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Abstract: A superradiant FEL in the THz (3 THz) region is currently operating at Ariel University. It
is based on the novel ORGAD accelerator, which is a hybrid linear RF photo-cathode 6 MeV electron
gun. The hybrid term stands for its unique standing wave (SW)—traveling wave (TW) structure.
The undulator generates spontaneous superradiance, which corresponds to spontaneous emission
when the electron bunch duration is shorter than the radiated frequency, resulting in a much higher
photon yield. However, the efficiency of this scheme is still quite low. In order to achieve higher
emission (by improved efficiency), we intend to implement a new and promising radiative interac-
tion scheme: tapering-enhanced superradiance (TES). This particular undulator design employs a
tapered (amplitude) undulator in the zero-slippage condition to obtain a significantly more powerful
and efficient THz radiation source. At the current stage, the scheme is designed for emission at
approximately 0.5 THz. The design and start-to-end simulations demonstrate significant enhance-
ment of superradiant energy and extraction efficiency using this method compared to a reference
uniform case.

Keywords: FEL; superradiance; tapering-enhanced superradiance; hybrid RF gun; GPT; zero-slippage

1. Introduction

The ORGAD is a hybrid S-band (2856 MHz) RF photo-cathode accelerator located at
the Schlesinger Compact Accelerator Center at Ariel University. It provides an ultra-fast
relativistic electron beam with a kinetic energy of 6.5 MeV, charge of 60 pC, 150 fs pulse
duration, and emittance of 3.5 µm [1–3]. The hybrid photo injector has an integrated
structure of 3.5 standing-wave cells and nine traveling-wave cells [4]. The standing-wave
section accelerates the electrons, while the traveling-wave section bunches (compresses)
the electrons’ pulse using an energy chirp applied during the passage in it. This process
continues after the traveling-wave section by an additional drift section, resulting in a
bunched electron pulse of approximately 150 f s, necessary for emitting coherent THz
superradiance [5]. Current methods of THz generation such as laser-based emission [6–8],
dielectric lined waveguides (DLWS) [9], Cherenkov FEL [10], nonlinear metasurfaces [11],
etc. are especially limited when high power is required. High-yield laser-based methods
can emit hundreds of µJ [12,13] but cannot be tuned to other frequencies.

The THz undulator is a 0.8 m length Halbach planar undulator consisting of 40 periods
with undulator wavelength λw = 2 cm and a magnetic field amplitude of B0 ∼= 0.49 T.
A copper WR-51 rectangular waveguide (12.954 mm × 6.477 mm) is installed at the center
of the undulator [14]. This radiation source is designed to emit coherent spontaneous
superradiance [15,16] at 3 THz. Recently, the ORGAD accelerator group managed to detect
and measure radiation emitted from the undulator.
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In this publication, we consider a scheme for the enhancement of superradiant emis-
sion at the saturation regime by employing a tapered planar undulator section—tapering-
enhanced superradiance (TES) [5,17–23]—of a tightly bunched beam in a waveguide struc-
ture. The enhancement of superradiance emission is obtained both from phase synchronic-
ity and extended interaction between the electrons and the generated radiation along the
undulator. Phase synchronicity is the phase matching between the electrons’ bunch velocity
and the phase of the pondermotive field of the radiation along the undulator field, while
the interaction extension is obtained by fulfilling the zero-slippage condition of the FEL
dispersion equation in a waveguide structure [24]. The term “zero-slippage” has been
adopted to indicate that in this condition, in which the group velocity of the radiation
mode in the waveguide is equal to the electron beam velocity, the electron beam does
not slip backward or forward relative to the radiation envelope [24]. In this paper, we
used start-to-end simulations to determine the feasibility of high-intensity THz radiation
sources based on the novel concept of tapering-enhanced superradiance (TES) at a reduced
frequency of 0.5 THz. The waveguide type and size are determined to comply with the
phase matching (synchronicity condition) and the zero-slippage condition (group velocity
match). By determining the optimal tapering rate of the undulator, we can extend the inter-
action time between the electron beam and the radiation, resulting in increased radiation
source efficiency.

