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Abstract: Industrial Internet of Things (IIoT) technology, as a subset of the Internet of Things (IoT)
in the concept of Industry 4.0 and, in the future, 5.0, will face the challenge of streamlining the way
huge amounts of data are processed by the modules that collect the data and those that analyse
the data. Given the key features of these analytics, such as reducing the cost of building massive
data centres and finding the most efficient way to process data flowing from hundreds of nodes
simultaneously, intermediary devices are increasingly being used in this process. Fog and edge
devices are hardware devices designed to pre-analyse terabytes of data in a stream and decide in
realtime which data to send for final analysis, without having to send the data to a central processing
unit in huge local data centres or to an expensive cloud. As the number of nodes sending data
for analysis via collection and processing devices increases, so does the risk of data streams being
intercepted. There is also an increased risk of attacks on this sensitive infrastructure. Maintaining
the integrity of this infrastructure is important, and the ability to analyse all data is a resource
that must be protected. The aim of this paper is to address the problem of autonomous threat
detection and response at the interface of sensors, edge devices, cloud devices with historical data,
and finally during the data collection process in data centres. Ultimately, we would like to present a
machine learning algorithm with reinforcements adapted to detect threats and immediately isolate
infected nests.

Keywords: Markov game; swarm; penetration testing; edge computing; computational fog; IIoT; IoT

1. Introduction

Industry 4.0 is advancing swiftly towards Industry 5.0. Many aspects of Industry
5.0 are already under consideration. It is no longer surprising that both households and
large industrial complexes are equipped with sensors, automation control devices, and
computing units, which employ data to enhance life and production. The increasing number
of end devices and the growing volume of data that require processing and interpretation
indicate the necessity to shift the focus of performing complex executive operations. It
is crucial to process some of the gathered data in close proximity to the signal-emitting
devices and to act upon it in realtime, while considering relevant historical data. Fog and
edge computing are recognised as the appropriate means of data exchange and processing.
This constitutes one aspect of the Industry 5.0 framework. The need to guarantee the
cybersecurity of data transmitted through IoT networks has been widely discussed in
numerous publications. Of course, with the ever-changing landscape of this concept, we
take great care to uphold the essential protocols for safeguarding both the infrastructure
and network traffic.

The IIoT and IoT networks predominantly rely on universal Internet access, though
alternative channels dedicated solely to OT are utilised when Internet access is unavailable.
This approach offers both merits and demerits. The benefits include the absence of the
requirement to search for a medium capable of transferring immense amounts of data

Electronics 2024, 13, 1161. https://doi.org/10.3390/electronics13061161 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061161
https://doi.org/10.3390/electronics13061161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0002-8108-0403
https://orcid.org/0000-0002-9958-6579
https://orcid.org/0000-0003-4157-2796
https://doi.org/10.3390/electronics13061161
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061161?type=check_update&version=2


Electronics 2024, 13, 1161 2 of 22

between multiple end devices, as civil broadband connections, which are comparably
inexpensive to upkeep, are exploited. Unfortunately, the ubiquity of this platform and
its vulnerability to cyberattacks necessitate the creation of increasingly sophisticated and
intelligent security measures against hacking and data breaches.

Therefore, it is crucial to contemplate security during the conceptual phase in de-
signing IIoT and IoT infrastructure. Passive and partially active security measures, such
as firewalls, constructing isolated subnets, and monitoring traffic with tools and teams
analysing network traffic, exist. These solutions are based on principles that humans have
developed. However, they are still vulnerable to deception and compromise by humans.

It is crucial to remain ahead of potential intruders by examining future developments
theoretically. System security engineers are progressively utilising artificial intelligence
to enhance their work. The security of smaller IT networks is commonly monitored by
large teams of individuals supported by specialized tools. As cyber intruders and attackers
are using more sophisticated infiltration methods, it is imperative to utilise all available
strategies to combat and counteract their activities.

The aim of the defender is to safeguard the infrastructure against intrusions by mon-
itoring the network and patching vulnerabilities. Conversely, the attacker is focused on
undermining the infrastructure and gaining entry to a critical component. To attain this
objective, the attacker must conduct reconnaissance to explore the infrastructure and attack
components along the path leading to the critical component.

In this article, the focus is on providing methods for enhancing network traffic security
and safeguarding IoT and IIoT infrastructure against vulnerabilities and exploitation. The
article highlights the significance of network security and the need to detect and prevent
vulnerabilities. Additionally, technical jargon will be explained when first used, and the
language used will be passive, objective, and value neutral. Consistent adherence to style
guides, citations, and footnote formatting is also maintained throughout the article. The
aim is to identify methods for autonomous response procedures to intrusion attempts in
IoT and IIoT networks. If security measures are implemented at the communication level
between end devices and the fog and edge computing layers, it can safeguard most of the
attack’s vulnerable traffic. After analysing the topic of the Markov game, it is efficacious to
start the conceptual process of developing autonomous neural networks.

1.1. Fog Computing in IoT

The concept of the Internet of Things (IoT) involves receiving data from sensors and
transmitting the datathrough various levels of signals to a central processing unit. This
unit continuously analyses the data and sends signals to controlling devices or procedures
in almost real time.Increasingly, due to the limited hardware capabilities of on-premises
devices, much of the processing is shifted to the cloud. This is due to its easier scalability
for computing and data storage requirements. Unfortunately, the utilization of cloud
solutions has constraints concerning access time. However, there is a lengthy delay in
transmitting signals from the sensor to the computing unit and then returning the signals
with a decision to the actuating devices. The notion of Industry 4.0 and its succeeding
versions has shifted the focus towards the components facilitating the exchange process
between the central computing unit and the sensor/actuator devices. Cloud-based, smaller
instances were utilized to maintain quicker data access, albeit at the cost of computing
power. This approach redirects specific signals from a limited number of IoT devices,
resulting in a more efficient solution. It is important to note that the main computing
instance is still responsible for managing Fog computing.

Cyberattacks commonly target both private and government entities that utilise cloud,
edge, and fog computing. Developing a Threat Intelligence Platform (TIP) is crucial in
providing protection for such architecture. In the industrial sector, safeguarding data is
given utmost priority due to its sensitive nature. Extensive measures such as deploying
intelligent equipment and sensor devices are implemented to minimize threats and poten-
tial security breaches. The characteristic of heterogeneity and geographic distribution has
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an impact on the integration of cloud security frameworks into fog computing systems.
Some of the security challenges that are considered include confidentiality, authentication,
availability, and information privacy. These frameworks aid in creating and supervising
access for individuals and organisations.

