operations
and the timing constraints when previous operations must become visible for subsequent
operations. Under strong consistency, distributed key-value stores should provide an
illusion that all operations are handled by a single server node. In order to accomplish
this, distributed key-value stores order every operation sequentially as there is a total order
among all operations, which implies that every client should see the coherent unique global
history of operations. Also, each operation must become visible as soon as it is applied.
That is, once the write operation is applied on a replica of distributed key-value stores,
every subsequent read operation applied afterwards should see the effect of the last write
operation. Such a strong consistency guarantee is also known as linearizability [32], which
is the most natural consistency model to reason about for client application developers.
For instance, under such a strong consistency model, it is obvious to see which value a
client should have read via its read operation given the global history of operations applied
previously: it would be the latest write made to the key requested by the read operation.

The strong consistency model sacrifices availability or latency at the cost of offering
strict data consistency. One way to implement the strong consistency model is by using a
two-phase commit protocol that coordinates concurrent operations [33]. The two-phase
commit protocol requires additional network and processing delays to ensure all nodes
agree on the same update to records. Another way to implement the strong consistency
model is by having each client request access to the majority of nodes for writes and reads.
Because at least one node is accessed for every write and read, there is at least one node that



Electronics 2024, 13, 1153 5 of 25

has the latest version of records. Therefore, the networking and processing delays involved
are much greater compared with those of the single server’s case. In addition, if a network
partition occurs for some replicas, the cluster may become unavailable for clients, which can
only connect to those partitioned server nodes. Thus, clients on the side of the partitioned
server nodes must either wait until the network partition is recovered so that the majority
of servers become reachable again or retry with different server nodes in the hope of being
the one on the majority side. Thus, it is unavoidable that the strong consistency model is
the worst choice for applications preferring high availability or short latency.

On the other hand, the eventual consistency model is the weakest form of consistency
models, which only guarantees the liveness property [34]. The definition of the eventual
consistency model is that, as long as there is no newer write performed, all replicas are
eventually going to converge. Thus, the eventual consistency does not restrict operations
to keep the rules for the ordering and timing of operations. For example, suppose one
client sequentially issued write operations X and Y. Clients may read Y first and read X
next, while other clients read X first and then read Y. Unlike the strong consistency model
implementation, the eventual consistency model allows each operation to be applied on
each server independently without going through the coordination of server nodes using
consensus protocols. Therefore, there is no longer additional networking and processing
delays involved in processing concurrent operations. Failures do not interrupt operation
handling for clients on the partitioned side when the network partition occurs. Thus,
under the eventual consistency model, clients can take advantage of high availability or
short latency at the cost of giving up strict data consistency.

Moreover, there are various consistency guarantees that are considered to be in the
middle of the strong consistency and eventual consistency with respect to the strictness
of data consistency. For example, there are several session guarantees such as monotonic
reads, consistent prefix, bounded staleness, read-my-write, etc. Each session guarantee
has a specific ordering and timing constraint to be met within a session between a client
and a distributed system. Monotonic reads guarantee that each read operation within
the same session will see a write that is at least as new as the one seen by the last read.
Consistent prefix ensures that the prefix of the write sequences within the same session is
maintained to be coherent for each read operation. Bounded staleness guarantees that read
operations will be able to see the write operations that are no older than the given time
bound allows. Read-my-write assures that each read operation sees write operations as
recent as the one that the same client issued for the last time within the same session. These
intermediate-level consistency guarantees may be used separately or combined to compose
a unique consistency model to meet each application scenario.

3. Materials and Methods
3.1. Problem Statement

Finding consistency bugs require the proposed solution to solve a few challenging
issues. First, bugs need to be reliably manifested, which means state space exploration of
the system-under-test should be reliable enough to drive the system to reach a target state
without observing any significantly non-deterministic behaviors. Second, missing corner
cases should be avoided by systematically and exhaustively enumerating possible states
of the given system-under-test. Third, when a bug is reproduced, it is essential to detect
its consequences using dedicated invariant checkers. More specifically, consistency bugs
cause the violation of consistency models, which may be varied from systems to systems.
Consistency invariant checkers must adapt flexibly and should be easily extensible. Fourth,
consistency invariant checking itself should not contribute to making the state explosion
problem of model checking worse. Model checking today already suffers from the huge
number of states to explore. Employing consistency invariant checking methodology that
adds up the complication cannot be considered as a desirable solution that can be used
with model checkers.



Electronics 2024, 13, 1153 6 of 25

Therefore, the proper solution to find consistency bugs must fulfill the
following requirements:

1. It must be able to reliably explore state space of the system-under-test;
2. It must be able to systematically and exhaustively explore the state space;
3. It must be able to check for various consistency models;
4. It must be able to mitigate state explosion problem during invariant checking.

The proposed solution can solve the aforementioned problems by satisfying the re-
quirements above by combining each subsystem that can solve each issue in a novel way.
First, adding a hook carefully into the system-under-test allows it to tightly control non-
deterministic behaviors as much as possible. Second, utilizing the stateless state space search
technique allows it to support systematic and exhaustive state enumeration. Third, leverag-
ing consistency oracles allows it to flexibly check for various consistency models. Fourth,
using internally used ordering information exposed via a client API helps in inferring the
order of operations to be used along with the consistency oracles to perform consistency
invariant checking without needing to explore all interleaving of concurrent operations.

More specifically, the first two requirements are fulfilled by the controlled environment
component described in Section 3.3 and the model-checking server’s state space exploration
component presented in Section 3.4, respectively. The third requirement is satisfied by
using the consistency oracles component elaborated in Section 3.5 and, finally, meeting
the fourth requirement is carried out by the model-checking server’s invariant checker
component discussed in Section 3.6.

3.2. Architecture Overview

Figure 1 shows the architecture of VConMC, our prototype implementation-level
model checker that is specially designed to verify the consistency model implementation of
the given distributed key-value store. The given distributed key-value store should run in
a controlled environment in a way that concurrent events are executed in a deterministic
fashion as orchestrated by the model checker. While the model checker is exploring the state
space of the given distributed systems, it systematically explores each path starting from
an initial state and ending at one of the leaf states. At the end of every path exploration,
the execution results of the clients’ read and write requests are verified by checking whether
any violation has occurred with respect to the given consistency models using consistency
oracles. The check for consistency violation involves the membership test of each read
operation to see if the value seen by the read operation is in the set of valid values returned
by consistency oracles.

Consistency model checkers should essentially consist of 3 key components: (1) an
SUT, which is a distributed key-value store system wrapped by an instrumentation layer
to be integrated into the controlled environment for deterministic state space exploration;
(2) a model-checking server actually orchestrating the state space exploration of the given
SUT and conducting the invariant checks; and (3) a consistency oracle accepting the global
history of operations and producing the set of all valid values to read as an answer to a
query from the invariant checker module within the model-checking server. In this section,
we describe each component of VConMC in more detail.



Electronics 2024, 13, 1153 7 of 25

Controlled EnvironmentModel Checking Server

Consistency Oracles

CPSC MR BS ECRM

System-Under-Test

State Space Exploration

Client Manager

Invariant Checker

U

Figure 1. VConMC architecture. VConMC is an implementation-level model checker using consis-
tency oracles as the basis of consistency invariant checking. The model-checking server is composed
of three major components such as the state space exploration module, client manager module, and
invariant checker module. System-under-test is instrumented to work with the model-checking
server within a controlled environment for the verification purpose. Consistency oracles contain
several reference consistency modules to produce the set of valid values to read for the given history
of operations. The client manager module provides requests and responses sent to and received from
the system-under-test for the invariant checker module to interact with consistency oracles during
consistency invariant checking.

3.3. Controlled Environment

As a prerequisite, we need to wrap the SUT with an instrumentation layer to tightly
control concurrent events and environmental events so that the SUT closely follows the
direction of the model checker. Distributed systems heavily utilize concurrency supports
of the underlying systems for more efficient performance and higher availability. Such
concurrency yields a significant number of concurrent events that can occur with no specific
order. In addition, various environmental events such as the stochastic load on the host
systems as well as the unexpectedly occurring system crashes or network partition failures
can also contribute to the non-deterministic behavior of SUT. Only after suppressing the
non-deterministic behavior of the SUT can model checkers tightly control the order of
events to systematically drive the SUT into each state.

Implementation-level model checkers usually solve this issue in two ways. First,
the code of SUT is instrumented in a way that any non-deterministic event about to
occur is interposed by the model checker, and the actual execution of it is blocked until
the model checker allows it to pass. Instrumentation usually inserts a hook before the
line of codes where the non-deterministic event is executed by adding a hook before a
non-deterministic event executes; a thread attempting to execute that event traps into
the model-checking server and waits for the right timing to fire the interposed event. In
this work, instrumentation was performed manually. Adding the hook via automated
instrumentation is left as future work. When applying VConMC to ZooKeeper, it took about
a couple of weeks to add the necessary hooks through the manual instrumentation process
by one person who has moderate knowledge about the system-under-test. Second, the well-
defined interface can serve as the interposition layer. For instance, the library wrapping
the system calls can be the layer for model checkers to interpose non-deterministic events.
Each invocation of system calls is blocked and waits for the model checker to allow it to
execute. Hence, the model checker can control the order of system call execution without



Electronics 2024, 13, 1153 8 of 25

modifying the target SUT. However, because some system calls have semantics that can
change depending on the input parameters, the implementation of the interposition layer
is brittle and more complicated, which requires quite a bit of engineering effort. Thus,
VConMC employs the first approach to control the non-determinism of an SUT.