2. Zero-Slippage Condition

Undulator radiation [25–27] is generated when relativistic charged particles (electrons, in
our case) perform a sinusoidal motion resulting in undulator synchrotron radiation [28–32].
Note that in this paper, the discussion is limited to a planar undulator. As indicated earlier,
the zero-slippage condition can only be attained in a waveguide FEL scheme [33–35]; in this
work, we used a rectangular waveguide [36]. The zero-slippage condition corresponds to the
group velocity matching of the waveguide radiation mode and the electron beam, facilitating
an extended beam–radiation interaction. This extended interaction can lead to significantly
higher radiation power. Also, the zero-slippage condition allows us to properly design the
TES scheme for a specific resonance frequency.

The decrease in electron beam energy along a planar undulator, including a waveguide,
is calculated using the following equation [19]:

dγ

dz
=

eE0K
2γmc2 · J J

(
K2

4 + 2K2

)
sin(ψ) (1)

ψ = kz(ω)z − ωt + kwz (2)

where K = eB0
mckw

is the undulator parameter, B0 is the magnetic field amplitude, m is
the electron’s mass, c is the speed of light, kw is the undulator’s wavenumber, γ is the
electron’s energy, e is the electron’s charge, E0 is the generated electromagnetic wave
amplitude, kz(ω) is the dispersion of the longitudinal wavenumber of the interacting
waveguide mode, and ω is the electromagnetic wave’s frequency. ψ is the pondermotive
phase. J J ( K2

4+2K2 ) = J1(
K2

4+2K2 )− J0(
K2

4+2K2 ) is the Bessel factor, which corresponds to high
harmonics in planar undulators, where J1 and J0 are the first and zeroth orders of the Bessel
function, respectively. For a low K value, the Bessel factor can be neglected.

The detuning parameter

θ =
ω

vz
− kz − kw (3)

is a derivative of the pondermotive phase [18].

dψ

dz
= −θ (4)
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Maximal energy transfer is obtained for a resonant frequency, namely, when the
synchronicity condition is satisfied:

ω

vz
− kz − kw = 0 (5)

where vz = βzc is the average electron beam velocity [37,38] and

γz =
(

1 − β2
z

)− 1
2
=

√√√√ γ2

1 +
(

K2

2

) (6)

γz is the electrons average Lorentz factor.
The resonant photon emission frequency is the solution of Equation (5) considering

the dispersion relation of the interacting waveguide mode wavenumber [39–44]:

kz =

√(ω

c

)2
− k2

c (7)

where

kc =

√(πm
a

)2
−
(πn

b

)2
(8)

is the cut-off frequency of the interacting waveguide mode, a is the waveguide width, b is
the waveguide height, and m and n are the indices of the transverse mode of the waveguide.
By solving Equations (5) and (7), the resonance frequency is obtained [45,46]:

ωr = γ2
z βzckw

1 ±

√
β2

z −
(

ωc

γzkwc

)2
 (9)

where ωc = kcc is the cut-off frequency that is defined by the waveguide structure.

In the case where the term under the root in Equation (7) is real
(

β2
z >

(
ωc

γzkwc

)2
)

, we

obtain two real solutions that correspond to the synchronicity condition where maximum
energy transfer occurs, while a single solution is obtained for the case where this term

is equal to zero
(

β2
z =

(
ωc

γzkwc

)2
)

. This single solution indicates that the electron beam

velocity line is tangent to the waveguide dispersion curve. The derivative of the dispersion
curve at this point is the group velocity. Hence, the zero-slippage condition is [39]

vg =
∂ω

∂kz
= vz (10)

For operating in the zero-slippage frequency, the following relation must be satisfied:

ωc = γzβzckw (11)

which leads to a simple relation between the zero-slippage frequency and the cut-off
frequency of the waveguide mode:

ωr,zs = γ2
z βzckw = γzωc (12)

The zero-slippage frequency can be calibrated using different waveguide types and
sizes using the same electron beam parameters.

For the case where there is no real solution
(

β2
z <

(
ωc

γzkwc

)2
)

, the electromagnetic

wave cannot be synchronized with the electron beam, and the energy transfer is small
or negligible.
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For the waveguide and beam parameters of Table 1, fc = 52.69 GHz, γ = 12.741,
and K = 1.1478, Equation (12) results in zero-slippage frequency fr = 0.52 THz.