1.2. Edge Computing in IoT

Edge computing is a cutting-edge paradigm that brings services and applications
to the closest locations to the data source, instead of relying on centralised cloud infras-
tructure. This approach provides computational power to process data and enhances the
connection between the cloud and end-user devices.One effective method to address cloud
computing problems is to augment the presence of edge nodes in a specific location. As
the IoT is commonly used to process data at the edge of networks, edge computing is
becoming increasingly popular [1]. A number of approaches, such as fog computing and
edge computing, are providing complementary solutions to cloud computing by reducing
the amount of data processing at the edge of the network. In order to increase availabil-
ity, reduce latency, and ultimately overcome the problems of cloud computing, storage,
computing, and power are being placed at the edge of the network [2]. This strategy will
simultaneously alleviate the number of devices linked to a single cloud server and mitigate
potential errors. Delay-sensitive and bandwidth-intensive applications can be processed
close to the data source using edge computing [3]. Figure 1 shows a multi-layer model to
deliver cloud-based IoT services at the edge.
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The rise in the number of mobile devices has made it difficult for traditional centralised
cloud computing to meet the quality-of-service requirements of many applications. Edge
computing is expected to be the solution to this problem, especially with the advent of 5G
network technology [4,5]. The radio access network (RAN) is one of the major challenges
associated with 5G technology. In the RAN, real-time RAN information can be provided
through mobile edge computing. This information can be used by network operators to
improve end-user quality of experience (QoE), as the real-time RAN provides context-aware
services [6].

Edge computing improves infrastructure for IoT devices with limited data transfer
capabilities, computing nodes, and paradigms. It solves limitations of connecting nodes
with the cloud and enables countless benefits [2].
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• Network management—involves eliminating connectivity issues and improving con-
gestion control to enhance overall network performance, which is crucial in the IoT;

• Latency minimization—edge computing significantly improves the very important
quality of service (QoS) in terms of minimizing delays in transmitting data to IIoT
applications that require high responsiveness, i.e., autonomous vehicles;

• Cost optimisation—effective infrastructure planning using edge computing can signif-
icantly reduce costs compared to omitting the intermediary layer;

• Energy management—IoT-based edge computing aims to manage energy efficiently.
Participants have a need for tight control over power management. IoT devices and
applications that are energy efficient are desirable in edge computing. Studies suggest
that 1 trillion IoT nodes will require sensor platforms that use power harvesting to
provide scalability, reduce costs, and avoid frequent battery changes;

• Data management—efficient and effective data management mechanisms are desired
in edge computing to handle the large amounts of data generated by IoT devices in a
timely manner. Transmitting and aggregating these data are important considerations
in data management;

• Resource management—to meet service-level objectives, the effective management
of computing resources is critical. This involves coordinating resources, estimating
availability, and allocating workloads appropriately.

The most important requirements of edge computing in IoT are as follows: dependabil-
ity, latency, security, interaction in real time, and compatibility. Edge computing is used to
reduce the amount of data sent to the cloud and to reduce the latency of accessing services.

1.3. Cybersecurity Role in Edge and Fog Computing

Cybersecurity plays a critical role in the context of fog and edge computing, offering
several contributions. Fog and edge computing entail processing and storing data in
proximity to edge devices, which pose new security challenges. Cybersecurity guarantees
the confidentiality, integrity, and availability of sensitive data transmitted and stored within
fog and edge environments. It encompasses measures such as encryption, access controls,
secure communication protocols, and secure data storage. The communication between
edge devices and fog nodes is relied upon in distributed networks. Cybersecurity deals
with network-level threats, such as unauthorized access, network spoofing, man-in-the-
middle attacks, and denial-of-service (DoS) attacks. Robust network security protocols and
intrusion detection systems should be implemented to protect the communication channels
and maintain secure connectivity. Physical attacks, tampering, or unauthorised access
to edge devices in fog computing are possible. Cybersecurity techniques such as secure
bootstrapping, device authentication, and secure firmware updates are used to ensure the
security of these devices. By safeguarding the edge devices, the overall security of the fog
computing system is enhanced. They generate large amounts of data that can be analysed
in real time to detect anomalies and identify threats. Cybersecurity techniques, such as
machine learning and behaviour analysis, can be applied to detect malicious activities,
intrusions, or abnormal behaviour within the fog and edge network. Rapid threat detection
enables timely responses and mitigates potential damages. Privacy concerns arise because
fog and edge computing involve the processing and storage of sensitive data at the edge. To
address these concerns, cybersecurity measures such as data anonymisation, access controls,
and privacy-preserving techniques are employed to ensure that user data arehandled with
care and in compliance with privacy regulations.

In fog and edge computing, cybersecurity involves monitoring the system for se-
curity events, collecting logs, and performing security analysis. Security management
practices, such as vulnerability scanning, patch management, and security audits, help
identify and address potential security weaknesses in the fog and edge infrastructure.By
implementing backup and disaster recovery mechanisms, cybersecurity improves the re-
silience and continuity of fog and edge computing systems. This ensures that in the event
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of a security incident or system failure, the system can recover quickly and continue to
operate effectively.

Cybersecurity helps establish trust, protects data, and mitigates risks in fog and edge
computing environments. This enables organisations to confidently leverage the benefits of
these technologies.

2. Approach

The literature and professional experience suggest that IoT and IIoT networks have
limited solutions to counteract intruder attacks. To achieve autonomous problemsolv-
ing with minimal human influence on decisions, we need to improve machine learning
algorithms. It is important to refine these methods with each attack, with a focus on rein-
forcement learning. The cooperation between cloud computing and machine management
has led to an increase in cyberattacks. This is a significant concern.

There are imperfect solutions available from individual vendors. However, using
them often requires purchasing expensive licenses and support. In this case, the focus will
be on vendor-agnostic solutions.

2.1. Comparison of Existing Cybersecurity Solutions in IoT

The main types of IoT cybersecurity threats are as follows: DoS attacks, taking control
of devices left on default settings, exploiting security vulnerabilities on devices that are not
regularly updated, taking control of devices whose configuration was incorrectly matched
to the needs, the use of unencrypted connections, and data transfer.

