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Abstract: Radar specific emitter identification (SEI) involves extracting distinct fingerprints from
radar signals to precisely attribute them to corresponding radar transmitters. In view of the limited
characterization of fingerprint information by single-domain features, this paper proposes the utiliza-
tion of multi-domain mixed kernel canonical correlation analysis for radar SEI. Initially, leveraging
the complementarity across diverse feature domains, fingerprint features are extracted from four
distinct domains including: envelope feature, spectrum feature, short-time Fourier transform and
ambiguity function. Subsequently, kernel canonical correlation analysis is employed to amalgamate
the correlation characteristics inherent in multi-domain data. Considering the insufficient of a single
kernel function with only interpolation or extrapolation ability, we adopt mixed kernel to improve
the projection ability of the kernel function. Experimental results substantiate that the proposed
feature fusion approach maximizes the complementarity of multiple features while reducing feature
dimensionality. The method achieves an accuracy of up to 95% in experiments, thereby enhancing
the efficacy of radar SEI.

Keywords: specific emitter identification; feature fusion; feature extraction; kernel canonical
correlation analysis

1. Introduction

Specific emitter identification (SEI) by a radar involves identifying individual radars
by analyzing the distinctive features or fingerprints embedded in their signals [1]. This
intricate procedure comprises key stages such as data pre-processing, feature extraction,
classification, and identification. The correlation of radar signals with specific radars
and their associated platforms is pivotal for target intent analysis, decision support, and
situational awareness [2]. Consequently, radar SEI has attracted considerable attention in
the fields of electronic reconnaissance and electronic countermeasures [3].

The key component for individual radar emitter identification is the fingerprint fea-
ture of the radar transmitter, characterized by stability and uniqueness [4,5]. Fingerprint
features persist in radar signals, resisting complete erasure due to their accidental modula-
tion features arising from minute changes in radar technology [3,6]. Each radar must be
assigned unique labels, considering that even radars of the same model may be affected by
minor faults in electronics, operating time, and environmental conditions [7]. Extracting
fingerprint features encoded in received radar signals poses a substantial challenge, partic-
ularly when these features are immersed in strong noise signals. To date, research on radar
fingerprint feature extraction has predominantly focused on the time domain [8], frequency
domain [9,10], time-frequency domain [11–13], ambiguity-function domain [14], and neural
network domains [15–17] of the signals. While experiments have demonstrated satisfactory
recognition results using the aforementioned methods, the subtle distinctions between
fingerprint characteristics may be overlooked by the discussed extraction strategies.

Relying solely on a single feature in radar SEI leads to a decline in recognition accuracy
when confronted with diverse radars and varying signal backgrounds. In recent years,
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multimodal fusion technology has garnered considerable attention, demonstrating remark-
able achievements across multiple domains. Researchers have developed the multimodal
approach to radar SEI, employing the feature-level fusion method within diverse feature
domains. Compared with the previously employed single-feature method, the feature
fusion method leverages the differences between multiple features to preserve fingerprint
information [18–20]. In one study [18], an innovative parallel feature fusion technique
was developed based on the investigation of a simple series-parallel relationship between
different features. However, drawbacks such as the absence of a nonlinear description
of uncorrelated data and high feature dimensionality were noted. Another study [19]
employed a local kernel approach based on the widely utilized dimensionality reduction
method principal component analysis (PCA), enhancing dimensionality reduction effi-
ciency. Nevertheless, PCA-based algorithms fail to harness non-linear correlations among
several features since they do not consider the inherent links between features. With the
rapid evolution of neural networks, deep learning has been extensively used in SEI. The
multi-channel approach, capitalizing on the substantial scalability of neural networks for
data fusion, is well-conceived and performs admirably in SEI with multi-feature fusion. In a
pertinent study [20], a multi-channel deep learning model was employed to autonomously
learn to fuse multiple features and thoroughly extract fingerprint feature information.
However, the training of deep learning models often demands a substantial number of
training samples. In reality, acquiring a significant quantity of actual detected radar signals
proves challenging, posing an incongruity with the application of data-driven methodolo-
gies. Thus, multi-feature fusion must satisfy three essential requirements: (1) the ability
to explore relationships among different features, (2) the extraction of effective feature
information, and (3) the reduction of feature dimensionality.