Table 1. Simulation parameters.

Bunch Energy 6 MeV

Energy Spread [RMS] 1%

Bunch Length [RMS] 150 fs

Beam Charge 20 pC

Undulator Wavelength, λw 56 mm

Undulator Magnetic Field, B0 (K) 0.2195 T (1.1478)

Number of Uniform Undulator Periods 5

Number of Tapered Undulator Periods 15

Nominal Resonant Electron Pondermotive Phase, ψr
π
4 rad

Nominal Undulator Tapering Rate, dB
dz ( dK

dz ) −0.0143 T
m (−0.0746 1

m )

Radiation Mode TE01

Rectangular Waveguide (WR22) 5.6896 mm × 2.8448 mm

Mode Cut-off Frequency ( fc) 52.69 GHz

Peak THz (Zero-Slippage) Frequency ( fr) 0.52 THz

It is possible to visualize the zero-slippage condition by drawing a contour map of
valid resonance frequencies (from the synchronicity condition) with respect to the electron
beam kinetic energy for different waveguide dimensions. On the contour plot, we plot a
line representing the zero-slippage frequencies with respect to the electron beam kinetic
energy. The yellow line from Figure 1 is plotted using the mismatch parameter between the
electron beam’s normalized longitudinal velocity (βz) and the radiation field’s normalized
group velocity (βg):

∆β = βz − βg = βz −
ckz

ω
(13)

By using Equations (5), and (6), we can define the electron beam energies with respect to
the resonant frequencies and waveguide dimensions for the ultra-relativistic limit (βz ≈ 1):

γr =

√
kz(1 + K2

2 )

2(kz − ω
c + kw)

(14)

The electron beam kinetic energy is calculated using the resonant Lorentz factor from
Equation (14):

Ek,r = mec2(γr − 1) (15)

We use Equation (15) to draw the contour map and Equation (13) to draw the zero-
slippage line.

For example, by taking a rectangular waveguide (Figure 1), λw = 60 mm, and
B = 0.2 T, the lowest value of the waveguide’s height is 3.00015 mm. The zero-slippage
frequency is fzs = 0.4983 THz (≈ 0.5 THz), which complies with Equation (12).
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Figure 1. Contour plot of the electron beam kinetic energies with respect to the resonant frequencies.
The color bar represents the waveguide height (b) for the fundamental mode TE01. The yellow
line is the valid zero-slippage frequencies for the different electron beam kinetic energies. The red
dashed line represents the energy of the ORGAD beam (6 MeV) and is used to mark the zero-slippage
frequency (green pentagon).

3. Tapering-Enhanced Superradiance

Spontaneous undulator radiation [47–50] by a beam of randomly injected electrons
is incoherent. Thus, the total emitted radiation energy is proportional to the number of
electrons (Ne), while the field average vanishes due to random interference of the generated
wave packets [51,52]. To obtain superradiance [53,54], it is required that the electron bunch
duration (tb) will be shorter than the radiation period (tb << 2π

ω ). In this case, the generated
wave packets from the bunched electrons are emitted and propagated in phase. Therefore,
the resultant electric field of the emitted radiation is proportional to the number of electrons
(Ne), and consequently, the total radiated energy is proportional to N2

e [5].
In a uniform undulator, the following equations are used in order to calculate the

superradiance spectrum and energy [5,18]:

dWq

dω
=

Q2
bZqL2

u

16πAe f f
(

āw

βzγ
)2Mb(ω)sinc2

(
θLu

2

)
(16)

W =
∫ dWq

dω
dω (17)

where Mb(ω) is the bunching factor in the frequency domain, Qb is the beam charge, Zq is
the wave impedance in the waveguide, Nu is the undulator number of periods, Lu = λwNu
is the undulator’s length, āw = K√

2
is the average undulator factor for the case of a planar

undulator, and Ae f f is the effective area of the waveguide radiation mode.
Due to the energy transfer from the electron beam to the radiation field (and, therefore,

slowing down of the electron beam), it is not possible to maintain the synchronicity con-
dition in the nonlinear regime. In order to compensate for this nonlinear detuning effect,
the technique of undulator tapering has been used in the field of FEL [55]. This technique
has also been used in the scheme of tapering-enhanced superradiance (TES) [56], which
we analyze in the present paper, in which the electron bunch is trapped in a tapered undu-
lator section by the superradiant radiation generated by it in a prior uniform section [18].