When applying this form of counteracting cyber threats, we use solutions proposed by
several leading vendors such as Nozomi, FortiNet, Claroty, and Armiwhich.These solutions
involve monitoring the infrastructure at individual levels using sniffing devices, which
use specific rules to classify anomalies according to the level of threat advancement.When
highly dangerous events occur, the group of SIEM and SOC engineers supervising the
infrastructure takes quick actions to eliminate the threat or performs preventive actions
(patching vulnerabilities) based on analyses of reports generated by mechanisms imple-
mented in the vendor’s environment. Automated scripts triggered by specific correlation
rules are also used.

Threat intelligence involvesthe collection of information about potential and existing
cyberthreats, the analysis of data, and the application of the insights gained to anticipate,
detect, and mitigate threats before they impact an organisation. Threat intelligence is more
than just the installation of firewalls or anti-virus software; it is about understanding the
threat landscape, the sources of threats, the methods used, and the potential targets.

Threat Intelligence means having a dedicated team of security professionals constantly
on the lookout for signs of danger. It helps an organisation defend itself effectively by
providing insight into the tactics, techniques, and procedures (TTPs) used by cybercriminals.
Threat intelligence gives organisations an understanding of where their assets might be
compromised, who might be doing it, and how they might do it.

Intrusion prevention systems (IPSs), also known as IDPSs, are security frameworks
that monitor network activity and system operations for malicious activity. IPSs have four
primary elements: detecting malicious activity, logging data about the activity, attempting
to stop it, and reporting the incident [6]. There are various types of intrusion prevention
systems (IPS), including the following:

• Wireless intrusion prevention system (WIPS)—monitors the wireless network and traffic
for suspicious communication between nodes by analysing wireless network protocols;

• Network behaviour analysis (NBA)—identifies potential threats that result in atypical
traffic, such as DDoS attacks, malware, or security breaches, which is achieved by
analysing network traffic;

• The network-based intrusion prevention system (NIPS)—employs a comprehensive
approach by monitoring network traffic and analysing activity on individual protocols;
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• Host-based intrusion prevention system (HIPS)—constitutes a software designed to
examine events from a particular host exhibiting suspicious behaviour.

An effective strategy to enhance cybersecurity in IoT-based networks could be the
implementation of autonomous techniques like penetration testing. The literature suggests
the use of particle swarm optimisation (PSO) analysis in penetration testing. This approach
is prompted by the projection that households will possess an average of 30 IoT devices
by 2030. The devised methodology assists in identifying susceptibilities in ever-evolving
home IoT networks. Autonomous processes and the concept of swarm intelligence are
being considered for effective vulnerability detection. This approach employs multiple
agents concurrently testing the same environment, assuming that many parallel and similar
processes will improve the vulnerability search better than a cyclical check of the entire
network by one process. Success relies on the autonomy and self-control of these agents.
The detection of vulnerabilities is crucial in low-power video network devices. It is essential
to predict and counteract attacks on complex networks, which may deprive components
of their ability to operate through DDoS attacks, benefiting from the lack of power supply
and energy-saving advantages.

Counteracting cyberattacks also involves keeping the infrastructure updated on an
ongoing basis. The use of periodic security update activities allows for the ongoing patch-
ing of detected vulnerabilities. Additionally, it is recommended to build infrastructures
according to standards set by institutions such as the National Institute of Standards and
Technology (NIST) or according to the recommendations of IoT device manufacturers.

2.2. Framework Based on Markov Game Model

In the game model, there are typically three objects: the attacker, the defender, and the
user. The attacker’s goal is to exploit system vulnerabilities to cause malfunctions or even
the failure of the IoT system. The defender is concerned with improving the security of
the system and mitigating potential threats by implementing reinforcement schemes. The
user is concerned with the status of the IoT system. First, we build an SVM classifier for
the automatic classification of the security state. Then, during the simulation game, we
record the state of the IoT software chain at different times, calculating the probability of
the actions of the participants based on the state changes caused by the different behaviours.
At the end, we calculate the benefits of the three parties in the game under the different
strategies. Once these steps have been completed, the defender can develop the most
effective reinforcement scheme by constructing a Markov game model to identify threats to
the IoT system.

Figure 2 shows the method, which comprises two main procedures: the classification
of IoT security situations based on a support vector machine, and the detection of security
situations based on a Markov game model.
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2.3. MGT in Cybersecurity

Due to the dynamic and adversarial nature of cyber threats, Markov game theory
(MGT) has several potential applications in cybersecurity:

(1) Adaptive intrusion detection systems (IDSs)

In cybersecurity, IDSs play a key role by continuously monitoring network activity to
detect and respond to potential security breaches. Markov game theory and reinforcement
learning enhance IDSs, enabling them to adaptively respond to evolving cyber threats. The
essential context for using IDSs with MGT includes the following:

• Interaction modelling: strategic interactions between attackers and defenders in a
network environment are modelled using Markov games. The environment represents
the network, while the players are the attackers, and the IDS agents are the defenders.
Players can implement new detection rules, update firewall configurations, quarantine
suspicious devices, and take other security-related actions.

• State representation: information about the network topology, current system configu-
ration, traffic patterns, and the presence of known vulnerabilities or attack signatures
are incorporated into the state space of a Markov game. To capture the dynamic
nature of the cyber environment, states evolve over time based on network activity
and defender actions.

• Selection of actions: AIDS agents are trained to select actions that minimise the
risk of successful attacks while minimising disruption to legitimate network traffic
using reinforcement learning algorithms. These actions may include implementing
new detection algorithms, updating access control policies, or activating incident
response procedures.

• Rewards structure: rewards provide IDS agents with feedback based on their actions
and their impact on the security state of the network. Rewards can be based on factors
such as identifying suspicious activity, preventing successful attacks, or minimising
false alarms. As cumulative rewards are optimised over time, IDS agents learn to
make decisions that improve overall security.

• Exploration vs. exploitation: in order to adapt to changing threats, IDS agents try
to strike a balance between exploration and exploitation. Reinforcement learning
(RL) algorithms allow IDS agents to explore new defence strategies while leveraging
existing knowledge of attack patterns and network vulnerabilities.

• Learning and adaptation: IDS agents learn to recognise patterns of malicious be-
haviour, adapt their detection strategies, and proactively respond to emerging threats
by interacting with the environment and receiving feedback from reward functions.
IDS agents can continuously improve their performance over time using reinforcement
learning algorithms such as Q learning or deep learning with reinforcement.