Blocking and giving control over non-deterministic events to the model checker is the
key mechanism to systematically steer the SUT to reach each state in a controlled manner.
For instance, the line of code that acquires a lock and the line of code that releases the
acquired lock guard a critical section to prevent the race condition. However, it is possible
that the code may have a concurrency bug that can lead to a deadlock depending on
the order of executions. By blocking each concurrent event and explicitly controlling the
execution order, the model checker can exhaustively and systematically explore all possible
interleaving of acquiring and releasing locks around the critical section.

Figure 2 shows an example that illustrates the scenario where 4 threads concurrently
run in parallel and, therefore, a few non-deterministic events occur. Each thread may be
running on distributed nodes and communicating through the network. There may be a
lock shared by threads running on the same node. For instance, Thread A and Thread B
compete for the lock by trying to successfully execute lock_acquire first. In addition, more
than two nodes may attempt to send messages to the common destination node at the same
time. As an example, both Thread B and Thread C are concurrently executing send_msg.
The order of each event is non-deterministic during the execution of the deployed system.
Thread A may successfully invoke lock_acquire and obtain the exclusive ownership of the
shared lock before Thread B does. However, it is also possible that Thread B successfully
acquires the shared lock before Thread A does. Moreover, Thread B may send a message
to Thread D before Thread C does, or the execution may occur in the reverse order.

lock_aquire lock_acquire

send_msg

send_msg

recv_msg

Shared Lock

Thread A Thread B

Thread C

Thread D

Network

Figure 2. An Example scenario of concurrent events occurring in a non-deterministic order. Different
colors are used to indicate the different thread’s interaction with resources such as a shared lock or
a network.

Meanwhile, Figure 3 describes how the VConMC controls concurrent events for the
aforementioned example scenario. To control the non-deterministic order of concurrent
events such as lock_acquire and send_msg, hooks are inserted and activated before the
invocation for those events so that those non-deterministic events are interposed and
blocked. Then, the model checker receives the interposed events. To gather all concurrent
events, the model checker must wait long enough for the SUT to become quiescent. At
the quiescent state, no more concurrent events will occur, and the SUT cannot make
any progress until the model checker fires off one of the interposed concurrent events.



Electronics 2024, 13, 1153 9 of 25

Subsequently, the model checker determines the order of those interposed concurrent
events and accordingly schedules the execution of those events. For example, the model
checker will receive an event that is Thread B’s attempt to invoke send_msg and another
event that is Thread C’s attempt to invoke send_msg. Suppose interposing those two
concurrent events are enough to make the SUT to reach the quiescent state. Then, the model
checker determines which one of those two events is executed first. Once the order is
determined, the model checker orchestrates interposed threads to execute concurrent events
in a determined order by letting the first event execute first and the second event follow.

Thread B

Thread C

Thread D

Network

Hook

Hook

Hooklock_acquire

send_msg

Hook
send_msg

recv_msg

Model Checking 
Server

Figure 3. Interposition of concurrent events to execute those events in a deterministic order (Thread
A is omitted for the better visibility).

3.4. Model Checkers

In this work, we employ a stateless state space exploration strategy. Implementation-
level model checkers can take either state-based or stateless approaches to explore all
possible interleaving non-deterministic events. The state-based exploration approach
requires heavy modification of the SUT and the underlying system for the model checker
to capture the state information. With a state-based search strategy, the SUT’s state can
be represented by the content in the memory. Thus, the model checker should be able to
create a checkpoint to capture that information at a moment and freely rollback to one of
the system snapshots to resume the state exploration. Meanwhile, the stateless exploration
does not need such heavy modification but only the lightweight instrumentation of the
SUT. The only changes required for the stateless search strategy are to keep track of each
interleaving of non-deterministic event that has been explored because the execution order
of non-deterministic concurrent events are used as the representation of the SUT’s state.
For the stateless search strategy, there is no need to take the snapshot of the SUT and
the underlying system to roll back to one of intermediate states during the state space
exploration. Instead, the stateless model checkers execute the sequence of non-deterministic
events to reach one of intermediate states to continue the state space exploration. Therefore,
state space exploration consists of path exploration attempts, each of which begins at the
initial state and ends at each leaf state where there is no more enabled transition.

Figure 4 describes the stateless state space exploration in VConMC which is built on
top of SAMC’s framework [24]. The state exploration consists of repeated path exploration.
Each path exploration begins at the specific initial state. Then, the model checker sees
which events are interposed and regarded as enabled transitions that can be applied to the
current state for the model checker to visit one of subsequent states. For example, at the
initial state S1 in Figure 4, there are two enabled events such as Thread A’s attempt to



Electronics 2024, 13, 1153 10 of 25

invoke lock_acquire and Thread B’s attempt to invoke lock_acquire. The model checker can
determine the order of those enabled events and pick the next event to make a transition to
the next state.

S2
S3

S4 S5

Thread A: lock_acquire

{Thread A: lock_acquire, Thread B: lock_acquire}

Thread B: lock_acquire

{Thread A: lock_acquire, Thread B: lock_acquire,
 Thread B: send_msg, Thread C: send_msg,
 Thread D: recv_msg, …}

Thread B: send_msg Thread C: send_msg

{Thread A: lock_acquire, 
 Thread B: send_msg, Thread C: send_msg, 
 Thread D: recv_msg, …}

S1

…

Si

…

∅

Figure 4. An example of stateless state space exploration. Starting at the initial state S1, each traversal
of a path allows the model checker to visit a series of states until it reaches one of leaf states, such as
Si. Each state in stateless model checking does not actually contain any in-memory snapshot of the
SUT’s state. Instead, every state in the stateless search strategy is a sequence of non-deterministic
events that essentially are transitions between states.

At each state, some transition can become disabled, while some other events are newly
enabled. For instance, at S3 in Figure 4, as Thread A succeeds with obtaining a lock, Thread
A can no longer invoke lock_acquire. So, Thread A’s attempt to invoke lock_acquire should be
disabled in subsequent states by removing it from the list of enabled transitions. On the
other hand, the model checker can newly interpose Thread B’s and Thread C’s attempts to
send messages to Thread D as well as Thread D’s attempt to receive messages. Then, those
events of Thread B, Thread C, and Thread D are newly appended to the list of enabled
transitions. However, without sending any message to Thread D, there is no message
for Thread D to receive. So, Thread D’s attempt to invoke recv_msg becomes temporarily
disabled in S3. Nevertheless, that recv_msg invocation event should not be permanently
removed from the list of enabled transitions, as Thread D’s recv_msg invocation can be
executed after Thread B or Thread C sends a message to Thread D. Indeed, once Thread
C sends a message, Thread D’s recv_msg becomes enabled in S5. When a path exploration
reaches a leaf state, there is no more enabled transition to traverse, as shown in Si. Once the
model checker reaches one of leaf states, the path exploration is complete and the model
checker restarts another path exploration run by rolling back the SUT to the initial state.
By systematically and exhaustively exploring each path, VConMC can check if there is no
consistency violation for all possible corner cases.

A model-checking server is the key component of VConMC that is responsible for
state space exploration. The model-checking server communicates with the interposition
layer. Each relevant event interposed on each node is notified to the model-checking server
via the network. As previously explained, threads whose events are interposed by hooks
are blocked until the model-checking server responds back. All concurrent events collected
by the model-checking server are converted into a list of enabled transitions for state space
exploration. Then, the model-checking server chooses one of the events from the list of
enabled transitions and responds back to the corresponding thread so that the chosen event
can be executed.

The algorithm for state space exploration is described in Algorithm 1. At a high level,
the model-checking server explores the state space by repeating path exploration runs.



Electronics 2024, 13, 1153 11 of 25

Every path exploration run searches through states by keep executing one of the enabled
transitions at each state that has not been previously traversed. Each run is exploring
a specific path traversal of the given state space. Note that the selection of transition to
execute at Step 5 is performed in a first-in-first-out (FIFO) fashion (better heuristics using
hints from the source code using program analysis may be utilized, but this is left out
as future work). Once a path exploration run finishes, client operations executed during
the path exploration run are analyzed for invariant checking. For each iteration of path
exploration runs, the state of the SUT is reset by shutting down all related processes of
the SUT and restarting them with the clean state. Additionally, it is possible to record and
replay events to bring the SUT to a specific initial state once it is reset to the clean state.

Algorithm 1 VConMC’s Stateless State Space Exploration Algorithm

1: A model-checking server initializes the state of a distributed key-value store as an SUT.
2: Starting at the initial state, the model-checking server starts up SUT’s processes on each

of the distributed nodes.
3: Each node gets blocked when concurrent events are interposed and notifies the model-

checking server about the interposed events.
4: Meanwhile, the model-checking server keeps collecting concurrent events until the

SUT becomes quiescent.
5: The model-checking server decides the next concurrent event to explore.
6: Every choice at each state is recorded to avoid repeated visits of the same next state.
7: The model-checking server directs a node to execute the chosen next concurrent event.
8: Go back to the step 3 above and repeat until there is no more next event to choose or

the depth of the path traversal exceeds the upper bound.
9: The model-checking server analyzes the history of client requests using consistency

oracles.
10: Go back to the first step above and repeat until there is no more path to explore.