Electronics 2024, 13, 1171 6 of 15

The undulator parameter can be tuned by varying the undulator period λw-period tapering
or by varying the magnetic field B0-amplitude tapering. Amplitude tapering changes
the undulator magnetic field amplitude, which leads to a change only in the undulator
parameter (K). In the period tapering scheme, the period wavenumber changes and the
undulator parameter also changes, which complicates the analysis and implementation of
this scheme. Practically, it is also more challenging to fabricate an accurate tapered period
undulator. Therefore, we chose to focus here on the amplitude tapering scheme.

To find the ratio between the tapering rate and the energy exchange rate while keeping
the zero-slippage condition, we use Equation (6)

γ2
r = γ2

z,r

(
1 +

K2

2

)
(18)

and differentiate both sides in terms of z, keeping γz,r constant

dγ2
r

dz
= γ2

z,rK
dK
dz

(19)

γz,r remains constant, since for the frequency of the radiation generated in the uniform part
of the undulator, we constrain the detuning parameter to also remain constant along the
tapered undulator section for the beam–radiation interaction [18]. Therefore, the reduction
in the magnetic field amplitude compensates for the electron beam energy reduction.
From (12), for ultra-relativistic limit (βz,r ≈ 1), the resonance average Lorentz factor along
the entire interaction length is

γ2
z,r =

ωr,zs

ckw
=

k0

kw
(20)

where k0 = ωr
c is the electromagnetic radiation wavenumber. From Equations (1), (19), and

(20), the linear amplitude tapering rate defines the phase of a resonant electron:

dK
dz

= −kwKLsin(ψr) (21)

where
KL =

eE0

mc2k0
(22)

is the normalized momentum of the electric field that interacts with the electron beam in
the tapering section. In order for the electron to stay trapped, the tapering rate is limited by
the condition sin(ψr) < 1.

4. Hamiltonian of a Waveguided Planar Undulator

In this section, we consider the case of amplitude tapering. In addition, we derive
the Hamiltonian of an FEL interaction in a waveguided undulator to analyze how the
electrons are “trapped” in phase-space along the interaction length in the nonlinear tapered
undulator regime. Our model consists of an electron beam that exchanges its energy with
the radiation field generated along the undulator. Using Equation (1), the Hamiltonian
momentum coordinate is represented in terms of γ:

dγ

dz
=

1
c

dγ

dt
= − k0KKL

2γ
sin(ψ) · J J (23)

Since the resonance energy decreases due to the trapping dynamics of the electron
beam along the tapered undulator, we should use a term that describes the variation in
resonance energy. Therefore, the use of the δγ parameter assists with describing the energy
exchange, which corresponds to the change in resonance energy [18]:

γ = γr + δγ (24)



Electronics 2024, 13, 1171 7 of 15

The energy exchange along the undulator is

dδγ

dz
=

1
c

dδγ

dt
=

dγ

dz
− dγr

dz
= − k0KKL

2
· J J ·

(
sin(ψ)

γ
− sin(ψr)

γr

)
(25)

The phase synchronicity is obtained from the detuning parameter. Also, the detuning
parameter is the derivative of the pondermotive phase (Equation (4)). Thus, the second
equation used to construct the Hamiltonian is

dψ

dz
=

1
c

dψ

dt
= kw + kz −

ω

βzc
= kw + kz − k0 ·

(
1 +

1 + K2

2
2γ2

)
(26)

Substituting γ using Equation (24) and substituting k0 · 1
1+ K2

2

in terms of γr using

Equations (18) and (20), we obtain

dψ

dz
= kw + kz − k0 −

kwγ2
r

2(γr + δγ)2 (27)