• Real-time decision making: intrusion detection systems (IDS) based on Markov games
operate in realtime, constantly monitoring network traffic and making quick decisions
to mitigate security threats. Based on the current threat landscape and evolving
tactics of attackers, these systems use reinforcement learning to dynamically adjust
their behaviour.

• By integrating Markov game theory and reinforcement learning, IDSs can become
more adaptive, resilient, and effective in defending against sophisticated cyber threats
in dynamic network environments.

(2) Vulnerability patching and configuration management

Using Markov game theory and reinforcement learning, it is possible to plan and
prioritise security updates and configuration changes to reduce the risk of exploitation and
minimise the impact on the system. Below is a detailed overview of how they can be used
in this regard:
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• Interaction modelling: strategic interactions between system administrators respon-
sible for patching and configuration management and potential attackers looking to
exploit security vulnerabilities can be modelled using Markov games. The players
are the administrators and the attackers, while the environment represents the OT
infrastructure. Administrators can take actions such as planning patch deployments,
configuring security settings, and updating software versions, while attackers choose
which vulnerabilities they want to exploit and when to attack.

• State representation: Markov state spaces contain information about the current state of
the system, installed software versions, known security vulnerabilities, patching status,
network traffic patterns, and historical intrusion information. Reflecting the dynamic
nature of the cyber environment, states evolve over time based on administrator
actions, system updates, and attacker actions.

• Selection of actions: administrators are trained to select actions that effectively mitigate
security risks while minimising disruption to system operations using reinforcement
learning algorithms. These actions may include prioritising patches based on sever-
ity, criticality, and potential impact on operations; scheduling the deployment of
patches during maintenance windows; and balancing security needs with business
continuity requirements.

• Rewards structure: the rewards function provides feedback to administrators based on
their actions and their impact on the security status of the IT infrastructure. Rewards
are based on factors such as successfully deploying patches, preventing successful
attacks, reducing security vulnerabilities, and minimising downtime. Administrators
learn to make decisions that improve overall security while minimising operational
impact by optimising cumulative rewards over time.

• Exploration vs. exploitation: to effectively manage security threats, administrators
balance exploration and exploitation. Reinforcement learning enables administra-
tors to explore new patch policies and configuration management practices while
leveraging existing knowledge of best practices for vulnerability management and
system maintenance.

• Learning and adaptation: administrators can learn to identify patterns of vulnerabili-
ties, effectively prioritise patches, and proactively respond to security threats through
interactions with the environment and feedback from reward functions. Administra-
tors can continuously improve their patching and configuration management practices
over time using reinforcement learning algorithms such as Q-learning or deep learning
with reinforcement.

• Real-time decisionmaking:this involves constantly monitoring new security vulner-
abilities, assessing their potential impact, and making quick decisions based on risk
mitigation. Based on the current threat landscape, business priorities, and system
requirements, these systems use reinforcement learning to dynamically adjust their
patching policies and configuration management practices.

• By integrating Markov game theory and reinforcement learning, organisations can
manage security vulnerabilities, prioritise patch distribution, and optimise configu-
ration settings to minimise exploitation risk while maintaining system availability
and performance.

(3) Moving Target Defence (MTD)

Moving Target Defence (MTD) is a cybersecurity strategy that aims to increase the
resilience of systems and networks by dynamically changing their attack surface to confuse
and thwart attackers. To design and implement effective MTD strategies, Markov game
theory and reinforcement learning can be applied. This text provides a detailed overview
of the use of these techniques in this area:
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• Modelling the interaction: Markov game theory is used to model the strategic interac-
tion of defending players applying MTD techniques and attacking players trying to
exploit vulnerabilities. In this model, the environment represents the IT infrastructure
or network, while the players are the defending and attacking parties. Defenders have
the ability to dynamically reconfigure the network, change system parameters, and
apply deception techniques, while attackers choose which vulnerabilities to target and
when to attack.

• State representation: information about current system configurations, network topol-
ogy, implemented MTD techniques, attacker behaviour, and historical attack data is
incorporated into the state space of the Markov game. Reflecting the dynamic nature
of the cyber environment, states evolve over time based on defenders’ actions, system
updates, and attackers’ actions.

• Action selection: reinforcement learning is used to teach defence systems to select
actions that effectively disrupt and deter adversaries, while maintaining system us-
ability and performance. These actions can include rotating IP addresses, changing
firewall rules, modifying software configurations, and implementing honeypots or
decoys. The goal of the defender is to dynamically adjust the attack surface to increase
attacker uncertainty and reduce the likelihood of successful exploitation.

• Reward structure: rewards provide feedback on the defender’s actions and their
impact on the state of the IT infrastructure. Rewards can be based on factors such as
successfully detecting attacker activity, preventing successful attacks, reducing attacker
dwell time, and minimising false alarms. Defenders can learn to make decisions that
improve overall security while maintaining system usability and performance by
optimising cumulative rewards over time.

• Exploration vs. exploitation: defenders strike a balance between exploration and
exploitation to effectively confuse and deter attackers. Reinforcement learning algo-
rithms allow the defender to explore new MTD techniques and deployment strategies
while leveraging existing knowledge of attacker behaviour and system vulnerabilities.

• Learning and adaptation: defenders can learn to recognise patterns of attacking
behaviour, effectively prioritise MTD techniques, and proactively respond to security
threats through interactions with the environment and feedback from the reward
function. The use of reinforcement learning algorithms, such as Q-reinforcement
learning or deep reinforcement learning, allows defenders to continuously improve
their MTD strategies over time.

• Real-time decisionmaking:this involves constantly monitoring intruder activity, assess-
ing its potential impact, and making quick decisions that disrupt and deter intruders.
Based on the current threat landscape, attacker tactics, and system requirements, these
systems use reinforcement learning to dynamically adapt their MTD techniques and
deployment strategies.

The integration of Markov game theory and reinforcement learning enables organisa-
tions to deploy effective Moving Target Defence (MTD) strategies to make their systems
and networks more resilient to sophisticated cyber threats. MTD techniques dynamically
change the attack surface and confuse attackers, thereby reducing the risk of successful
exploitation, while maintaining system availability, confidentiality, and integrity.

(4) Cyber threat hunting and adversarial red teaming

Markov game theory and reinforcement learning can be applied to simulate and
analyse strategic interactions between threat hunters/red teams and adversaries in a cyber
environment in the context of cyber threat hunting and adversarial red teaming. This
section of the article provides a detailed overview of their application in this aspect.