Canonical correlation analysis (CCA) serves as a linear multivariate statistical method
for examining the correlation between two sets of features, identifying canonical eigen-
vectors with higher correlation indicative of original features. CCA encounters challenges
when extracting a valid representation from data that does not adhere to a linear distribu-
tion. Therefore, to adapt to the non-linear data characteristics, the kernel method based on
CCA can be employed. The kernel function facilitates the projection of fingerprint features
into a feature space, adept at handling non-linear data and extracting weak fingerprint infor-
mation with greater ease. The choice of kernel function in kernel methods leads to distinct
mapping spaces and diverse ways of describing the data. Jia [21] classified kernel functions
into two main types: local kernels and global kernels. However, both types exhibit only one
type of interpolation and extrapolation capabilities. Presently, the kernel function in radar
SEI predominantly relies on a single kernel. To overcome the limitations of a single kernel,
researchers explore the linear combination of kernel functions, such as multiple kernel
learning (MKL) [22] and mixed kernel [23,24] approaches. In the realm of multi-kernel
mapping, the high-dimensional space amalgamates multiple feature spaces. Each basic
kernel optimally leverages its ability to map various features within the combinatorial
space. Authors in a study [22] employed MKL to select the most appropriate base kernel
at each data point, determining the optimal kernel through linear weighting of the base
kernels. However, the experimental choice of the base kernel and the combination method
lacks theoretical grounding and remains uncertain. In another study [23,24], addressing
the absence of a single kernel with only one interpolation or extrapolation ability, authors
proposed a mixed kernel by weighting the radial basis function (RBF) kernel with inter-
polation ability and the polynomial (poly) kernel with extrapolation ability, respectively.
Essentially, mixed kernel models fall into the category of single kernel models but adopt
the form of MKL. This differentiation arises from the assignment of independent weights
to each kernel function in the mixed kernel, circumventing the need for solving complex
optimization problems present in MKL. Mixed kernels exhibit both a robust theoretical
foundation and a more convenient combination method while circumventing the necessity
to learn a large number of base kernel weights.
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Building on the literature, this paper proposes a multi-domain mixed kernel canon-
ical correlation analysis (MMKCCA) for radar SEI. The primary focus involves initially
extracting fingerprint features in four feature domains from the radar signal with noise
removed. The mixed kernel, better suited to the characteristics of multi-feature data, is
then applied as the kernel function for fingerprint feature fusion using the kernel canonical
correlation analysis (KCCA) technique. Additionally, the fused features are fed into the
random forest classifier for classification and recognition. Experimental results indicate
that the proposed method yields superior recognition outcomes, with accuracy reaching
95% under lower feature dimensions. The main contributions of this paper are threefold:
(1) introducing a multi-domain feature fusion method for radar SEI based on KCCA, af-
firming the complementarity of different feature domains; (2) addressing the limitations of
local and global kernels by proposing a mixed kernel that combines the two in a weighted
composition, better adapting to the characteristics of data with multi-domain features; and
(3) efficiently lowering feature dimensions while maintaining SEI recognition performance
with a modest number of samples.

The remainder of this paper is organized as follows: Section 2 outlines the fundamen-
tals of CCA; Section 3 discusses kernel function principles and selection; Section 4 describes
experiments using the dataset and the aforementioned theoretical study; and Section 5
summarizes the findings of the experiments and proposes directions for future research.

2. Analysis of Canonical Correlation Analysis (CCA)

The numerous features obtained for the same radar signal exhibit some degree of
interrelation, presenting an opportunity to fully exploit the complementing effect between
these features for effective feature fusion. This work employs CCA, a technique with
multivariate statistical analysis capabilities adept at uncovering subtle variations and inter-
correlations among distinct features. The principles and methods of CCA will be briefly
introduced below.