At the end of each path exploration run, the invariant checker module of the model-
checking server conducts consistency invariant checking as described in Algorithm 2. The
invariant checker module interacts with the consistency oracles to conduct consistency
invariant checking for the given consistency models (Step 6 and Step 7). The invariant
checker module inspects the trace of client’s requests and responses by feeding those as
inputs into consistency oracles using Update(⟨Input⟩, ⟨CM⟩) API call, where ⟨CM⟩ is
the parameter used to select consistency guarantees composing the consistency model
(Step 7). Further details of consistency oracles’ API calls are discussed in Section 3.5. For
each read operation, the invariant checking module checks if the value seen by the read is
correct under the given specific consistency model using the Query(⟨Input⟩, ⟨CM⟩) API
call (Step 6).

Algorithm 2 VConMC’s Consistency Invariant Checking using Consistency Oracles

1: An invariant checking module of a model-checking server starts up consistency oracles.
2: Encode the consistency model, ⟨CM⟩, as the composition of consistency guarantees.
3: A client’s operation is sequentially obtained from the history of operations.
4: The invariant checking module determines whether the obtained client operation is a

read operation or a write operation.
5: Convert the client operation into the ⟨Input⟩ for the consistency oracles.
6: For the read operation, the invariant checking module invokes Query(⟨Input⟩, ⟨CM⟩)

and raises an alarm if the check detects a consistency violation.
7: The invariant checking module feeds the client operation into the consistency oracle by

using the Update(⟨Input⟩, ⟨CM⟩) API call.
8: Go back to the first step and repeat the previous steps until there is no more client

operation to check.



Electronics 2024, 13, 1153 12 of 25

3.5. Consistency Oracles

In this work, we employ consistency oracles [27] to obtain the set of valid values
to read for the given history of operations with respect to a consistency model that may
provide the composition of several consistency guarantees. For the scope of this work,
consistency violations occur if a read operation sees the value set by a write operation
that breaks a guarantee promised by the given consistency model. Therefore, to detect
consistency violations, the necessary first step is to know whether the value seen by each
read operation is valid or not, which is the very purpose of consistency oracles.

Consistency oracles provide a very simple interface: (1) Query and (2) Update. More
specifically, the interface calls are

Query(⟨Input⟩, ⟨CM⟩)

where ⟨Input⟩ is the client operation and ⟨CM⟩ is the given consistency model, and

Update(⟨Input⟩, ⟨CM⟩)

where ⟨Input⟩ is the client operation and ⟨CM⟩ is the given consistency model. When a
client operation is applied by a system-under-test, then it needs to be added to a global
history to further analyze the consistency behaviors of the system. Update is called by our
model checker to update the consistency oracles by appending the given client operation
in the consistency oracles’ internal global history. It takes a client operation as an input but
returns nothing. On the other hand, when a client operation is a read and obtains some
value from the system-under-test, the Query interface needs to be invoked to determine
whether the value read by the operation is valid or not. The Query interface will take the
read operation as an input and return the set of valid values to read. So, the consistency
invariant checking becomes as simple as a set membership test with consistency oracles.

Consistency oracles internally have multiple reference consistency modules to be able
to compute all valid values for a consistency model composed of arbitrary consistency
guarantees. The internal global history of operations in consistency oracles is shared
by each reference module to analyze and produce the set of all valid values to read for
the corresponding consistency guarantees. A query request for a given read operation
is given with a parameter specifying which consistency guarantees are supposed to be
provided by an SUT. Then, the intersection of each set of valid values produced by reference
consistency modules is obtained as the final answer of consistency oracles. Each reference
consistency module can be therefore regarded as an independent oracle for a specific
consistency guarantee. Our prototype consistency oracle employs the careful selection of
five consistency guarantees chosen from the practical consistency guarantees compiled
by Doug Terry [30], which are strong consistency (SC), monotonic reads (MRs), bounded
staleness (BS), read-my-writes (RM), and eventual consistency (EC).

The oracle maintains an append-only global log, which keeps growing as new inputs
are appended to its end. The global log, denoted by ⟨GlobalLog⟩, can be defined as follows:

⟨GlobalLog⟩ = ⟨Input1⟩ ⟨Input2⟩ . . . ⟨Inputn⟩

where ⟨Inputi⟩ for i = 1, 2, . . . , n (n ∈ N) is the representation of each operation performed
by clients. The ⟨Inputi⟩ is defined as follows:

⟨Inputi⟩ = ⟨ClientID⟩ ⟨Key⟩ ⟨OpType⟩ ⟨Value⟩ ⟨Timestamp⟩

where ⟨ClientID⟩ is the unique identifier of the client requesting an operation; ⟨Key⟩ is the
unique identifier of the data entity; ⟨OpType⟩ is the type of operation, i.e., whether it is read
or write; ⟨Value⟩ is the actual data value; and ⟨Timestamp⟩ is the time in milliseconds when
the operation is requested. Here, ⟨Timestamp⟩ can be used when time-based consistency
guarantees such as bounded staleness should be checked.



Electronics 2024, 13, 1153 13 of 25

When invoking an interface Update(⟨Input⟩, ⟨CM⟩) or Query(⟨Input⟩, ⟨CM⟩), the
second parameter ⟨CM⟩ encodes a consistency model that is the composition of arbitrary
consistency guarantees. To extend consistency oracles to support additional consistency
guarantees, corresponding reference consistency modules can be added alongside other
reference consistency modules without requiring modification to existing ones.

3.6. Consistency Invariant Checking

In this section, we present how to enable generic consistency invariant checking based
on consistency oracles for implementation-level distributed systems model checkers. By
leveraging consistency oracles, VConMC can be used for the verification of the various
consistency models of the distributed key-value store supporting cloud storage services.

Because consistency models define the ordering rule for client requests reading or
writing data from the distributed storage systems to follow, it is critical to infer the order
of client requests to check if the SUT does not infringe constraints imposed by those
consistency models. If guessing the order of requests is incorrect, consistency violations
cannot be caught. For example, suppose two concurrent PUT(X,1) and PUT(X,2) requests
are issued by clients, which are followed by a GET(X) request reading 1. Can we conclude
that the given history of operations has violated a strong consistency model where every
GET must read the latest PUT? Assuming that due to some network delay causes PUT(X,2)
applies first and then PUT(X,1) applies next, GET(X) can read 1 without violating the
constraint imposed by the strong consistency model. From the client perspective, it is not
obvious to figure out the actual order of concurrent PUT requests without support from the
server nodes.

The culprit that makes inferring the order of operations difficult is the distributed
processing of concurrent events. Once client requests are issued, those requests travel
through a network path, where involved networking and processing delays may vary
for a number of reasons: there may be different numbers of processes running on each
node on the data path, different hardware specifications and configurations for each server,
different numbers of network flows transmitting through a network cable or a router, etc.
For instance, the PUT(X,2) request may have sat in the buffer for incoming packets on
one of the routers because that router may be in the middle of handling an overwhelming
amount of network flows, while the PUT(X,1) request is handled by another router under
much lower load so that the request can be processed right away. Precise estimation of
how fast each request can be processed by a specific hop along the network path is very
challenging. Moreover, as more client applications send requests, the degree of concurrency
imposed by concurrent client requests increases, and failures may occur more frequently
during request handling, which make it more complicated to correctly infer the order
of operations.

Many distributed systems have the means to coordinate concurrent operations via
consensus protocols to enforce some partial order among those operations. For exam-
ple, Paxos [35] has been widely adapted by many real-world distributed systems [36,37].
ZooKeeper uses its own consensus protocol called ZAB, which stands for ZooKeeper
Atomic Broadcast [38]. Raft [39] has been accepted by many distributed systems from the
industry, and etcd is one example. MongoDB also employs a variant of the Raft protocol by
extending the vanilla Raft to incorporate pull-based replication [40]. The implementation
of consensus algorithms employs a logical clock to distinguish each operation reflecting
the order of operations being appended in the log. With the logical timestamp, the servers
can find out the partial-order information among concurrent operations. As an example,
ZooKeeper, the primary open-source distributed key-value system, uses zxid as a logical
timestamp to serialize each write (i.e., Put).

This work utilizes the key observation that there are distributed systems exposing the
partial-order information of operations via API by revealing a logical timestamp associated
with each client request. For instance, ZooKeeper’s API for Get and Put are getData and
setData. For the invocation of those API calls, ZooKeeper’s client stub returns the result of



Electronics 2024, 13, 1153 14 of 25

the API call along with the metadata, including ordering-related information, zxid. For
a getData process, the API call returns the zxid of the setData, from which the getData
reads its value. On the other hand, for a setData, it returns the zxid assigned to a setData.
That is, the returned zxid for a getData implies the order of that getData relative to the
setData it saw, and the returned zxid for a setData implies the order of that setData with
respect to other setData requests. Note that it is not possible to infer the total order of
every concurrent request because zxid does not distinctively determine the exact order
of the getData. Nevertheless, the zxid values returned by ZooKeeper still let us infer the
partial-order information that is enough to be used for consistency invariant checking.