• Modelling the interaction: Markov games can be used to model strategic interactions
between threat hunters and adversaries attempting to penetrate or destroy systems.
The environment represents the cyber infrastructure, while the players are threat
hunters and adversaries. The actions available to the threat hunter consist of deploy-
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ing defences, analysing network traffic, and conducting reconnaissance, while the
adversary selects attack vectors, exploits vulnerabilities, and tries to avoid detection.

• State representation: the state space of a Markov game contains information about
current system configurations, network topology, implemented defence mechanisms,
attacker behaviour, and historical attack data. Reflecting the dynamic nature of the
cyber environment, states evolve over time based on threat hunter actions, system
updates, and adversary actions.

• Action selection: reinforcement learning algorithms are used to train threat hunters
to select actions that are effective in detecting and responding to adversary actions,
while minimizing false positives and maintaining system usability.These activities
may include implementing intrusion detection systems, analysing logs and network
traffic, conducting threat analysis, and deploying decoys or honeypots.To counter
adversary tactics and avoid detection, threat hunters try to dynamically adapt their
tactics and techniques.

• Reward structure: rewards provide feedback to threat hunters based on their actions
and impact on the security posture of the cyber infrastructure.Rewards can be based on
factors such as successfully detecting adversary activities, identifying attack vectors,
preventing successful attacks, and minimizing false positives.Threat hunters learn
to make decisions that improve overall safety while minimizing operational impact,
optimizing cumulative benefits over time.

• Exploration vs. exploitation: threat hunters identify and neutralize adversary activi-
ties, balancing exploration and exploitation.Using reinforcement learning algorithms,
a threat hunter is able toanalyse an opponent’s tactics and exploit weaknesses in
their strategies.

• Learning and adaptation: threat hunters learn to recognize adversary behaviour
patterns, effectively prioritize hunting activities, and proactively respond to security
threats through interactions with the environment and feedback from the reward
function.To continually improve threat hunting capabilities over time, reinforcement
learning algorithms such as Q-learning or deep reinforcement learning are used.

• Real-time decision making: this involves constantly monitoring and analysing ad-
versary activity and its potential effects, and then quickly making decisions about
detection and response. Based on the current threat landscape, adversary tactics, and
system requirements, these systems use reinforcement learning to dynamically adapt
their threat hunting strategies and deployment tactics.

The integration of Markov game theory and reinforcement learning enables organ-
isations to implement effective cyber threat hunting and adversarial red teaming strate-
gies. These strategies increase the resilience of systems and networks against sophis-
ticated cyber threats. These techniques help identify vulnerabilities, detect adversary
activity, and proactively mitigate security threats by simulating strategic interactions
between threat hunters and adversaries. Combining Markov game theory with rein-
forcement learning holds promise for improving cybersecurity defences by enabling
adaptive, proactive, and strategic decision making in the face of complex and evolving
cyber threats.

Game theory and Markov Decision Processes (MDPs) form the basis of the Markov
game model. Game theory deals with decision making in situations where multiple
participants are interacting, while MDPs involve making choices from a set of avail-
able actions based on observed information or states. The state transition can be traced
using Markov probabilities, even though the next state may be random. That is, the
next state is only related to the current time. This allows for the dynamic analysis of
potential hazards.

The following is a list of the basic components of the Markov game model:
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• Participants can be divided into three categories: attackers, defenders, and users.
Attackers perform malicious attacks to disable IoT software chains, while defenders
implement security solutions to reduce vulnerability and improve IoT software chain
security. Users only operate devices and are not concerned with security;

• Situational space refers to all possible IoT software chain situations;
• Behavioural space consists of all possible actions of the three participants;
• Transition probability refers to the way that the IoT system evolves based on how

the participants behave; the situation is constantly changing. Participants can select
appropriate behaviours from the behavioural space based on transitions and security
assessments of the IoT system with a certain probability;

• Reward function refers to rewards for each participant based on their respective goals.
The attacker aims to cause maximum damage to the system, while the defender seeks
to enhance its security. Users, on the other hand, require sufficient network resources,
and their reward is based on the degree of system service utilization.

Based on the current system state, participants choose a behaviour from the be-
havioural space in the game process. The participants then make decisions based on
the new condition, and the system moves to a new condition. The system moves to the
new state and the process is on until the state is in place. The three participants decide their
behaviour and receive their reward for a given threat. To describe the rewards that each
participant will receive, our method uses a reward function [7–10].

The aim of each participant is to maximise the reward function. This process is
quantitatively described as follows:

TPN(t, k) =
{

Si(k),ej(k)
}

where Si(k) is the state of the i-th propagation node at time k; ej(k) is the state of the j-th
propagation path at time k. Simply, TPN(t, k + 1) is the systemstate at time k + 1,and the
state change of the system follows the Markov rule.

Attackers must analyse the nature of the threat t and determine how to exploit it for
the greatest benefit. Defensive measures implemented by the administrator on node i will
have two impacts:

(1) reducing the damage caused by threats that affect the IoT software chain;
(2) the security plan should aim to minimize its impact on the availability of node i.

Vs(Si(k)) = ∆ρai·valueai

where ∆ρai represents the change in node utilization performance, measured by the dif-
ference between the node utilization value before and after the security enhancement is
implemented; and valueai represents the availability of node i. User reward is measured by
the sum of the usage ratio of N nodes and the amount of the M utilization path.

To summarise, IoT security situation awareness involves three main procedures: data
processing, constructing a threat propagation network, and evaluating IoT security using a
Markov game model.

Algorithm: IoT security situation awareness based on Markov game model (Algorithm 1).
Inputs: IoT security data.
Output: IoT security situation.

• Pre-process the security data related to IoT;
• Create a threat propagation network for each threat ‘t’ based on the security information;
• Based on the threat propagation network, construct a Markov game model for ‘t’ and

calculate the security situation of ‘t’. Follow a logical sequence to complete the task;
• Analyse the defender’s best reinforcement plan to deal with threat t;
• Summarise the damage of all threats. Evaluate the overall security of the IoT software

chain based on different requirements.
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Algorithm 1. Markov threat reactionstrategy pseudocode

# Define the states
states = [state1, state2, state3, . . .]

# Define the transition probabilities matrix
transition_probs = [
[prob11, prob12, prob13, . . .],
[prob21, prob22, prob23, . . .],
[prob31, prob32, prob33, . . .],
. . .