Equations (25) and (27) are used to construct the Hamiltonian (see Appendix A).
The dynamics analysis is considered to be near resonance, δγ

γr
<< 1. Also, we dropped the

terms independent of the phase space variables to write

H(ψ, δγ, z) = (kw + kz − k0)
δγ2

γr
− k0KLK

2γr
· J J · (cos(ψ) + ψsin(ψr)) (28)

The resulting Hamiltonian has the form of a nonlinear pendulum; therefore, we define
the local minima at ψmin = ψr + 2πn and local maxima at ψmax = πsgn(ψr)− ψr + 2πn.
In addition, we can obtain the separatrix, which separates the bound and unbound solutions
of a nonlinear system [55,57]. Since the Hamiltonian is constant on the separatrix, the energy
exchange in terms of the pondermotive phase on the separatrix is

δγ = ±

√√√√ k0KLK
2(kw + kz − k0)

· J J ·
[

cos(ψr) + cos(ψ)− (πsgn(ψr)− ψr − ψ)sin(ψr)

]
(29)

The phase-space is drawn using Equations (28) and (29) (see Figure 2).

(a) (b)
Figure 2. Phase space using the Hamiltonian (Equation (28)). The red solid lines represent the
separatrix (Equation (29)) for two cases: (a) ψr = 0 and (b) ψr =

π
4 .
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The Hamiltonian complies with the formulation of the dynamics of a bunched elec-
tron beam interacting with a radiation field in uniform and tapered undulators, as in [18].
The Hamiltonian from Equation (31) is consistent with Kroll’s expression [55], by perform-
ing some adjustments for his case of a helical undulator in free space with the substitutions
kz = k0, K√

2
replacing K, and J J = 1.

5. Simulations

The simulations are executed using GPT by applying custom elements representing the
undulator design, a rectangular waveguide, and an amplitude-tapered undulator [58,59]
(the scheme is shown in Figure 3). GPT outputs the particles’ transport parameters and
radiation characteristics computed by numerical computation using a Runge–Kutta algo-
rithm [60–63]. The elements that simulate the undulator use the following equations to
describe the uniform and tapered undulator magnetic field components:

Bx = 0 (30a)

By = (B0 · f1 +
dB
dz

z · f2)cosh(kwy)sin(kwz) (30b)

Bz = (B0 · f1 +
dB
dz

z · f2)sinh(kwy)cos(kwz) (30c)

Un-tapered Section Tapered Section
e-beam

WR22 waveguide

Solenoid
OAP mirror

OAP mirror

THz detector

High-power 
SSR emission

Steering 
magnet

5 periods 
~280mm

15 periods 
~840mm

Figure 3. Scheme of TES with 5 periods of uniform section + 15 periods of linear-tapering section,
including a WR22 waveguide. The color gradient in the tapered section represents the variation of
the undulator parameter K along this section.

The magnetic tapering rate is related to the undulator parameter tapering rate and to
the resonant electron phase through Equation (21):

dB
dz

=
mckw

e
dK
dz

= −mck2
wKL
e

sin(ψr) (31)

The nominal tapering rate parameter in Table 1 was evaluated for a particular ψr =
π
4 ,

and the KL value was evaluated from the simulation results of the radiation field emitted
by the prior uniform undulator section. GPT provides the electric field profile in each
step during simulations. Thus, we can use its amplitude in each propagation step to
evaluate KL and draw the separatrix. In the tapered section, the optimal resonance phase
may be different from π

4 and depends on the radiation field generated in the uniform
section. The parameter f2 is used to modify the choice of the tapering rate and it is changed
iteratively in order to find the maximal radiation energy emission. In the uniform section,
dB
dz = 0, B0 in Table 1 is determined to satisfy the synchronicity condition (Equation (5)) for
the designed value of zero-slippage frequency fr,zs = 0.52 THz. f1 is nominally equal to
unity, but it is left as an adjustable parameter f1 ≈ 1 for optimization of the output radiation.
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Figure 4 shows the trajectory of a single electron in phase space in the uniform undu-
lator. The electron is transported via a 20-period uniform undulator with the undulator
parameters in Table 1. In this simulation, we verified that the electron performs syn-
chrotron oscillations.