Hotelling introduced CCA in 1936, essentially involving finding the feature vector with
the highest correlation rather than the original features. The method utilizes the correlation
between features as the discriminant criterion, achieving both the reduction of original
features to eliminate information redundancy and the purpose of feature fusion [25]. CCA
can be seen as the problem of finding basis vectors for two sets of variables such that the
correlations between the projections of the variables onto these basis vectors are mutually
maximized. The simplified flow of CCA is illustrated in Figure 1:
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The symbols used by CCA and KCCA are shown in Table 1.

Table 1. Notations.

R: metric spaces ⟨·, ·⟩: inner product

x: feature vector L: Lagrange function

ωx: the linear transformation of x K: kernel matrix

ωy: the linear transformation of y ϕ: a map into Hilbert spaces

ρ: correlation coefficient λ: correlations

Cxx: covariance metric Z: fusion feature vector

The two types of fingerprint feature vectors can be represented as x ∈ Rp and y ∈ Rq.
Canonical correlation analysis seeks a pair of linear transformation ωx and ωy, one for
each of the sets of feature vectors x and y, such that when the set of vectors is trans-
formed, the corresponding vectors Zx and Zy are maximally correlated. ρ represents the
correlation function.

The first stage of canonical correlation is to choose ωx and ωy to maximize the cor-
relation ρ between the two feature vectors x and y [26]. The correlation function can be
expressed as follows:

ρ = max
ωx ,ωy

ωx
TCxyωy√

ωxTCxxωxωyTCyyωy

(1)

where Cxx and Cyy denote the covariance matrices of the two types of fingerprint features,
respectively, and Cxy represents the mutual covariance matrix between them.

To ensure a unique solution, the following constraints are applied:{
ωx

TCxxωx = 1
ωy

TCyyωy = 1
(2)

In order to get a linear transformation ωx and ωy. The Lagrange criterion functions is
constructed by combining correlation function ρ and condition function Equation (2) [27]:

L
(
λ, ωx, ωy

)
= ωx

TCxyωy −
λx

2

(
ωx

TCxxωx − 1
)
−

λy

2

(
ωy

TCyyωy − 1
)

(3)

Taking derivatives with respect to ωx and ωy and setting them to zero yields:

∂L
∂ωx

= Cxyωy − λxCxxωx = 0 (4)

∂L
∂ωy

= Cyxωx − λyCyyωy = 0 (5)

By multiplying Equation (4) by ωx
T and subtracting ωy

T from Equation (5),

0 = ωx
TCxyωy − ωx

TλxCxxωx − ωy
TCyxωx + ωy

TλyCyyωy
= λyωy

TCyyωy − λxωx
TCxxωx

(6)

Based on the constraints in Equation (2), λy − λx = 0, and λ = λy = λx. Assuming
that the covariance matrix Cyy is singular:

ωy =
Cyy

−1Cyxωx

λ
(7)
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Substituting ωy from Equation (7) to Equation (4),

CxyCyy
−1Cyxωx = λ2Cxxωx (8)

The projection vector of the features ωx can be found using the eigenvalue Equation (8).
Substituting ωx into Equation (7) yields the projection vector ωy. Thus, the typical corre-
lation features after projection can be obtained as Zx = ωx

Tx and Zy = ωy
Ty, and their

combination yields the final feature fusion Z =
[
Zx, Zy

]
.

In situations where the original feature data deviates from Gaussian or linear distri-
bution, effective information extraction from linearly operated CCA becomes challenging.
Therefore, CCA is extended to nonlinear CCA to better handle situations where the relation-
ship between different features is nonlinearly distributed, yielding effective features. In an
attempt to increase the flexibility of the feature selection, kernelization of CCA (KCCA) has
been applied to map the hypotheses to a higher-dimensional feature space. The subsequent
section provides a detailed introduction to nonlinear CCA with the kernel function.