]

# Define the initial state probabilities
initial_probs = [prob1, prob2, prob3, . . .]

# Simulate the Markov chain
current_state = select_initial_state(initial_probs)
for i in range(num_iterations):
next_state = select_next_state(current_state, transition_probs)
current_state = next_state

# Analyze the state
if current_state == vulnerable_state:
alert_vulnerability()
elifcurrent_state == attack_state:
alert_attack()

# Function to select the initial state based on initial probabilities
def select_initial_state(initial_probs):
# Perform a weighted random selection based on probabilities
. . .

# Function to select the next state based on transition probabilities
def select_next_state(current_state, transition_probs):
# Perform a weighted random selection based on probabilities
. . .

# Function to alert vulnerability
def alert_vulnerability():
# Take appropriate actions to handle the vulnerability
. . .

# Function to alert attack
def alert_attack():
# Take appropriate actions to handle the attack
. . .

In this pseudocode, states represent the possible security states in the IoT network,
transition_probs is the matrix representing the transition probabilities between states, and
initial_probs represents the probabilities of starting in each state. The select_initial_state and
select_next_state functions perform weighted random selections based on probabilities. The
alert_vulnerability and alert_attack functions are called when the current state corresponds to
a vulnerability or an ongoing attack, respectively.

2.4. Quick Response Module

To potentially isolate infected end devices at the fog or edge computing level, the
neural network would require data from penetration tests of the IDS module. The objective
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of this extensive autonomous attack response system should be to adjust the scope smoothly.
Figure 3 provides an outline of the concept on which the process for autonomous responses
to network infrastructure threats would operate.
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The basis for the operation of the whole system is based on the correct patterns of the
operating network infrastructure. We will start the description of the method presented
from the upper left corner of the Figure 3:

(1) The states of the correct and incorrect (not necessarily disrupted/attacked, but also
subject to warnings/intervention as a part of predictive maintenance) operation of
IIoT devices are described by state vectors that are optimised and shortened for
processing efficiency, classification, and downstream prediction according to edge
computing principles;

(2) The analysis takes place as close to the source as possible, so if the devices are working
correctly, no additional information needs to be transmitted, which relieves the burden
on devices and transmission networks and allows the lowest possible level of response,
e.g., within IIoT devices, software, and quality of service (QoS) mechanisms;

(3) The assumed configurations of the network model and how it operates are sent to the
machine learning system as an indicator of the correct operation of the overall system;

(4) The entire network is then monitored for any deviations, anomalies, or potential
threats (but the entire network is subdivided by device, i.e.,within the structure in
Figure 1, so that responses can be made at the level of devices or their groups or
network segments—as low as possible);

(5) Autonomous response protocols are triggered when an anomaly or threat is detected,
whether it is a threat to data security integrity or simply a deviation from normal
operations (e.g., a predictive maintenance response is needed)—this approach allows
for better maintenancesystem integrity regardless of operating conditions;

(6) Events are identified, classified, and prioritized;
(7) When an attack is expected to be imminent, vulnerable devices are isolated from the

network. Such a threat is properly identified and categorized, and the result of this
process is an update of the security policy;

(8) From this point, two processes run in parallel:

• The first is to restore the monitoring of the whole network—after isolation;
• The second is communication with the central unit (or cloud processing) that

controls the system and analyses information about the occurrence and nature of
the threat.

(9) Information about the threat is sent to the machine learning system, which, after
running the algorithm, updates patterns of proper system operation.These patterns
are enriched with the “experience” of the existing threat/anomaly and the method of
classifying the event.
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(10) Such monitoring is maintained throughout the system’s operation, but the training of
the ML system during technical breaks is preferred [11–13].

Main mechanism of such system are analyzed in Table 1.

Table 1. Overlaying the concept onto IIoT framework.

IIoT Level Mechanism Related Strategy

Cloud Data Centre/Fog
General control on edge

configuration and operations
Data analysis and prediction

Central control on IT operations

IIoTgateways Access control
Surveillance

Enhancing physical security
at the edge

Additional computing layer
performing cybersecurity functions
(e.g., multiaccess edge computing)

IIoT devices

Monitoring of configuration
and logs

Application changes control
Data control

Auditprocedures

Edge activity of IIoT devices as
public cloud operations

Communication between
devices/users and edge facilities

constitutes high risk activity
Application of the highest possible

security level

Users
Guiding users on the basis of

necessary authorisations
Maintenance

Elimination of human errors
Lowering costs and waste of time

Enhanced lifetime

3. Methods

There is a significant research gap in this field since current e-commerce vendor solu-
tions continue to rely on human intervention. Imperfect programs and systems that analyse
network traffic are used, but they are improved regularly. Additionally, expensive software
necessitates substantial human resources, including security engineers and analysts, to
continuously monitor network traffic and its potential deviations from the set security stan-
dards. Of course, currently, it is believed that no tools can completely replace the human
factor that fulfils its task. However, this work aims to find ways to augment cybersecurity
teams’ potential and reduce their reliance on human intervention.

It is reasonable to assume that detecting vulnerabilities early is a simpler approach
to ensuring cybersecurity. This can be performed through autonomous algorithms which
can search for vulnerabilities in networks, for example through penetration testing. A
greater challenge is probably developing a way to counteract attacks and promptly detect
the aggressor or attacked element.

The hypothesis underlying this consideration posits the possibility of creating a ma-
chine learning algorithm with suitable training data to prime the desired network for
utilising an autonomous defence mechanism.

Autonomous threat detection will be introduced, along with simplified response
procedures at the edge computing level. This will result in a uniform reaction time and
increased effectiveness, surpassing that of the currently used centralized mechanisms.

Edge computing will process optimized threat feature vectors, rather than entire
anomalies detected through monitoring.

IIoT network segmentation can facilitate the prompt elimination of infected vulnera-
bilities without the need to disable entire subnets or complex systems. Our goal is to isolate
individual IIoT devices through gateway management.