Without knowing the actual order of concurrent events, it is difficult to conduct
consistency invariant checking for various consistency models. Consider the state-of-the-art
consistency fuzzer, Jepsen [8], which uses the blackbox approach for consistency invariant
checking. Suppose that such a blackbox approach for consistency invariant checking is
leveraged to test ZooKeeper. Note that ZooKeeper employs a composited consistency
model. Its consistency model provides three consistency guarantees: monotonic reads,
consistent prefix, and bounded staleness. Figure 5 illustrates the limitation of the the
aforementioned method when it checks for a monotonic reads consistency guarantee.
The figure shows what can happen when there are multiple concurrent clients writing
and reading. Initially, there are three setData requests performed by three writers, C1,
C2, and C3. As those requests are concurrent, clients would not know in which order
setData requests are applied without knowing the internal ordering-related information.
Meanwhile, each reader has its own session and issues two sequential getData requests.
Those sessions run concurrently and independently, which mean clients do not know when
getData requests are actually handled and different getData requests across sessions are
not co-related.

setData(X, 1)

setData(X, 2)

setData(X, 3)

getData(X)

2 1

getData(X)

C1:

C2:

C3:

Concurrent Operations

Session B

getData(X)

3 1

getData(X)

Session A

Independent Sessions

ZooKeeper’s 
Consistency Guarantees
Monotonic Reads
Consistent Prefix
Bounded Staleness

Figure 5. History from the client perspective without knowing the actual order of concurrent
operations. Clients C1, C2, and C3 issued setData requests, which yield concurrent operations to
apply in an arbitrary order via the ZAB protocol. Once those operations are applied, two independent
sessions are started, and clients in each session issue a couple of getData requests sequentially.
In Session A, the first and second getData invocations read the value of X that are 3 and 1, respectively.
On the other hand, in Session B, the value 2 and 1 are read for the first and second getData for the
key X, respectively. ZooKeeper’s consistency guarantees are specified to involve monotonic reads,
consistent prefix, and bounded staleness.

How can one tell if each getData request does not violate monotonic reads, one of
ZooKeeper’s consistency guarantees? The traditional approach like the one used by Jepsen
simply performs the exhaustive search through all possible interleaving of concurrent



Electronics 2024, 13, 1153 15 of 25

events. If at least one of those permutations does not violate the given consistency model,
it concludes that there was no consistency violation that occurred under the given scenario.

The fundamental problem of having difficulties in consistency invariant checking
without knowing the exact ordering information about concurrent operations is that there
can be too many possible interleaving scenarios. Figure 6 shows the illustration of applying
such an approach to the same scenario depicted by Figure 5. With three concurrent
writes, there are 6 possible permutation scenarios. Only when we find the permutation
scenario that satisfies the given consistency guarantee can we conclude that there has
been no consistency violation. For example, the fourth and sixth permutations in the
Figure 6 make sense under the monotonic reads consistency model for both sessions. Thus,
after either the fourth or the sixth permutation is checked, we can ensure that the given
session histories have not involved any consistency violations. Although the illustrated
example with 6 permutation scenarios seems manageable, it is not difficult to see that
the number of possible permutation scenarios can exponentially grow as the number of
concurrent requests increases. If there were 10 concurrent write operations, then there
would have been 3,628,800 possible permutation scenarios! In addition, as failures may
occur anytime, the number of permutations to check can quickly become overwhelming.
The conventional consistency invariant checking approach may not complete within the
reasonable duration due to the computational cost depending on the number of client
requests and failure injection.

setData
(X, 2)

setData
(X, 3)

setData
(X, 1)

setData
(X, 3)

setData
(X, 2)

setData
(X, 1)

setData
(X, 1)

setData
(X, 3)

setData
(X, 2)

setData
(X, 3)

setData
(X, 1)

setData
(X, 2)

setData
(X, 1)

setData
(X, 2)

setData
(X, 3)

setData
(X, 2)

setData
(X, 1)

setData
(X, 3)

getData(X)

3 1
getData(X)

Session 
A

getData(X)

2 1
getData(X)

Session 
B

Possible Permutations

Figure 6. All possible permutations of concurrent operations without knowing the actual order
of concurrent operations. Under each scenario, the given history of operations from the client
perspective may be determined to be correct or incorrect with respect to monotonic reads, which is
one of ZooKeeper’s consistency guarantees.

If the partial-order information was provided via API, the consistency invariant
checking would not have suffered from the aforementioned problem. For instance, partial-
order information reflected in the zxid allows us to directly infer the possible permutation
that conforms to the actual order without the exhaustive search. Figure 7 shows that zxid
was returned by each setData and getData. The actual order of concurrent operations
that are revealed by the zxid values is as follows: setData(X,3), setData(X,1) and then
setData(X,2). Session A shows that the first getData reads 3 written by the setData of
zxid 1004 and the second getData reads 1 written by the setData of zxid 1005. Thus, each
getData does not read the stale value and, therefore, the observed history conforms to
the given consistency guarantee, monotonic reads. Meanwhile, Session B shows that the
first getData reads 2 written by the setData of zxid 2001, but the second getData reads 1
written by the setData of zxid 1005. Hence, Session B’s history is showing the consistency
violation for the given consistency model, monotonic reads.



Electronics 2024, 13, 1153 16 of 25

getData(X)

3, zxid=1004 1, zxid=1005

getData(X)

Concurrent Operations

zxid=1005

zxid=2001

zxid=1004 setData(X, 1) setData(X, 2)setData(X, 3)

Session A

setData(X, 1)

setData(X, 2)

setData(X, 3)

C1:

C2:

C3:

getData(X)

2, zxid=2001 1, zxid=1005

getData(X)

Session B

Independent Sessions

ZooKeeper’s 
Consistency Guarantees
Monotonic Reads
Consistent Prefix
Bounded Staleness

Figure 7. History from the client perspective when knowing the order of concurrent operations
allows us to correctly determine consistency guarantees. Logical timestamp values, which are zxid
values, are shown in the figure for each ZooKeeper API request. Also, each session is marked with
either valid or not valid using green check marks and red cross marks, respectively. Session A is
permitted under the monotonic reads consistency model, while Session B is the violation of that
consistency model.

To conduct the consistency invariant checking for a session guarantee such as a
monotonic reads consistency guarantee, we need to construct the history of operation
for each session in a way that the order of operations should honor the partial-order
information revealed via API. For example, in ZooKeeper, zxid is returned for each getData
and setData, and it can be used to construct the history of operation without violating any
partial order determined by zxid. In ZooKeeper, zxid determines the partial order for every
setData, while it does not say anything about each getData. Meanwhile, within a session,
each getData is issued sequentially, which gives us another set of partial-order information
to keep. Therefore, we construct the history of operation for each session in the following
steps: (1) During the model-checking process, setData requests should be recorded along
with their zxid, request, and response time; (2) During the model-checking process, getData
requests of each specific session should be recorded along with their request and response
time; (3) For each session, the session’s history of operation should be constructed by
appending setData in a way that the order determined by zxid is maintained; (4) For
each getData of the session, insert it into the position where all previous setData requests
have the response time earlier than its request time and all previous getData requests are
those ones issued before it within the same session. The output of the procedure above
is the history of operation that can be fed into the consistency oracles. Here, the required
assumption is that each write should write a unique value.

3.7. Implementation

A prototype system is built and employed to find bugs in a real-world key-value
store system. We implemented consistency oracle as 0.4K lines of code in Java. It embeds
five read-consistency guarantees such as eventual consistency, monotonic reads, bounded
staleness, strong consistency, and read-my-write. We currently do not support the consistent
prefix guarantee as only the systems that update data entirely are considered. On the other
hand, model checker was also implemented in Java by modifying SAMC. The verifier
component using our consistency oracle was newly added. In total, we introduced 1.1K
lines of new code on top of SAMC’s.



Electronics 2024, 13, 1153 17 of 25

SAMC’s design can be broken into three components: (1) an interposition layer; (2) a
model-checking server; and (3) a test generator. VConMC modified SAMC in all three
components to customize it for consistency verification. First, the interposition layer is
where the system-under-test is instrumented with hooks, which interpose non-deterministic
events and send to the model-checking server. The SAMC source code is implemented to
verify ZooKeeper’s leader election protocol. Also, SAMC’s hooks only interpose the net-
work communication operations like sending and receiving. VConMC focuses on exploring
crash failure recovery mechanisms after leader election is finished. Thus, VConMC adds
the hooks in the deeper part of the code to interpose on two additional operation types:
(1) operations taking a snapshot (namely, takeSnapshot()); and (2) operations synchronizing
with the leader (namely, syncWithLeader()). Second, for adding a couple of operation
types, the model-checking server is modified to support those during its stateless search
process. Third, the test generator of the original SAMC has been modified to record the
trace of client API calls, which is used to perform consistency invariant checking against
consistency oracles. SAMC does not have the component specific to check for consistency
models, so the test generator is enhanced with the new verifier component for consistency
invariant checking, and the new verifier component performs a series of reads after the
workload generation has been finished and then runs consistency invariant checking.

4. Results

Using the aforementioned consistency invariant checking methodology along with our
model checking tool, we found that our tool can detect violations of monotonic reads con-
sistency guarantee, which are caused by several known bugs in the real-world distributed
key-value store system, ZooKeeper. For all bugs, our consistency invariant checking does
not require an exhaustive search for every possible interleaving of concurrent events.