3. Kernel Methods
3.1. Kernel CCA

Given that CCA operates linearly, it encounters limitations in effectively extracting
nonlinear data features. KCCA introduces an innovative approach that employs a kernel
function to nonlinearly extend the original fingerprint characteristics, projecting them into
a high-dimensional feature space [27–29]. This method not only accommodates nonlinear
data, transforming a nonlinear problem into a linear one, but also facilitates enhanced access
to fine-grained fingerprint information. The underlying principle of KCCA is concisely
described below, with a visual representation provided in Figure 2.
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For the original fingerprint feature vectors x ∈ Rp and y ∈ Rq, high-dimensional
feature vectors are obtained through the following kernel nonlinear transformation:

ϕ : x = (x1, · · · xm) 7→ ϕ(x) = (ϕ1(x), · · · , ϕN(x))(m < N) (9)

where ϕ signifies the mapping of the original feature vector x to the high-dimensional fea-
ture space, and ϕ(y) follows a similar process. Kernels are methods of implicitly mapping
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data into a higher-dimensional feature space. The kernel function K
(
xi, xj

)
operation can

be expressed as:
K
(
xi, xj

)
=

〈
ϕ(xi), ϕ

(
xj
)〉

(10)

Using the definition of the covariance matrix in Equation (1), we can rewrite the
covariance matrix Cxx and Cyy. {

Cxx = x′x
Cyy = y′y

(11)

where we use x′ to denote the transpose of a vector x.
The linear transformation ωx and ωy can be rewritten as the projection of the feature

vectors onto the transformation ω̂x and ω̂y:{
ω̂x = x′ωx
ω̂y = y′ωy

(12)

Substituting into Equation (1), the correlation function can be expressed as follows:

ρ = max
ω̂x ,ω̂y

ω̂′
xxx′yy′ω̂y√

ω̂′
xxx′xx′ω̂xω̂′

yyy′yy′ω̂y
(13)

Let Kx = xx′ and Ky = yy′. The maximization criterion function is reformulated as:

ρ = max
ω̂x ,ω̂y

ω̂′
xKxKyω̂y√

ω̂′
xKxKxω̂xω̂′

yKyKyω̂y
(14)

Once again, this criterion function must adhere to the following constraint:{
ω̂′

xKx
2ω̂x = 1

ω̂′
yKy

2ω̂y = 1
(15)

The subsequent computation aligns with the standard CCA procedures. Derive
the projection vectors ω̂x and ω̂y to obtain typical correlation features Zx = Kxω̂x and
Zx = Kxω̂y.

The resolution of nonlinear relationships between features is facilitated by projecting
features into a higher-dimensional space using kernel functions. However, the various
projection forms and feature descriptions offered by different kernel functions must be
explored. The next subsection discusses how a suitable kernel function can be selected for
the variety of radiation source features.

3.2. Mixed Kernel

The effectiveness of the kernel function’s nonlinear fit in the feature space relies not
only on its capacity for learning from neighboring data (i.e., interpolation) but also on its
ability to extend beyond its observed data range (i.e., extrapolation). Kernel functions can
be categorized into local and global types. The local kernel, exemplified by the RBF kernel
function, excels in interpolation but lacks extrapolation capabilities. Conversely, the global
kernel, exemplified by the poly kernel function, exhibits superior extrapolation but weaker
interpolation capabilities.

The formula for RBF kernel function:

Kg
(
xi, xj

)
=

〈
−
∥∥xi − xj

∥∥2

2σ2

〉
(16)

where σ denotes the kernel width.
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The formula for poly kernel function:

Kp
(
xi, xj

)
=

(〈
xi, xj

〉
+ 1

)d (17)

where d is the kernel parameter that denotes the degree of the poly.
The performance of these two kernel functions is illustrated in Figure 3. The RBF kernel

reaches its maximum value when the test point’s distance is zero, gradually approaching
zero as the distance increases. This indicates a limited learning ability beyond a specific
range. Conversely, the poly kernel exhibits increasing kernel values across all ranges as the
poly degree rises, but its interpolation ability weakens. To harness both nonlinear learning
capabilities simultaneously, a combined approach is considered.
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Unlike single kernel models, mixed kernel models possess both interpolation and
extrapolation capabilities. Unlike their single kernel counterparts, mixed kernel models
offer a more expansive assumption space, making them better suited for approximating
real-world problem objective functions [23,24].