Figure 4. Simulation of electron trajectory in a uniform undulator. Green dots correspond to the
electron trajectory, black dashed lines correspond to the initial separatrix, and red dashed lines
correspond to the final separatrix.

To demonstrate the consistency of the numerical computation with the analytical ex-
pression of superradiance in a uniform undulator (Equation (16)), we computed the radiated
energy as a function of bunch charge and confirmed its quadratic scaling. Figure 5 exhibits
the radiated energy as a function of beam charge (Qb) for an ideal electron beam (no space
charge and Mb(ω) = 1), which was varied from 5 pC up to 400 pC with 5 pC steps.

Figure 5. Radiated energy as a function of ideal electron beam charge. The red dots represent
simulation results and the black line is a parabolic fit.
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Next, we simulate an ideal electron beam transported through a combined undulator
structure consisting of uniform and linearly tapered sections (see Figure 3), where the
number of tapered undulator periods is larger than the uniform one. The simulation
contains a single undulator structure consisting of five uniform periods and fifteen linear-
tapering periods. Figure 6 presents the initial and final positions of a single electron along
the undulator in phase space.

(a) (b)
Figure 6. Simulation of a linearly tapered undulator. (a) Start of the simulation and (b) end of the
simulation. Green dots represent the electron trajectory and a single black dot is the final position.

We repeated this procedure for an electron beam with the ORGAD beam parameters.
The optimal results for the ideal beam simulations were obtained for f2 = 1.4 and ψr =

π
5 ,

and for the ORGAD beam f2 = 5.75 and ψr =
π
5 . It is reasonable that f2 is high for the

non-ideal beam due to the reduction in the bunching factor and space-charge effects [64,65].
Figure 7 shows the ideal and ORGAD electron beam trajectories in phase space, and
Table 2 presents the radiated energy values obtained from the simulations. Figure 8 shows
the superradiance and tapering-enhanced superradiance energy growth along the entire
interaction length for an ideal and for the ORGAD electron beams.

(a) (b)
Figure 7. Simulation of 10k macro particles transported via a combined structure consisting of a
uniform and a linearly tapered undulator for (a) an ideal electron beam and (b) the ORGAD electron
beam. The red dashed line corresponds to the separatrix and the yellow dots correspond to the
macro particles.
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Table 2. Comparison of the maximal energy simulation results for a uniform undulator and a tapered
undulator (TES) for an ideal and for the ORGAD electron beam for the number of periods (Nu = 20).

Superradiant Emission Energy

Beam Uniform Undulator [µJ] Tapered Undulator (TES) [µJ]

Ideal 2.43 3.66

ORGAD 1.66 2.35

Figure 8. Comparison of uniform and tapered undulator radiated energy along the interaction length
for an ideal and a non-ideal electron beam.

Table 2 and Figure 8 show that TES produces more energy than superradiance emitted
from a uniform undulator for both ideal and non-ideal electron beams. In other words,
it confirms that tapered undulators prolong the interaction of the electron beam with the
emitted radiation field, owing to the TES scheme. It should be stressed that much more
radiative energy can be extracted with a longer tapered section. The enhancement factor of
1.5 indicated in Table 2 corresponds to the optimization design of a TES experiment limited
by undulator length (20 periods).

6. Conclusions

TES is an extension of superradiance in FEL that is facilitated by amplitude or period
tapering. The use of a waveguide enables operation in zero-slippage. The zero-slippage
condition allows extension of the interaction time of the electron beam with the generated
radiation. A derived analysis of a waveguided planar undulator FEL model and numerical
simulations are consistent and complement previous results.

