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Abstract: Chinese paintings have great cultural and artistic significance and are known for their
delicate lines and rich textures. Unfortunately, many ancient paintings have been damaged due to
historical and natural factors. The deep learning methods that are successful in restoring natural
images cannot be applied to the inpainting of ancient paintings. Thus, we propose a model named
Edge-MSGAN for inpainting Chinese ancient paintings based on edge guidance and multi-scale
residual blocks. The Edge-MSGAN utilizes edge images to direct the completion network in order to
generate entire ancient paintings. It then applies the multi-branch color correction network to adjust
the colors. Furthermore, the model uses multi-scale channel attention residual blocks to learn the
semantic features of ancient paintings at various levels. At the same time, by using polarized self-
attention, the model can improve its concentration on significant structures, edges, and details, which
leads to paintings that possess clear lines and intricate details. Finally, we have created a dataset
for ancient paintings inpainting, and have conducted experiments in order to evaluate the model’s
performance. After comparing the proposed model with state-of-the-art models from qualitative and
quantitative aspects, it was found that our model is better at inpainting the texture, edge, and color of
ancient paintings. Therefore, our model achieved maximum PSNR and SSIM values of 34.7127 and
0.9280 respectively, and minimum MSE and LPIPS values of 0.0006 and 0.0495, respectively.

Keywords: ancient paintings inpainting; edge image; polarized self-attention mechanism; multi-scale
residual blocks

1. Introduction

Chinese ancient paintings have high cultural and artistic value. However, with the
passage of time and interference from external factors, many ancient paintings have suffered
damage and color fading. It is crucial to protect the damaged paintings and restore their
original state. Traditional manual inpainting methods are limited by manpower and
technology, which makes it difficult to cope with serious damage. Additionally, physical
and chemical methods may cause further damage to the ancient paintings [1,2]. In recent
years, digital inpainting technology has emerged as a viable solution. By using computer
technology and image processing algorithms, digital inpainting can accurately restore
ancient paintings, reduce inpainting time, and minimize the risk of further damage [3].

In recent years, deep convolutional neural networks have made significant progress
in natural image inpainting [4-11]. Pathak et al. [4] first used a generative adversarial
network (GAN) with a contextual encoder to restore images from learned image features.
Then, Liu et al. [5] and Yu et al. [6] proposed partial convolution and gated convolution
respectively. These convolutions use pixel diffusion to achieve progressive inpainting,
which solves the problem of the limited receptive field range of ordinary convolution.
Yu et al. [7] designed a multi-stage image inpainting network to overcome the limitations of
single-stage networks in terms of inpainting capability. In addition, the inpainting process
of the network is divided into two stages: coarse inpainting and fine inpainting, which
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simplifies the training process at each stage and thus improves the inpainting efficiency.
Based on this idea, a series of multi-stage inpainting networks were proposed in [8-10] to
restore images progressively from small to large scales using a pyramid structure. These
networks are composed of multiple sets of GAN at different scales. Li et al. [11] designed
a recurrent feature reasoning network, where a feature reasoning module can iteratively
derive the mask boundary feature map and use it as a clue for further inference. In
addition, the author also designed knowledge consistency attention to adaptively fuse
attention scores and gradually refine the feature map. Although current deep learning-
based methods can restore natural images well, there are still challenges in terms of
inpainting ancient paintings with varied features and dense textures. These challenges
include insufficient feature extraction and loss of detail. Cao et al. [12] proposed a method
that uses a fully convolutional network (FCN) to extract deep image features. They also
used global and local discriminators to assess the authenticity of the restored mural images.
Wan [13] designed a two-stage model for restoring cultural relic images. In the first stage, a
coarse restoration model is used, which constructs an encoder and decoder using gated
convolution. A fine restoration model is applied in the second stage, which uses a semantic
attention mechanism to guide the restoration process based on semantic information.
Zhang et al. [14] proposed a painting inpainting method by embedding multiple attention
dilation convolutions to obtain dense multi-scale context information. Zhang [15] designed
an ancient painting model that uses an edge inpainting network to guide the generation of
missing texture areas. Although the above methods can restore information from ancient
paintings, blurring and lack of semantics may arise when filling in large, damaged areas.
Moreover, these art and painting inpainting methods struggle with precise color control,
which can result in color bias in the output. Ultimately, the goal is to restore ancient
paintings to their original state as accurately as possible. However, relying solely on
damaged paintings as a reference for the network may result in restored paintings that look
visually acceptable but do not truly reflect the original appearance.