Approach to combining mixed kernels:

Kmin = ωKp + (1 − ω)Kg (18)

where ω ∈ [0, 1] represents the mixture weight.
Figure 4 demonstrates the kernel values resulting from the fusion of the RBF and

poly kernels, with assumption of parameters σ = 1 for the RBF kernel and d = 1 for the
poly kernel. Adjusting the ω parameter in Equation (15) reveals that the mixed kernel
function exhibits a consistent nonlinear fitting effect under varying weights. However, the
choice of parameters significantly influences algorithm performance, a topic explored in
the subsequent section.

3.3. Parameters Optimization

The selection of parameters in the aforementioned mixed kernel method directly
impacts the algorithm’s performance. Thus, employing parameter optimization becomes
essential to identify the optimal parameter combination and enhance algorithm perfor-
mance [21]. A genetic algorithm is used for parameter optimization, leveraging the inheri-
tance of superior parameters from the previous generation to expedite the optimization
process. While there is a possibility of falling into local optima and missing the global
optimum solution, an examination of the kernel function reveals a small parameter range,
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minimizing the risk of overlooking the global optimum solution. Recognition accuracy
under different parameter settings serves as the fitness function, with the optimal parameter
combination identified when either the highest recognition accuracy condition is met or
the number of genetic iterations reaches 200.
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4. Experimental Analysis
4.1. Datasets

To assess the recognition effectiveness of the proposed algorithm, experimental valida-
tion is conducted using a radar dataset. The dataset comprises pulse signals emitted by
eight analogue radars of three models, collected within a laboratory environment. Each
simulation radar captures 200 radar pulses, with each pulse signal consisting of 1200 sample
points. In evaluating the feature fusion algorithm’s performance, a random forest classifier
is chosen for classification and recognition. Training utilizes 80% of the collected samples,
while the remaining 20% are reserved for testing.

4.2. Kernel Function Analysis

Examining the influence of kernel function parameters, this subsection investigates
the parameter selection for the proposed mixed kernel. Key parameters include those
in the RBF kernel function σ, the degree parameter d in the poly kernel function, and
the weights ω in the mixed kernel function. The MKCCA approach employed in this
study involves critical parameter selection, as each parameter significantly affects the
algorithm’s performance. Given the difficulty in estimating these parameters, they often
require prior information and are manually determined within an appropriate range. In
practice, optimal parameters in experiments typically necessitate only a brief search within
a narrow range. The parameters of the kernel function in KCCA are discussed below. First,
feature vectors are input to the KCCA, which varies the parameters of the kernel function
and outputs dimensionally variable feature fusion vectors, which are used as inputs to the
Random Forest classifier, which outputs individual recognition accuracy. Experiments are
conducted for the range of parameter values one by one to analysis the change in individual
recognition accuracy for parameter values with different feature dimensions. Considering
the information redundancy associated with excessively high feature dimensions, the
maximum feature dimension is capped at 60.

The RBF kernel function, a focal point of recent research, represents the local kernel
function. Research indicates that the parameter σ of the RBF kernel exhibits strong inter-
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polation ability when taking smaller values. Conversely, larger values of σ weaken the
kernel’s interpolation ability while enhancing extrapolation ability. Hence, the range for σ
is concentrated between (0, 5). To explore the RBF kernel’s performance under different
parameters, the range of σ in this subsection is {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}, as illustrated in
the left of Figure 5.
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In this experiment, σ is selected from the specified range, with individual identification
accuracy serving as the criterion as the feature dimension increases. The figure reveals that
the RBF kernel function performs optimally when σ is set to 1. However, with σ set to 3.5,
the recognition accuracy remains consistently low with increasing feature dimensions. For
all other σ values within the specified range, recognition accuracy falls within the mid-
range. When σ is set to 4, recognition rates rapidly increase with small feature dimensions
but decrease as dimensions increase. Thus, determining the value of σ is particularly crucial
for optimizing the RBF kernel function’s performance.