We analyzed bugs which were previously reported in the ZooKeeper’s bug database,
which are ZooKeeper-1154, ZooKeeper-1319, and ZooKeeper-1549. The summary of the
bugs we found is given in Table 1. As bugs are all labeled as either “Blocker” or “Major”
in terms of the priority for fixing bugs, the bugs are all serious and critical ones. The
duration taken to fix bugs varied from 3 days to unresolved for the last decade. For the
latter, developers gave up fixing bugs and instead decided to move onto the newer version
while deprecating the usage of the old versions. Symptoms were all related to data integrity.
Data get lost or some corrupted data remain in the data store. Thus, it is expected that
any applications operate based on these data may result in incorrect behavior, which may
cause serious impacts. The root causes were mostly due to programmers’ mistakes in
implementing complex synchronization protocols. The synchronization protocol’s bugs
were usually manifested during the failure recovery. We believe such an error is common
because it is very difficult to find out all corner cases in advance to testing. Consequently,
we think the model checking approaches will be very effective tools for finding consistency-
violating bugs.

Table 1. Summary of bugs that VConMC found.

Bug ID Severity Duration Symptoms Root Cause

1154 Blocker 21 days Data Loss Resync Errors
1319 Blocker 3 days Data Loss Replication Errors
1549 Major Unresolved Corrupted Data Truncation Errors

These bugs are all labelled as serious bugs as they are regarded to have either “Blocker” or “Major” severity.
All bugs that we found result in data integrity violations, either losing data or having corrupted data. Also,
the root causes were in the synchronization mechanisms where resync, replication, or truncation should have
correctly happened.

ZooKeeper-1154 is the bug that manifests when a node that has seen the highest
“zxid”, the transaction ID in ZooKeeper’s parlance, is not present during the leader election
during which a new leader gets elected. Then, the node that has seen the highest zxid that
the new leader has not seen may join again later. The joining node does not receive any



Electronics 2024, 13, 1153 18 of 25

truncation request for the zxid that the new leader has not seen. Thus, only the joining
node will return the data applied with the zxid, which has not been seen by the new leader,
while the new leader does not hold that data. The reproduction step involves a cluster
of three server nodes. Subsequently, the following steps are needed: (1) create one entry,
(2) async write to one node A but not to the other two nodes B and C, (3) stop A, B, and
C (4) restart B and C, (5) B and C form the quorum and B becomes a new leader, and
(6) restart A and let it apply the async write to the data tree and join the quorum. By issuing
read operations for each key on every replica, we can detect the violation of consistency
guarantees. We verified the bug resulting in the violation of not only monotonic reads but
also eventual consistency guarantees. To detect the violation of monotonic reads, we ensure
issuing read operations for each key on every replica and perform one more read operation
checking if all clients read the version of values that are monotonically increasing. As a
result, by reading the data that are more stale then the data returned by the previous read,
it can detect the violation of monotonic read consistency guarantee.

ZooKeeper-1319 is a regression bug introduced by one patch, which results into a
leader sending empty diff to followers during the addition of new members into the cluster.
Consequently, one can read the data on the leader but not on the followers as the view
becomes inconsistent between different replicas. Regression was introduced into one of
the methods that is supposed to correctly set the variable “lastProposed”, which is the
transaction number for the last operation proposed to be applied. The proposed operation
must be replicated to new members, but due to the incorrectly set value for the variable,
those operations that are only applied on the leader are replicated to new members. The
bug could be reproduced by the following steps: (1) start up one server cluster, (2) create
some records, (3) shut it down, and (4) start up two server clusters including the first server
with its existing data. The verification found the violation even for the eventual consistency
guarantee as the read attempt from the second server will return no valid value at all.

ZooKeeper-1549 is the bug where several crash-reboots causes the older primary
to contain data that are supposed to be discarded in its dirty snapshot, leading to an
inconsistent in-memory data tree. The source of the bug was in the incorrect implementation
of recovery logic, resulting in the production of the dirty snapshot containing the data
that are supposed to be discarded during the crash failure recovery. The summarized
bug-reproducing step for ZooKeeper-1549 is as follows: (1) write to a key on the leader
only, (2) crash all, (3) reboot the old leader and one of the followers, (4) crash all again
before sync, at which point the dirty snapshot is produced by the old leader, (5) start two
followers and have them write to another key, and (6) start the old leader as a follower this
time. Now, even after syncing with the new leader, the old leader still loads the in-memory
data tree from the dirty snapshot. Therefore, it leads to inconsistent values, which can be
detected via consistency invariant checking for monotonic reads.

As a running example, the following gives more detailed bug reproduction steps for
ZooKeeper-1549:

1. Initially, three nodes start and one becomes leader while the other two become fol-
lowers. Also, all three nodes have the same two key-value pairs after executing
create(“k1”, “k1v0”) and create(“k2”, “k2v0”).

2. Crash Node B
3. Crash Node C
4. Client invokes an API call setData(“k1”, “k1v1”)
5. Node A executes the setData(“k1”, “k1v1”)
6. Crash Node A
7. Start Node A
8. Start Node B
9. Start Node C
10. Node A executes takeSnapshot()
11. Crash Node B
12. Crash Node C



Electronics 2024, 13, 1153 19 of 25

13. Crash Node A
14. Start Node B
15. Start Node C
16. Node B executes takeSnapshot()
17. Node C executes syncWithLeader()
18. Client invokes an API call setData(“k2”, “k2v1”)
19. Node B executes commit()
20. Node C executes commit()
21. Start Node A
22. Node A syncWithLeader()

At Step 1, the values of keys “k1” and “k2” are set to “k1v0” and “k2v0”, respectively.
Steps 2 to 5 crash follower nodes and have only the leader A update the key “k1” to have a
value, say “k1v1”. Then, crash the leader as well at Step 6. Steps 7 to 9 restart all nodes,
including the old leader and two old followers. Steps 10 to 13 have the old leader A take a
snapshot, which includes the key “k1” with the value “k1v1” but crashes all nodes before
nodes become synchronized. Now, only the old leader A has the key “k1” of value “k1v1”,
while the other two old followers’ value of the key “k1” are “k1v0”. Steps 14 to 17 start
the old followers, and one of them becomes a new leader; suppose Node B becomes the
new leader, and have Node B and C synchronize. Steps 18 to 20 write the value “k2v1” to
the key “k2”. Finally, Steps 21 and 22 start A as a follower and synchronize with the new
leader Node B. The bug manifests because the synchronization procedure only replicates
the update to the key “k2” but does not rollback the update performed to the key “k1” at
Step 5. As a result, Node A has the value “k1v1” for the key “k1” and the value “k2v1” for
the key “k2”. However, Node B and C have the value “k1v0” for the key “k1” and the value
“k2v1” for the key “k2”. The verifier reads “k1v1” as the value of the key “k1” on Node
A; later, it then reads “k1v0” as the value of the key “k1” on Node B. Note that the value
“k1v1” is more recent than the value “k1v0” for the key “k1”. Thus, it causes the violation of
monotonic reads consistency guarantees, which the verifier can detect after conducting the
consistency invariant checking procedure in the same way as ZooKeeper-1154’s scenario
described above.

Discussion

ZooKeeper offers logical clock timestamps called zxid, and this work demonstrates that
leveraging it is possible. All bugs found and summarized previously are detected by using
zxid to determine the order of concurrent setData, and the consistency invariant checking
used does not involve an exhaustive search through all possible interleaving. Consequently,
it shows that if the target system exposes the internal ordering-related information, we
can avoid the expensive exhaustive search for consistency invariant checking. However,
we have not checked for two other consistency guarantees of ZooKeeper. The consistent
prefix for ZooKeeper is not suitable to check separately as ZooKeeper’s write entirely
replaces each data item. Timing-based approaches may have been checked if ZooKeeper
had provided some metadata revealing the timing of handling each request.

Furthermore, this work also shows that there are some distributed key-value stores
providing useful partial-order information to clients by replying the result along with
the metadata that is actually used to internally order concurrent operations. It is well
known that many systems already employ means to coordinate concurrent updates such
as Lamport clock, vector clock, etc. [41–44]. We believe the API of various distributed
key-value store systems can be extended to reveal some of the internal metadata related to
the order of operations not only for consistency invariant checking but also for real-time
auditing purposes.

Failure injection does not increase the severity of the state explosion issue, because our
consistency invariant checking only consider requests that complete with a response from
the system. More specifically, without receiving the response for some request, we do
not have zxid for the corresponding request and do not add that request to the history of



Electronics 2024, 13, 1153 20 of 25

operation. This is a beneficial side effect of utilizing the partial-order information revealed
via API—it indirectly filters out failed operations from consistency invariant checking.

Consistency oracles should be used with the several assumptions. First, every write
operation should use non-repeated values. If write operations are allowed to repeatedly
write the same value, finding the write operation from which the given read operation
obtains the value will become computationally very inefficient due to too many possible
matching pairs of read and write operations. Our approach is to encode data along
with a unique ID for each operation. For example, the combination of a client ID and a
monotonically increasing sequence number of each client can form a unique ID for each
write operation. Second, consistency oracles also require the exact order of each operation.
For the systems that do not reveal the internal ordering of operations, they cannot be
directly integrated with consistency oracles. Third, consistency oracles currently support
only those systems that entirely overwrite a data item for each write. Consistency prefix
in this setting is equivalent to eventual consistency. Supporting the consistency invariant
checking of the consistent prefix for systems that may partially update data is left as
future work.

Note that there is still more work to perform to fully understand the potential of using
partial-order information obtained via API. We have not yet comprehensively inspected
other systems and consistency guarantees, except for monotonic reads in ZooKeeper. In
addition, it will be useful to find an automated way to extend the API to expose useful
partial-order information used internally.