The simulations were carried out both for an ideal electron beam and a realizable
electron beam (ORGAD accelerator) transmitted through a uniform planar linearly planar
undulator (as a reference). Further simulations of a beam transport through a combined
undulator structure consisting of a uniform undulator followed by a linearly tapered undu-
lator confirm the enhanced radiation emission of the TES scheme. In addition to the radiated
power value, we verified that the electron beam is trapped in phase space. The obtained
results are in good agreement with the proposed model, providing increased-efficiency
emission using a tapered undulator operating in zero-slippage. In the present work, we
obtained 40–50% enhancement in radiation power with the TES scheme compared to super-
radiant emission in a uniform undulator. This enhancement factor corresponds to design
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optimization under the limitation of undulator length (20 periods). Much larger radiation
extraction can be attained with this scheme with a longer tapered undulator section.
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Appendix A. Hamiltonian of a Waveguided Undulator Derivation

The Hamiltonian is a function that represents the total energy of a physical system
using canonical coordinates. In order to construct the Hamiltonian, we use Hamilton’s
equations:

dH
dp

=
dq
dt

(A1a)

dH
dq

= −dp
dt

(A1b)

Our model consists of an electron beam that exchanges its energy with the radiation
field generated along the undulator. Using Equation (1), the Hamiltonian momentum
coordinate is represented in terms of γ:

dγ

dz
=

1
c

dγ

dt
= − k0KKL

2γ
sin(ψ) · J J (A2)

Since the resonance energy decreases due to the trapping dynamics of the electron
beam along the tapered undulator, we should use a term that describes the variation in
resonance energy. Therefore, the use of the δγ parameter assists with describing the energy
exchange, which corresponds to the change in resonance energy:

γ = γr + δγ (A3)

The energy exchange along the undulator is

dδγ

dz
=

1
c

dδγ

dt
=

dγ

dz
− dγr

dz
= − k0KKL

2
· J J ·

(
sin(ψ)

γ
− sin(ψr)

γr

)
(A4)

The phase synchronicity is obtained from the detuning parameter. Also, the detuning
parameter is the derivative of the pondermotive phase (Equation (4)). Thus, the second
equation used to construct the Hamiltonian is

dψ

dz
=

1
c

dψ

dt
= kw + kz −

ω

βzc
= kw + kz − k0 ·

(
1 +

1 + K2

2
2γ2

)
(A5)

After substituting γ using Equation (A3) and substituting k0 · 1
1+ K2

2

in terms of γr

using Equations (18) and (20), we obtain:

dψ

dz
= kw + kz − k0 −

kwγ2
r

2(γr + δγ)2 (A6)

Using Equations (A1a), (A1b), (A4), and (A6), we obtain the Hamiltonian:
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H(ψ, δγ, z) = (kw + kz − k0)δγ +
kwγ2

r
2(γr + δγ)

− k0KLK
2

· J J ·
(

cos(ψ)
(γr + δγ)

+
ψsin(ψr)

γr

)
(A7)

Extracting γr out of the parentheses:

H(ψ, δγ, z) =

[
(kw + kz − k0)(1 +

δγ2

γr
) +

kwγr

2

]
(1 +

δγ

γr
)−1

− k0KLK
2γr

· J J ·

 cos(ψ)

(1 + δγ
γr
)
+ ψsin(ψr)

 (A8)

The dynamics analysis is considered to be near resonance, δγ
γr

<< 1. Also, we dropped
the terms independent of the phase space variables to write

H(ψ, δγ, z) = (kw + kz − k0)
δγ2

γr
− k0KLK

2γr
· J J · (cos(ψ) + ψsin(ψr)) (A9)

The obtained Hamiltonian has the form of a nonlinear pendulum. Similar to the
nonlinear pendulum, we define the local minima at ψmin = ψr + 2πn and local maxima
at ψmax = πsgn(ψr)− ψr + 2πn. In addition, we can obtain the separatrix that separates
between a nonlinear system’s bound and unbound solutions. Since the Hamiltonian is
constant on the separatrix, we solve for the energy exchange term using the Hamiltonian at
the edges.

H(ψmax, 0) =
k0KLK

2γr
· J J · (cos(ψr)− (πsgn(ψr)− ψr)sin(ψr)) (A10)

By solving Equations (A9) and (A10) at the separatrix, we obtain the energy exchange
in terms of the pondermotive phase:

δγ = ±

√√√√ k0KLK
2(kw + kz − k0)

· J J ·
[

cos(ψr) + cos(ψ)− (πsgn(ψr)− ψr − ψ)sin(ψr)

]
(A11)
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