Represented by the poly kernel function, research has demonstrated its commendable
extrapolation capability. Larger values of parameter d contribute to superior interpolation
capability but diminish extrapolation capability. Conversely, smaller values of d enhance
extrapolation capability but weaken interpolation capability. The parameter range for the
poly kernel is set to {1, 2, 3, 4, 5}, as illustrated in the right of Figure 5, showcasing the
recognition accuracy comparison for varying values of parameter d. At d = 1, as feature
dimensions range between (10, 30), recognition accuracy exhibits slower growth compared
to other parameter values. At d = 3, recognition accuracy remains stable when the feature
dimension reaches 12.

Simultaneously, the mixed kernel possesses the ability to interpolate and extrapolate,
ensuring better adaptation to the characteristics of multi-featured data. According to
Equation (13), the mixed kernel function requires determining the weight ω of the two. The
value of weight ω is set in the range of {0.05, 0.06, 0.07, 0.08, 0.09, 0.10}. Considering the
potential correlation between the three parameters, a genetic algorithm is employed for
parameter optimization. The algorithm performs optimally when the three parameters are
set to σ = 1, d = 1 and ω = 0.06, respectively.

To explore the influence of the weight ω on the algorithm’s recognition effective-
ness, comparative experiments with different parameter values are conducted. The left
of Figure 6 presents the recognition rate comparison for the mixed kernel parameter ω,
considering values in the set range. As feature dimensions increase up to 10, the proposed
algorithm exhibits a rapid increase in recognition accuracy under all parameters. Subse-
quently, recognition accuracy gradually declines as dimensions continue to grow, indicating
information redundancy and a subsequent decrease in individual recognition accuracy.
This validates the algorithm’s ability to extract effective feature information with a low fea-
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ture dimension. When ω is set to 0.06, recognition accuracy is highest within the parameter
set, with recognition accuracy under other parameters distributed between (85, 90).
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tions (right).

Comparing the detection accuracy of the RBF and poly kernel functions mentioned
earlier revealed that the mixed kernel model proposed in this paper outperforms them in
radar SEI, as illustrated in the right of Figure 6. The figure displays the parameter settings
of the three kernel functions with the highest recognition accuracy within their respective
parameter sets. Specifically, the parameter σ of the RBF is set to 1, the parameter d of the
poly kernel function is set to 1, and the weight ω of the mixed kernel is set to 0.06. The
accuracy comparison reveals that the RBF kernel function attains very high recognition
accuracy with smaller feature dimensions below 10. However, its accuracy diminishes
as dimensions increase. In contrast, the poly kernel function exhibits a gradual increase
in recognition rate within the feature dimensions of 10 to 20, and after reaching 20, the
accuracy rate elevates to a higher level.

By comparing the four graphs in Figures 5 and 6, it can be observed that the RBF kernel
function performs well in low dimensions (around 10) but exhibits poorer performance in
high dimensions. In contrast, the polynomial kernel function demonstrates highly stable
performance in high dimensions. The mixed kernel function addresses the limitations of
the former, showing relatively stable performance in dimensions below 40. In summary,
the RBF kernel function demonstrates superior nonlinear expansion capability for a smaller
number of data points, implying robust interpolation ability but weaker extrapolation
capability with more data points. On the other hand, the poly kernel function excels in
extrapolation ability for a greater number of data points, showing a slower increase in
recognition rate initially. Combining the strengths of both, the mixed kernel function
achieves higher recognition accuracy than the other two kernel functions when the feature
dimension is less than 40. However, its accuracy significantly decreases beyond 40. For the
method proposed in this paper, it attains superior recognition performance when the feature
dimension is below 40, showcasing commendable interpolation and extrapolation abilities.