Also, one limitation of this work is that it focuses on a system that does not support
transactions containing multiple operations. Thus, it is left as future work to extend
the proposed methodology to transactional systems where multiple reads or writes can
be contained and executed. Another limitation to point out is that this work has put
emphasis on integrating consistency invariant checking based on consistency oracles with
implementation-level model checking. Therefore, it has not explored how to manifest
previously unknown consistency bugs more effectively by improving the underlying
implementation-level model checker. Exploring the utilization of various coverage-based
testing approaches or advanced program analysis techniques as the heuristics for more
effective state space exploration strategies remains as future work.

Note that non-deterministic behaviors are relatively controlled in this work. So, the
non-deterministic behaviors of the system-under-test may be observed sometimes, even if
careful instrumentation is performed to tightly control them. One notable way in which
such non-deterministic behaviors occur is that sometimes some concurrent event that was
seen in the previous visit of a certain state may not happen again in the next visit to the same
state for another path exploration. This is highly likely because some of the causal events
did not happen at the correct timing due to the incomplete control. Also, it is possible that
some causal event may not occur within the timeout period set by our synchronous event
hooking method. In such a case, our path exploration will check if the current state has
been visited last time. If so, it also checks if the list of concurrent events collected for the
previous visit of the state is same as the list of concurrent events collected for the current
visit. Otherwise, VConMC stops path exploration and retries. If the retry still fails, then
VConMC gives up after recording the trace and the result of the failed path exploration
so that the developer can inspect the source code more closely and add more controls or
adjust the timeout period.

5. Related Work
5.1. Distributed Systems Model Checking

Implementation-level model checking has been applied to find bugs in distributed
systems. Previous proposals for implementation-level distributed systems model checking
mostly focus on seeking out the violation of protocol-specific safety properties [18–22].
Those previous proposals can detect deadlock and protocol-specific, implementation-
specific, or language-specific errors. However, the limitation of those proposals was the



Electronics 2024, 13, 1153 21 of 25

lack of smart state space reduction or abstraction techniques. Researchers quickly noticed
this limitation and explored various smart approaches to significantly reduce the size of the
state space to search through [23–25]. However, those proposals do not consider how to
detect consistency violations of the distributed systems. CrystalBall checks for inconsistency
in distributed systems [45]. However, its definition of being consistent and inconsistent
is different from data consistency, as it says the system is inconsistent if there is no global
tree topology that satisfies every node’s local view. Due to such a restrictive definition
about consistency, it is not generic and cannot be applied to find data consistency violations.
More recently, researchers have developed a formal verification methodology and tool that
can generate an implementation along with an abstract model for model checking [16]. The
technique allows developers to specify their distributed systems implementation as an
abstract model using formal language. Then, the PGo compiler toolchain will generate both
the executable and the specification to model check. Nevertheless, PGo cannot be applied
to verify the existing implementation of consistency models. Also, there is another line of
verification effort for distributed systems by using symbolic execution supported by the
language runtime and underlying framework, as performed in Serval [46]. Nevertheless,
none of previously proposed implementation-level model checkers can detect the violation
of a relaxed consistency model.

5.2. Distributed Systems Testing

There have been many research ideas proposing novel testing techniques to effectively
find concurrency bugs in distributed systems. Fault-injection techniques such as crash
injections or network-partition injection have been explored extensively [47–49]. However,
those proposals focus on finding out fault injection timing by analyzing the source code
and do not support invariant checking for various data consistency models. Thread
interleaving is usually the root cause of the source and therefore deterministically exploring
the order of thread execution allows developers to reliably reproduce concurrency bugs.
FlakeRepro proposes the technique combining static and dynamic analysis to automatically
add such a capability to the existing implementation of distributed systems [50]. Another
work attempts to explore the sequence of non-deterministic events systematically and
extensively, which has been applied for modern cluster managers [51]. However, those
proposals do not look for data consistency violations caused by concurrency bugs. Instead
of using systematic testing, GFuzz proposes employing a fuzzing technique that has been
developed instead of using the deterministic ordering of concurrent events [9]. Also,
researchers explored a random testing technique by randomly sampling partial order to
more accurately pinpoint the sequence of event execution that is more likely to cause
errors [52]. Nevertheless, none of the previous proposals on distributed systems testing
offer a deterministic means to verify consistency model implementation.

5.3. Consistency Checking

Benchmarking the consistency model implementation has been explored previously
by researchers [53–56]. Also, the consistency model’s boundness has been probablistically
analyzed via the modeling and analytical measurement technique [57]. Various consistency
model verification techniques are developed based on the dependency-graph analysis
looking for cycles in the directed graph of read and write operations [58–61]. Techniques to
monitor the consistency behavior of an untrusted cloud are developed where an untrusted
storage provider may be compromised so that it violates consistency guarantees [62–64].
FoundationDB developers have implemented a deterministic simulation mode to find
bugs that are caused by non-deterministic events by using actor models and a simulated
source of a non-deterministic event [65]. Because consistency-checking algorithms ad-
ditionally require the overhead for analysis, researchers explored a technique to apply
verifiable computation to check the correctness of serializability [66]. Instead of developing
a consistency-checking algorithm as an arbitrary invariant checker, differential testing has
been employed [67]. Viper has been developed to check for snapshot isolation by checking



Electronics 2024, 13, 1153 22 of 25

for a polygraph-based transaction dependency [68]. Nonetheless, those previous proposals
only include the consistency-checking mechanism but do not have ability to drive the
system to the corner case. Moreover, consistency models that those existing techniques can
check for are limited to a few models statically embedded in the checking algorithm.

5.4. Blockchain Databases

Recently, blockchains have gained a lot of attention to be used as a trusted distributed
key-value store on top of peer-to-peer networks, even in the presence of a malicious
participant [69–72]. Blockchain databases are designed to have the majority of participants
agree on a single global history, that is, the chain of blocks containing transactions, via
consensus. Therefore, those systems only offering serializability and relaxed consistency
are not an issue. Nonetheless, it may be worthwhile to explore if there are any bugs in
blockchain implementation that cause the violation of serializability by using the proposed
method in the future.

6. Conclusions

Consistency verification has been actively and extensively explored recently. Con-
sistency bugs are caused by concurrency and non-deterministic events occurring in a
distributed system. Model checking is the useful verification and bug-finding tool that can
systematically and exhaustively explore various corner cases. Nevertheless, there has been
no previous proposal that employs model checking specifically to support the capability
of finding software and design flaws causing consistency violations. As a result, offering
consistency invariant checking for the model checking of distributed systems has not been
explored previously. In this work, consistency oracles have been integrated with concrete
model checking, and we verified several consistency bugs in a widely deployed distributed
system such as ZooKeeper. The key enabler is leveraging partial-order exposing API for
consistency invariant checking. Based on the current trend of adapting the distributed
key-value store for various cloud services, the usage of model checking to find bugs vio-
lating consistency guarantees will be increasingly demanded by cloud service providers.
Therefore, we believe consistency invariant checking using consistency oracles is going to
be an important key technique for implementing reliable cloud services.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea Government (MSIT) (No. RS-2023-00244368), by the research fund of Hanyang
University (HY-2022-2917) and by the 2022 Research Institute of Engineering and Technology
Research Fund at Hanyang University ERICA.

Data Availability Statement: The data can be shared up on request.

Conflicts of Interest: The author is affiliated with Hanyang University ERICA. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript; nor in the decision to publish the results.

References
1. Hunt, P.; Konar, M.; Junqueira, F.P.; Reed, B. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of the

2010 USENIX Conference on USENIX Annual Technical Conference, Berkeley, CA, USA, 23–25 June 2010; p. 11.
2. MongoDB. Available online: https://www.mongodb.com/ (accessed on 13 October 2023).
3. Lakshman, A.; Malik, P. Cassandra: A Decentralized Structured Storage System. SIGOPS Oper. Syst. Rev. 2010, 44, 35–40.

[CrossRef]
4. Apache HBase. Available online: https://hbase.apache.org (accessed on 10 October 2023).
5. Gunawi, H.S.; Hao, M.; Leesatapornwongsa, T.; Patana-anake, T.; Do, T.; Adityatama, J.; Eliazar, K.J.; Laksono, A.; Lukman, J.F.;

Martin, V.; et al. What Bugs Live in the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the 5th ACM
Symposium on Cloud Computing (SoCC), Seattle, WA, USA, 3–5 November 2014.

6. Kim, B.H.; Kim, T.; Lie, D. Modulo: Finding Convergence Failure Bugs in Distributed Systems with Divergence Resync Models.
In Proceedings of the 2022 USENIX Annual Technical Conference, USENIX ATC 2022, Carlsbad, CA, USA, 11–13 July 2022;
Schindler, J., Zilberman, N., Eds.; USENIX Association: Berkeley, CA, USA, 2022; pp. 383–398.

https://www.mongodb.com/
http://doi.org/10.1145/1773912.1773922
https://hbase.apache.org


Electronics 2024, 13, 1153 23 of 25

7. Lloyd, W.; Freedman, M.J.; Kaminsky, M.; Andersen, D.G. Stronger semantics for low-latency geo-replicated storage. In
Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation, Berkeley, CA, USA, 2–5 April
2013; pp. 313–328.