The system will utilise adaptable machine learning. Patterns resulting from continu-
ous monitoring and analysis will enable us to identify even the smallest deviations and
anomalies, predicting events that require sudden and drastic responses. This will enhance
the system’s accuracy.
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3.1. DataSet

We have used the Edge-IIoTset Cyber Security Dataset of IoT & IIoT [14,15]. The main
parts of the dataset (.csv files) include selected datasets for ML (157,800 records):

(1) Normal traffic

• Distance: gathered by IoT ultrasonic sensor;
• Flame: gathered by IoT flame sensor;
• Heart_Rate: gathered by IoT heart rate sensor;
• IR_Receiver: gathered by IoT infrared receiver;
• Modbus: gathered by IoT modbus sensor;
• phValue: gathered by IoT ThpH sensor PH-4502C;
• Soil_Moisture: gathered by IoT Soil Moisture Sensor v1.2;
• Sound_Sensor: gathered by LM393 Sound Detection Sensor;
• Temperature_and_Humidity: gathered by IoT DHT11 Sensor;
• Water_Level: gathered by IoT water sensor.

(2) Attack traffic specific for attacks:

• Backdoor Attack;
• DDoS Http Flood Attack;
• DDoS ICMP Flood Attack;
• DDoS TCP SYN Flood Attack;
• DDoS UDP Flood Attack;
• MITM Attack;
• OS Fingerprinting Attack;
• Password Attack;
• Port Scanning Attack;
• Ransomware Attack’
• SQL Injection Attack;
• Uploading Attack;
• Vulnerability Scanner Attack;
• XSS Attack.

3.2. Computational Methods

The computational approach covers several levels of analysis shown in Figure 4 from
edge computing (close to the source, within a single segment, based on AI) to central
AI-based management at the level of the entire system or its segments. Machine learn-
ing, based on a distributed, local approach to data collection and preliminary analysis
(edge computing), is used, combined with the Markov gaming platform, and may be a
potential solution to various challenges related to processing speed, data confidentiality,
and cybersecurity.
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SVM-based safety situation classification was replaced by three-stage learning due to
its simpler design and faster response. A feature vector describing the state of a sensor/IoT
device allows for the classification of the device (based on the reported state of the device
and its activity/load) into one of the roles in the Markov game: neutral, attacker, or
defender. The desired state is neutral. The attacker and defender states are isolated from
the rest of the network at the segment level—this is the primary way to respond to an
attack. The advanced behaviour of the response system emerges from the rather simple
interactions of a range of models.

Signals from IoT network/sensor devices in the form of optimised feature vectors
representing state vectors are processed in three stages:

• In Stage 1, the vectors are recalculated according to Markov game rules, and their
initial local analysis (edge processing) and modelling is performed—this stage is the
most demanding both in terms of time and accuracy, as it provides fast responses to
the states of feature vectors that meet the criteria for misbehaving devices (including
attack).Depending on the types of devices or sensors, the data is assumed to be
processed according to one of ten algorithms (the data for each of the ten algorithms
are collected in a different network); moreover, at this stage, a network segment can
be isolated as “attacked” or “damaged”;

• In Stage 2, data from individual segments are aggregated and modelled using algo-
rithms 11–20—this level of processing is responsible for the synchronised aggregation
and evaluation of the overall network level of one type of sensor/device;

• In Stage 2, a general overview of the performance of the entire network (regardless of
the type of sensors/devices in the network) takes place.

In Stage 1, the operation is performed in two stages: first, there is a recalculation of
the feature vectors according to the Markov game rules presented earlier, and then, there
is the learning of the models. The optimisation of feature vectors mainly concerns their
form and length, i.e., features that do not affect the accuracy of the operation are cyclically
evaluated and removed. Reducing the size of the feature vectors speeds up the processing
and therefore the response time [16–19].

For the implementation of the first version of our solution, we chose ML.NET (OpenML)
in VisualStudio 2022 because of the large number of algorithms to be tested (in our case:
more than 50), the fast semi-automatic learning and testing, and the possibility to download
a file or API for further use in the system under construction. The automation and flexibility
of ML environments here is cloying not only for the proper implementation of the solution,
but also for the large amounts of data (almost 200,000 records) and the need for cyclic
learning on new data. The challenge becomes balancing the classes, which will be difficult
(correct operation is the leading class). With flexibility, it will also be possible to better adapt,
for example, to new generations of IoT sensors or to connect new segments and even whole
clusters of them, including in stages, with gradual learning. The use of simple algorithms
is expected to rule out the ‘black box’ phenomenon and preserve human understanding,
even as systems evolve and grow in complexity.

4. Results

The algorithms considered the best for analysing individual data are shown in Figure 5
and Table 2.

Table 2 shows the results for the Stage 1 algorithm (edge computing, Markov game
model)—the best of which was the LightGbmMulti algorithm. It is notable that the second,
third, and fifth places here were occupied by the FastTreeOva algorithms, which learned
on the same data but with different hyperparameters.
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Table 2. Best algorithms for attack type assessment.

Agorithm Accuracy MRSE

LightGbmMulti 0.9347 0.001

FastTreeOva 0.8959 0.002

FastTreeOva 0.8901 0.002

FastForestOva 0.8892 0.002

FastTreeOva 0.8880 0.002

FastTreeOva (accuracy 0.9101) was considered the best data aggregation algorithm
(Stage 2). Similarly, the Stage 2 algorithms are 10 FastTreeOva algorithms taught on different
data, so they are different algorithms.

The algorithm considered the best for cloud management (central/overall view,
Stage 3) is LightGbmMulti (accuracy 0.8991).

The challenge with detecting attacks on our infrastructure may relate to the fact that
attack attempts may remain inadequately visible.

A comprehensive IoT network typically involves a similar technology, with compara-
ble characteristics of end devices and often the same transmission protocol.

Accordingly, a potential intruder can exploit these factors to our disadvantage. The
susceptibility of intrusion detection systems is frequently due to the exclusion of incidents
that occur sporadically across various devices analysed at different times. To reduce the
need for analysing a vast number of occurrences, experts have established benchmarks.
A single deviation from the expected norm for network traffic security systems, which
does not surpass the established thresholds, could potentially indicate a hostile intruder.
In-depth security testing of comparable infrastructure components may lead to compelling
evidence of vulnerability, thereby enabling attackers to target the entire system or significant
portions of it simultaneously [20–23].

When selecting a security system, one must therefore exercise great caution. The
Autonomous Reaction Mechanism of Potential Intruder Attack (ARMPIA) should be ap-
proached comprehensively, with a system consisting of three strict elements to support the
reinforcement learning-based machine learning algorithm.