The fitting speed of different kernel functions varies, providing an additional dimen-
sion for assessing their performance. Table 2 presents the time comparison of the three
kernel functions, showcasing their fitting speeds. This data reflects the average fitting
time across various parameters in preceding trials, offering an accurate depiction of the
kernel functions’ performance. Among them, the poly kernel function exhibits the fastest
fitting speed under the same dataset. The hybrid kernel model proposed in this paper
demonstrates a slightly shorter time and faster fitting speed compared to the commonly
used RBF kernel function.
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Table 2. KCCA’s time using different kernel function.

Kernel Function Mixed Kernel RBF Kernel Poly Kernel

Time (s) 4.1131 4.9133 3.8902

4.3. Multi-Domain Feature Fusion Analysis

Building upon the literature on fingerprint feature extraction, this study derives repre-
sentative fingerprint features from various domains for fusion. Specifically, four fingerprint
features are extracted: the envelope rising edge feature (E), the spectrum feature (F), the
short-time Fourier transform (S), and the near-zero slice of the ambiguity function (A).
This notation allows for clear representation: E denotes time domain features, F denotes
frequency domain features, S denotes time-frequency domain features, and A denotes the
ambiguity function (AF). The definitions of the four fingerprint features are given below
and are shown in Figure 7.
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The signal envelope A(t) is defined as:

A(t) =
√

s2 I(t) + s2
Q(t) = |s(t)| (19)

where sI(t) and sQ(t) are orthogonal signals and the rising edge of the envelope is the front
part of the envelope.

The signal spectrum U( f ) is defined as:

U( f ) =
∫ +∞

−∞
u(t)e−jωtdt (20)

where u(t) is the radar signal.
The short-time Fourier transform is defined as:

STFT =
∫ +∞

−∞
u(τ)g∗(τ − t)e−jωtdτ (21)
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where a is the window function and * is the complex conjunction.
The near-zero slice of the ambiguity function Au(τ, ξ) is defined as [30,31]:

Au(τ, ξ) =
∫ +∞

−∞
U( f )U∗( f − ξ)ej2π f τd f (22)

where ξ denotes the frequency shift, usually taken as 1 for values near zero. U( f ) denotes
the signal spectrum. U∗( f ± ξ) denotes the conjugate frequency shift of the signal spectrum.

The fusion process of MKCCA is depicted in Figure 7, illustrating the dimensions of the
four fingerprint features extracted. MKCCA takes two feature vectors as input, producing
the first 50-dimensional vectors with the highest correlation. These vectors are then fused
column-wise, resulting in a 100-dimensional fusion vector. This procedure is repeated for
the remaining two features, and the two MKCCA outputs are fused. The optimal feature
dimension is determined through a systematic increase in feature dimensions. It is then
passed through a random forest classifier.

In the multi-feature fusion experiment, the number of fused features is incrementally
increased—two, three, and four features are fused to assess the impact on recognition
accuracy. The recognition accuracy, averaged across preserving feature dimensions 1 to
100, is displayed using a histogram.

The average recognition accuracy of a single feature across all dimensions of the
feature set is presented in the left of Figure 8. The recognition rate ranges from 63 to 80,
indicating insufficient effectiveness for recognizing individual radar radiation sources.
Recognizing the complementarity between features from different domains, the fusion of
various features is explored in the subsequent analyses.
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The right of Figure 8 illustrates that recognition accuracies of dual feature fusion fall
within the interval (80, 89). The fusion of time-frequency features with frequency features
performs best, followed by the fusion of ambiguity functions with frequency features.
Although the recognition effect improves compared to a single feature, the distribution
interval remains large, and the accuracy falls short of expectations.