8. Kingsbury, K. Distributed Systems Safety Research. Available online: https://jepsen.io/ (accessed on 13 October 2023).
9. Liu, Z.; Xia, S.; Liang, Y.; Song, L.; Hu, H. Who Goes First? Detecting Go Concurrency Bugs via Message Reordering. In

Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating
Systems, New York, NY, USA, 28 February–4 March 2022; pp. 888–902. [CrossRef]

10. Ba, J.; Böhme, M.; Mirzamomen, Z.; Roychoudhury, A. Stateful Greybox Fuzzing. In Proceedings of the 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, 10–12 August 2022; pp. 3255–3272.

11. Jeong, D.R.; Lee, B.; Shin, I.; Kwon, Y. SEGFUZZ: Segmentizing Thread Interleaving to Discover Kernel Concurrency Bugs
through Fuzzing. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, 22–24 May
2023; pp. 2104–2121. [CrossRef]

12. Andronidis, A.; Cadar, C. SnapFuzz: High-Throughput Fuzzing of Network Applications. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis, Online, 18–22 July 2022; pp. 340–351. [CrossRef]

13. Jiang, Z.; Bai, J.; Lu, K.; Hu, S. Context-Sensitive and Directional Concurrency Fuzzing for Data-Race Detection. In Proceedings
of the 29th Annual Network and Distributed System Security Symposium, NDSS 2022, San Diego, CA, USA, 24–28 April 2022.

14. Wilcox, J.R.; Woos, D.; Panchekha, P.; Tatlock, Z.; Wang, X.; Ernst, M.D.; Anderson, T. Verdi: A framework for implementing and
formally verifying distributed systems. SIGPLAN Not. 2015, 50, 357–368. [CrossRef]

15. Hawblitzel, C.; Howell, J.; Kapritsos, M.; Lorch, J.; Parno, B.; Roberts, M.L.; Setty, S.; Zill, B. IronFleet: Proving Practical Distributed
Systems Correct. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP). ACM—Association for
Computing Machinery, Monterey, CA, USA, 4–7 October 2015.

16. Hackett, F.; Hosseini, S.; Costa, R.; Do, M.; Beschastnikh, I. Compiling Distributed System Models with PGo. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2023), Vancouver, BC, USA, 25–29 March 2023; Volume 2, pp. 159–175. [CrossRef]

17. Godefroid, P. Model Checking for Programming Languages Using VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Paris, France, 15–17 January 1997; pp. 174–186. [CrossRef]

18. Guo, H.; Wu, M.; Zhou, L.; Hu, G.; Yang, J.; Zhang, L. Practical software model checking via dynamic interface reduction. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, Cascais, Portugal, 23–26 October 2011;
pp. 265–278.

19. Guerraoui, R.; Yabandeh, M. Model checking a networked system without the network. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation, Boston, MA, USA, 30 March–1 April 2011; p. 225.

20. Lin, H.; Yang, M.; Long, F.; Zhang, L.; Zhou, L. MODIST: Transparent model checking of unmodified distributed systems. In
Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, Boston, MA, USA, 22–24
April 2009.

21. Killian, C.; Anderson, J.W.; Jhala, R.; Vahdat, A. Life, death, and the critical transition: Finding liveness bugs in systems code. In
Proceedings of the 4th USENIX Symposium on Networked Systems Design and Implementation, Cambridge, MA, USA, 11–13
April 2007.

22. Musuvathi, M.; Park, D.Y.W.; Chou, A.; Engler, D.R.; Dill, D.L. CMC: A pragmatic approach to model checking real code. ACM
SIGOPS Oper. Syst. Rev. 2002, 36, 75–88. [CrossRef]

23. Simsa, J.; Bryant, R.; Gibson, G. dBug: Systematic Evaluation of Distributed Systems. In Proceedings of the 5th International
Conference on Systems Software Verification, Vancouver, BC, Canada, 6–7 October 2010; p. 3.

24. Leesatapornwongsa, T.; Hao, M.; Joshi, P.; Lukman, J.F.; Gunawi, H.S. SAMC: Semantic-aware model checking for fast discovery
of deep bugs in cloud systems. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), Broomfield, CO, USA, 6–8 October 2014; pp. 399–414.

25. Lukman, J.F.; Ke, H.; Stuardo, C.A.; Suminto, R.O.; Kurniawan, D.H.; Simon, D.; Priambada, S.; Tian, C.; Ye, F.; Leesatapornwongsa,
T.; et al. FlyMC: Highly Scalable Testing of Complex Interleavings in Distributed Systems. In Proceedings of the Fourteenth
EuroSys Conference 2019, Dresden, Germany, 25–28 March 2019; pp. 20:1–20:16. [CrossRef]

26. Gorjiara, H.; Xu, G.H.; Demsky, B. Jaaru: Efficiently Model Checking Persistent Memory Programs. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Online, 19–23
April 2021; pp. 415–428. [CrossRef]

27. Kim, B.H.; Oh, S.; Lie, D. Consistency Oracles: Towards an Interactive and Flexible Consistency Model Specification. In
Proceedings of the 16th Workshop on Hot Topics in Operating Systems, Whistler, BC, Canada, 7–10 May 2017; pp. 82–87.
[CrossRef]

28. Brewer, E. CAP twelve years later: How the “rules” have changed. Computer 2012, 45, 23–29. [CrossRef]
29. Abadi, D. Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part of the Story. Computer 2012,

45, 37–42. [CrossRef]
30. Terry, D. Replicated Data Consistency Explained Through Baseball. Commun. ACM 2013, 56, 82–89. [CrossRef]
31. Higham, L.; Kawash, J.; Verwaal, N. Defining and comparing memory consistency models. In Proceedings of the 10th International

Conference on Parallel and Distributed Computing Systems, New Orleans, LO, USA, 1–3 October 1997.

https://jepsen.io/
http://dx.doi.org/10.1145/3503222.3507753
http://dx.doi.org/10.1109/SP46215.2023.00161
http://dx.doi.org/10.1145/3533767.3534376
http://dx.doi.org/10.1145/2813885.2737958
http://dx.doi.org/10.1145/3575693.3575695
http://dx.doi.org/10.1145/263699.263717
http://dx.doi.org/10.1145/844128.844136
http://dx.doi.org/10.1145/3302424.3303986
http://dx.doi.org/10.1145/3445814.3446735
http://dx.doi.org/10.1145/3102980.3102994
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1109/MC.2012.33
http://dx.doi.org/10.1145/2500500


Electronics 2024, 13, 1153 24 of 25

32. Herlihy, M.P.; Wing, J.M. Linearizability: A correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 1990,
12, 463–492. [CrossRef]

33. Robinson, H. Consensus Protocols: Two-Phase Commit. 2011. Available online: https://www.the-paper-trail.org/post/2008-11-
27-consensus-protocols-two-phase-commit/ (accessed on 3 March 2024).

34. Vogels, W. Eventually Consistent. Commun. ACM 2008, 52, 40–44. [CrossRef]
35. Lamport, L. The Part-Time Parliament. ACM Trans. Comput. Syst. 1998, 16, 133–169. [CrossRef]
36. Burrows, M. The Chubby Lock Service for Loosely-Coupled Distributed Systems. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation (OSDI ’06), Seattle, WA, USA, 6–8 November 2006; Bershad, B.N., Mogul, J.C.,
Eds.; USENIX Association: Berkeley, CA, USA, 2006; pp. 335–350.

37. Corbett, J.C.; Dean, J.; Epstein, M.; Fikes, A.; Frost, C.; Furman, J.J.; Ghemawat, S.; Gubarev, A.; Heiser, C.; Hochschild, P.; et al.
Spanner: Google’s Globally-Distributed Database. In Proceedings of the 10th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2012, Hollywood, CA, USA, 8–10 October 2012; Thekkath, C., Vahdat, A., Eds.; USENIX Association:
Berkeley, CA, USA, 2012; pp. 251–264.

38. Reed, B.C.; Junqueira, F.P. A simple totally ordered broadcast protocol. In Proceedings of the 2nd Workshop on Large-Scale
Distributed Systems and Middleware, LADIS’08, Yorktown Heights, NY, USA, 15–17 September 2008; Dekel, E., Chockler, G.V.,
Eds.; ACM: New York, NY, USA, 2008; pp. 2:1–2:6. [CrossRef]

39. Ongaro, D.; Ousterhout, J.K. In Search of an Understandable Consensus Algorithm. In Proceedings of the 2014 USENIX Annual
Technical Conference, USENIX ATC’14, Philadelphia, PA, USA, 19–20 June 2014; Gibson, G., Zeldovich, N., Eds.; USENIX
Association: Berkeley, CA, USA, 2014; pp. 305–319.

40. Zhou, S.; Mu, S. Fault-Tolerant Replication with Pull-Based Consensus in MongoDB. In Proceedings of the 18th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2021, Boston, MA, USA, 2–4 April 2021; Mickens, J.,
Teixeira, R., Eds.; USENIX Association: Berkeley, CA, USA, 2021; pp. 687–703.

41. Lamport, L. Time, clocks, and the ordering of events in a distributed system. In Concurrency: The Works of Leslie Lamport;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 179–196.

42. Liskov, B.; Ladin, R. Highly available distributed services and fault-tolerant distributed garbage collection. In Proceedings of the
5th Annual ACM Symposium on Principles of Distributed Computing, Calgary, AB, Canada, 11–13 August 1986; pp. 29–39.