5. Discussion

Analysing previous studies, a review by Dino and Manivannan [24] showed that
there are still many open issues in this area that need to be addressed. The use of ML
techniques is one of the leading approaches used to classify reasonable and unusual be-
haviour in the IIoT, but so far only a few have been described in a way that allows for
a comparison with our concept. ML-based IDS/IPS in combination with other security
elements (e.g., firewalls) are used to identify and combat threats, abuses, intrusions, and
unauthorized behaviour. Masdan and Khezri conducted astudy of fuzzy fraud detection
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schemes designed using various machine learning and data mining techniques to deal with
different types of intrusions, including the application of fuzzy datasets, feature extraction,
and performance evaluation [25]. Some IIoT systems have to use multi-access edge com-
puting (MEC) technology due to limited resources and the inability to deploy advanced
security systems. This, in turn, places high demands on offload latency, synchronisation
and execution time, and concurrent energy efficiency to ensure near real-time responses.
The problem of offloading and synchronising tasks can be represented by a mathematical
model based on Markov transition probabilities (i.e., estimating the clock offset using
maximum likelihood) [26]. Attack methods are being developed that involve generating
(using particle swarm optimisation, genetic algorithms and deep learning—generative
adversarial networks) opposing examples capable of bypassing various machine learning
models. This indicates new vulnerabilities in ML-based systems [27]. Datasets are becom-
ing crucial and can give you an advantage despite the existence of at least 35 generally
known cyber datasets classified into seven categories (based on network traffic, electrical
network, Internet traffic, virtual private network, Android applications, IoT traffic, and
devices connected toInternet).Accuracy, the false alarm rate, and the detection rate are
commonly used to evaluate the performance of ML methods. This has so far identified
at least seven useful ML models for binary and/or multi-class classification: recurrent or
deep neural networks, constrained or deep Boltzmann machines, deep belief networks,
convolutional neural networks, and deep autoencoders [28]. Detecting known attacks,
blocking suspicious behaviour in near real time, and dynamically updating security rules
can only partially improve the situation [29]; hence, our concept seems to go a step further
into the future compared to the solutions presented so far in the literature.

A comparison and discussion of our own concept with other similar concepts from
the literature is presented in Table 3 in the form of an analysis of strengths, weaknesses,
opportunities, and threats (SWOT).

Table 3. SWOT analysis of ourown concept.

Positive Negative

Internal

Strengths
Local, distributed, focused reaction

Integrationof various levels of processing (but edge
computing is preferred overcloud computing)

Intrusion prevention system (IDS) is preferred over
intrusion detection system (IPS)

Both host-based and network-based system: single devices,
segments, and lines can be cut-off and/or bypassed

depending on needs
Combined anomaly-based system with signature-based
system, but database is built dynamically with adapted

normal activity (not only from historical data)
Robustness

Quick reaction

Weaknesses
Advanced knowledge needed

Necessity of building for the near future, not
quite now

The best solutions are dedicated, not universal
Higher initial cost

Achieving assumed intrusion prevention level
may require use of various comprehensive

solutions (e.g.,toavoid false positive detections),
such as firewalls, antivirus, SIEM, and SOAR

Need for updates

External

Opportunities
Scalability

Adapted to assumed risk tolerance and business strategy
Shorter, optimized datasets

Various AI solutions may be used/combined (decision trees,
fuzzy logic, neural networks, deep learning)

Visualization and analytics
Better understanding of network and system behaviour

More holistic and proactive cybersecurity strategy
Lower complexity

Greater resistance to human errors (e.g., users’ behaviour)
Reduced downtime and damages

Threats
The need to keep sensitive details of the

operation secret—partial “black box” (may create
lack of transparency about certain decisions)

Lack of social awareness and acceptance
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5.1. Limitations of Own Research

The suggested approach for identifying and addressing potential risks features specific
constraints arising from the flawed signals sent over IoT and IIoT networks:

• With augmented traffic in the network, there is a high suspicion of distortions, leading
to a loss of coherence in the data that could potentially cause false-positive alarms;

• Regrettably, the quantity of false-positive alarms surpasses the potential attacks by
intruders—therefore, a limitation is to accurately differentiate these genuine attacks
from the irrelevant ones;

• A challenge in classifying alarms arises due to the diversity of firmware versions—it is
imperative to keep the devices’ versions in the network as current as possible and to
utilize devices from vendors with minimal diversification [30–34].

5.2. Directions for Further Studies

Autonomous threat response at the edge processing and fog level in the IIoT is a complex
and evolving field. To delve deeper into this area of research, the following research directions
are proposed:

• Develop and explore security standards applicable to the IIoT and fog computing and
how they can evolve to support autonomous responses to new emerging threats [35–40];

• Explore different edge processing and fog computing architectures for IIoT applications
and analyse how these architectures deal with security and threat responses [19,41–43];

• Explore the use of AI algorithms (specifically ML algorithms) to detect and respond
to threats at the network edge and fog level, train them, and optimize them for IIoT
environments [44–46];

• Utilize real-time analytics and anomaly detection techniques to identify unusual
behaviour or potential security risks;

• Integrate edge and fog security measures with cloud-based security solutions, i.e.,
investigate how data collected at the network edge can be securely transmitted and
stored in the cloud [47–51].

We obtained a balanced view and set a clear path for future research by integrating
the aforementioned limitations of our current research with future research directions.
This allowed priorities to emerge and yielded the following sequence of further research
activities (broken down by level of task execution):

• Automation of IoT support in edge computing;
• Intelligent creation of trusted edge data for distributed IoT;
• Adaptive configuration of IoT applications in fog infrastructure;
• Utilization of cryptographic schemes for secure edge processing, including server

deployment in multi-user edge processing;
• Intelligent management of resources in fog computing using RL, including multi-user

placement of IoT services with QoS consideration [52–62].

6. Conclusions

An industry that uses more and more information technology is vulnerable to attacks
and malicious behaviour.The use of ML in the realm of cybersecurity is becoming more
prevalent with each passing day.In this research project, we have compiled the literature
on reinforcement learning and categorised it into three areas: penetration testing, IDSs,
and cyberattacks. Even though ML for cybersecurity is a new topic in the literature, it has
been established that the techniques used give very encouraging results for the detection
and prevention of attacks. It is anticipated that RL will formulate techniques for cyber
defence and attack and assist in the transformation of cyber risks. The concept introducedin
this study is expected to address cybersecurity issues and propose solutions, establish the
groundwork for future research, and significantly influence its direction.
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