As illustrated in the left of Figure 9, the recognition accuracy of three-feature fusion
lies within the interval (87, 90), displaying reduced distribution and improved stability
compared to single- and dual-feature fusion methods. The recognition result of four-
feature fusion reaches 94%. Complementary use of different feature domains significantly
enhances individual recognition of radar radiation sources, providing higher stability to
accommodate sample diversity.
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Figure 9. Recognition effect of multiple features (left) and influence of feature dimensions on
recognition performance (right).

In the KCCA fusion algorithm, features with the largest correlation coefficient must be
combined as fusion features. The right of Figure 9 illustrates that the improved recognition
impact after fusion is proportional to the feature dimension. A turning point is observed
at a feature dimension of 10, where the recognition impact is significantly enhanced for
dimensions less than 10, while the recognition rate remains constant for dimensions larger
than 10.

4.4. Performance Analysis

This section delves into the performance of various feature fusion algorithms, com-
paring the recognition accuracy of the proposed method with existing fusion algorithms.
Furthermore, it explores the influence of different feature dimensions on accuracy. Figure 10
presents a performance comparison of the fusion algorithm.
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In this experiment, the dimension range for all fusion algorithms is set from 0 to 60.
Notably, the recognition accuracy of each fusion algorithm gradually increases with the
growing dimension. The study underscores that the method proposed in this article out-
performs other fusion algorithms, achieving the highest recognition accuracy of 95% while
utilizing a smaller feature dimension of 10. The standard CCA algorithm exhibits infe-
rior recognition accuracy compared to several other fusion algorithms at lower feature
dimensions. Recognition outcomes become comparable to other algorithms only when
the feature dimension exceeds 40, achieving a rate of approximately 87%. KCCA with the
RBF kernel attains the highest recognition accuracy of 89.37% at a feature dimension of
10, but the accuracy drops as the feature dimension increases to 50. KCCA with a poly
kernel achieves a peak recognition accuracy of 87.34% when increasing feature dimension-
ality to 20, demonstrating stable performance with dimension increase. In contrast, the
KPCA algorithm shows a gradual ascent in recognition accuracy with a feature dimension
increased to 10, albeit at a sluggish rate. Therefore, the algorithm introduced in this study
exhibits a noticeable enhancement in recognition accuracy while significantly reducing
feature redundancy compared to other fusion algorithms.

Table 3 presents the time spent by all fusion algorithms in the experiment, from
loading the original dataset to obtaining the recognized results. The average time spent in
the experiment is calculated for the final result. Notably, the poly CCA fusion algorithm,
utilizing a poly kernel function, demonstrates the shortest algorithm time. The method
proposed in this paper ranks as the second shortest. It is noteworthy that the CCA methods
employed all had shorter durations compared to KPCA in terms of time. In terms of
algorithm time, both the CCA method and the KCCA method extended with a kernel
function outperform PCA in terms of timeliness.

Table 3. Time spent on the above algorithm.

Method CCA Poly CCA RBF CCA KPCA MKCCA

Time(s) 28.543 15.116 22.797 40.237 19.729

5. Summary

This paper introduces a novel approach for SEI of radar radiation sources based on
MMKCCA. The acquired radar signals undergo analysis to extract distinctive features
from the time domain, frequency domain, time-frequency domain, and ambiguity-function
domain. Subsequently, these features are amalgamated utilizing the MKCCA data fusion
method, yielding a comprehensive feature set for identification purposes. The experimen-
tation affirms the complementary nature of various feature domains, underscoring the
efficacy of this fusion method in harnessing the complementarity of multiple features. The
kernel function plays a pivotal role in transforming features into a high-dimensional space,
facilitating the identification of nonlinear relationships among features within that space.
Employing a mixed kernel—comprising a weighted combination of a local kernel and a
global kernel—enhances the extraction of effective information from diverse features. This
approach not only fosters an improved understanding of the nonlinear correlations among
features but also significantly reduces the feature dimension. The experimental results
demonstrate that the proposed feature fusion method yields a commendable recognition
effect even with lower feature dimensions. It was not able to experiment with all finger-
print features in this paper, thus future research will focus on the performance of other
fingerprint aspects.
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