43. Fidge, C.J. A limitation of vector timestamps for reconstructing distributed computations. Inf. Process. Lett. 1998, 68, 87–91.
[CrossRef]

44. Mattern, F. Efficient algorithms for distributed snapshots and global virtual time approximation. J. Parallel Distrib. Comput. 1993,
18, 423–434. [CrossRef]

45. Yabandeh, M.; Knezevic, N.; Kostic, D.; Kuncak, V. CrystalBall: Predicting and Preventing Inconsistencies in Deployed Distributed
Systems. In Proceedings of the NSDI 2009, Boston, MA, USA, 22–24 April 2009; Volume 9, pp. 229–244.

46. Nelson, L.; Bornholt, J.; Gu, R.; Baumann, A.; Torlak, E.; Wang, X. Scaling Symbolic Evaluation for Automated Verification of
Systems Code with Serval. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, Huntsville, ON,
Canada, 27–30 October 2019; pp. 225–242. [CrossRef]

47. Gao, Y.; Wang, D.; Dai, Q.; Dou, W.; Wei, J. Common Data Guided Crash Injection for Cloud Systems. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings, Pittsburgh, PA, USA, 25–27 May
2022; pp. 36–40. [CrossRef]

48. Chen, H.; Dou, W.; Wang, D.; Qin, F. CoFI: Consistency-Guided Fault Injection for Cloud Systems. In Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering, Melbourne, Australia, 21–25 September 2021;
pp. 536–547. [CrossRef]

49. Lu, J.; Liu, C.; Li, L.; Feng, X.; Tan, F.; Yang, J.; You, L. CrashTuner: Detecting Crash-Recovery Bugs in Cloud Systems via
Meta-Info Analysis. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP’19), Huntsville, ON,
Canada, 27–30 October 2019; pp. 114–130. [CrossRef]

50. Leesatapornwongsa, T.; Ren, X.; Nath, S. FlakeRepro: Automated and Efficient Reproduction of Concurrency-Related Flaky
Tests. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Singapore, 14–16 November 2022; pp. 1509–1520. [CrossRef]

51. Sun, X.; Luo, W.; Gu, J.T.; Ganesan, A.; Alagappan, R.; Gasch, M.; Suresh, L.; Xu, T. Automatic Reliability Testing For Cluster
Management Controllers. In Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), Carlsbad, CA, USA, 11–13 July 2022; pp. 143–159.

52. Yuan, X.; Yang, J. Effective Concurrency Testing for Distributed Systems. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 16–20 March
2020; pp. 1141–1156. [CrossRef]

53. Golab, W.; Rahman, M.; Auyoung, A.; Keeton, K.; Gupta, I. Client-Centric Benchmarking of Eventual Consistency for Cloud
Storage Systems. In Proceedings of the 34th International Conference on Distributed Computing Systems (ICDCS), Madrid,
Spain, 30 June–3 July 2014.

54. Golab, W.; Li, X.S.; López-Ortiz, A.; Nishimura, N. Computing Weak Consistency in Polynomial Time: [Extended Abstract].
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, San Sebastian, Spain, 21–23 July 2015;
pp. 395–404. [CrossRef]

http://dx.doi.org/10.1145/78969.78972
https://www.the-paper-trail.org/post/2008-11-27-consensus-protocols-two-phase-commit/
https://www.the-paper-trail.org/post/2008-11-27-consensus-protocols-two-phase-commit/
http://dx.doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/1529974.1529978
http://dx.doi.org/10.1016/S0020-0190(98)00143-4
http://dx.doi.org/10.1006/jpdc.1993.1075
http://dx.doi.org/10.1145/3341301.3359641
http://dx.doi.org/10.1145/3510454.3516852
http://dx.doi.org/10.1145/3324884.3416548
http://dx.doi.org/10.1145/3341301.3359645
http://dx.doi.org/10.1145/3540250.3558956
http://dx.doi.org/10.1145/3373376.3378484
http://dx.doi.org/10.1145/2767386.2767407


Electronics 2024, 13, 1153 25 of 25

55. Golab, W.; Li, X.; Shah, M.A. Analyzing Consistency Properties for Fun and Profit. In Proceedings of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, San Jose, CA, USA, 6–8 June 2011; pp. 197–206. [CrossRef]

56. Rahman, M.R.; Golab, W.; AuYoung, A.; Keeton, K.; Wylie, J.J. Toward a Principled Framework for Benchmarking Consistency.
In Proceedings of the 8th USENIX Conference on Hot Topics in System Dependability (HotDep), Hollywood, CA, USA, 7
October 2012.

57. Bailis, P.; Venkataraman, S.; Franklin, M.J.; Hellerstein, J.M.; Stoica, I. Probabilistically Bounded Staleness for Practical Partial
Quorums. VLDB Endow. 2012, 5, 776–787. [CrossRef]

58. Bermbach, D.; Tai, S. Eventual Consistency: How Soon Is Eventual? An Evaluation of Amazon S3’s Consistency Behav-
ior. In Proceedings of the 6th Workshop on Middleware for Service Oriented Computing (MW4SOC), Lisbon, Portugal, 12
December 2011.

59. Anderson, E.; Li, X.; Shah, M.A.; Tucek, J.; Wylie, J.J. What Consistency Does Your Key-Value Store Actually Provide? In
Proceedings of the 6th International Conference on Hot Topics in System Dependability (HotDep), Vancouver, BC, Canada, 3
October 2010.

60. Wada, H.; Fekete, A.; Zhao, L.; Lee, K.; Liu, A. Data Consistency Properties and the Tradeoffs in Commercial Cloud Storages: The
Consumers’ Perspective. In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR), Asilomar,
CA, USA, 9–12 January 2011.

61. Bermbach, D.; Sakr, S.; Zhao, L. Towards Comprehensive Measurement of Consistency Guarantees for Cloud-Hosted Data Storage
Services. In Proceedings of the 5th TPC Technology Conference on Performance Evaluation & Benchmarking (TPCTC 2013),
Trento, Italy, 26 August 2013.

62. Li, J.; Krohn, M.; Mazières, D.; Shasha, D. Secure Untrusted Data Repository (SUNDR). In Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), San Francisco, CA, USA, 6–8 December 2004.

63. Feldman, A.J.; Zeller, W.P.; Freedman, M.J.; Felten, E.W. SPORC: Group Collaboration using Untrusted Cloud Resources. In
Proceedings of the The 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Vancouver, BC,
Canada, 4–6 October 2010.

64. Kim, B.H.; Lie, D. Caelus: Verifying the Consistency of Cloud Services with Battery-Powered Devices. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, Washington, DC, USA, 21 May 2015; pp. 880–896. [CrossRef]

65. Zhou, J.; Xu, M.; Shraer, A.; Namasivayam, B.; Miller, A.; Tschannen, E.; Atherton, S.; Beamon, A.J.; Sears, R.; Leach, J.; et al.
FoundationDB: A Distributed Unbundled Transactional Key Value Store. In Proceedings of the 2021 International Conference on
Management of Data, Online, 20–25 June 2021; pp. 2653–2666. [CrossRef]

66. Xia, Y.; Yu, X.; Butrovich, M.; Pavlo, A.; Devadas, S. Litmus: Towards a Practical Database Management System with Verifiable
ACID Properties and Transaction Correctness. In Proceedings of the 2022 International Conference on Management of Data,
Philadelphia, PA, USA, 12–17 June 2022; pp. 1478–1492. [CrossRef]

67. Cui, Z.; Dou, W.; Dai, Q.; Song, J.; Wang, W.; Wei, J.; Ye, D. Differentially Testing Database Transactions for Fun and Profit. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14
October 2022; Association for Computing Machinery: New York, NY, USA, 2023.

68. Tan, C.; Zhao, C.; Mu, S.; Walfish, M. Cobra: Making Transactional Key-Value Stores Verifiably Serializable. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), Online, 4–6 November 2020; USENIX
Association: Berkley, CA, USA, 2020; pp. 63–80.

69. Gürsoy, G.; Brannon, C.; Gerstein, M. Using Ethereum blockchain to store and query pharmacogenomics data via smart contracts.
BMC Med. Genom. 2020, 13, 1–11. [CrossRef] [PubMed]

70. Fekete, D.L.; Kiss, A. A Survey of Ledger Technology-Based Databases. Future Internet 2021, 13, 197. [CrossRef]
71. Loghin, D. The Anatomy of Blockchain Database Systems. IEEE Data Eng. Bull. 2022, 45, 48–58.
72. Sharma, A.; Schuhknecht, F.M.; Agrawal, D.; Dittrich, J. Blurring the Lines between Blockchains and Database Systems: The

Case of Hyperledger Fabric. In Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The
Netherlands, 30 June–5 July 2019; pp. 105–122. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1993806.1993834
http://dx.doi.org/10.14778/2212351.2212359
http://dx.doi.org/10.1109/SP.2015.59
http://dx.doi.org/10.1145/3448016.3457559
http://dx.doi.org/10.1145/3514221.3517851
http://dx.doi.org/10.1186/s12920-020-00732-x
http://www.ncbi.nlm.nih.gov/pubmed/32487214
http://dx.doi.org/10.3390/fi13080197
http://dx.doi.org/10.1145/3299869.3319883

	Introduction
	Consistency Models
	Materials and Methods
	Problem Statement
	Architecture Overview
	Controlled Environment
	Model Checkers
	Consistency Oracles
	Consistency Invariant Checking
	Implementation

	Results
	Related Work
	Distributed Systems Model Checking
	Distributed Systems Testing
	Consistency Checking
	Blockchain Databases

	Conclusions
	References