To address these issues, this paper proposes a Chinese ancient painting inpainting
network based on edge guidance and multi-scale residual blocks (Edge-MSGAN). The
following are the specific details of the network:

e An ancient painting completion network is designed to deal with ancient paintings’
complex structure and rich texture. The network uses the edge image of the original
painting as a reference to ensure that the inpainting content matches the original edges.

e  Multi-scale residual block (MSRB) is designed to extract detailed features by expanding
the perceptual range, which provides a more effective method by which to preserve
the rich textures and features of ancient paintings.

e To effectively adjust the color of the inpainting area and reduce color deviation, a
multi-branch color correction network is constructed, which makes full use of feature
information at different levels, resulting in rich colors similar to those of original
ancient paintings.

The other parts of this paper are organized as follows: Section 2 introduces related
works in areas of the traditional Chinese paintings inpainting methods and the deep
learning-based Chinese paintings inpainting methods. Next, Section 3 gives a detailed
introduction to the proposed model. Then, Section 4 presents the inpainting results of
Chinese paintings and Dunhuang murals. Finally, Section 5 concludes our work.

2. Related Work

Digital image inpainting relies on the correlation between the known and damaged
areas, using known pixels to restore missing pixels. It can be divided into two categories:
traditional methods and deep learning-based methods.

2.1. Traditional Chinese Paintings Inpainting Methods

Traditional methods can be further divided into diffusion-based methods and exemplar-
based methods. Diffusion-based methods utilize partial differential equations (PDE) to
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diffuse pixels into the missing areas gradually. Zhao [16] proposed a method for restoring
the color of faded areas using PDE. Xu et al. [17] proposed a bertalmio sapiro caselles
bellester (BSCB) model based on the autologous theory segmentation system, in order to
address the problems of blurring and isoline crossing. However, these diffusion-based
methods can suffer from error propagation, causing over-smoothing and making them
unsuitable for larger areas. Exemplar-based methods [18] match the similarity between the
missing area and the known area and then copy the most similar block to the corresponding
missing part. Zhou et al. [19] proposed an improved Criminisi algorithm by inserting a
dispersion term for restoring the ancient painting named Yan Yun Shuang Lu. Ma et al. [20]
used an interactive inpainting method based on the decomposition of drawing curves.
This method parses a painting into contents and canvases, and then merges the inpainting
results of contents and canvases. Wang et al. [21] proposed a sparse model that selects
candidate patches based on texture similarity and structural continuity, while using the
corresponding line drawing of the mural image to add line structures in the missing ar-
eas. Bhele et al. [22] proposed a texture-structure conserving patch matching algorithm
(TSCPMA). The algorithm improves the capabilities of the Criminisi algorithm in repairing
large, damaged areas and small gaps by redefining the minimum similarity distance crite-
rion to select the best-matching patches. Although the above, exemplar-based, methods
solve the over-smoothing problem of diffusion-based methods, they have low retrieval
speed and matching efficiency. In addition to the above two methods, Yan [23] used a
multispectral method for ancient painting inpainting, which helped avoid the metameric
phenomenon. Zhou et al. [24] used classified linear regression of hyperspectral images
to remove stains. Hou et al. [25] proposed a virtual inpainting method, the method uses
the maximum noise fraction transformation on the hyperspectral imaging to reduce the
impact of stains on the ancient paintings. Zhang et al. [26] improved the image processing
algorithms in OpenCV, making them more suitable for the processing of ancient paintings.

2.2. Deep Learning-Based Chinese Paintings Inpainting Methods

Deep learning-based methods, such as convolutional neural networks (CNN) and
generative adversarial networks (GAN), have greatly progressed in recent years. These
models can learn the features and semantic information of images, enabling them to
produce natural and realistic results even in complex scenes. Ancient painting inpainting
is a difficult task, but several approaches have been proposed by which to address this
challenge. Zhao et al. [27] designed a multi-channel encoder to learn the semantic features at
different scales, and then used the learned macro-, meso-, and micro-level semantic features
for ancient painting inpainting. Xue [28] decomposed the ancient painting inpainting task
into content and line, allowing the inpainting network to focus on the details of ancient
paintings. Yang [29] proposed an ancient paintings inpainting network based on GAN, by
introducing gated convolution and attention mechanisms, and mixing the coding of image
texture and structure. Zhao et al. [30] proposed a progressive multi-level feature inpainting
model, which accomplished the inpainting from high-level features to low-level semantic
features. Liu et al. [31] used a global attention mechanism to carry out coarse-grained
inpainting on the structure and color of Chinese ancient paintings. They also used local
attention mechanisms and residual blocks for fine-grained inpainting, focusing on the
small-scale structures and intricate textures of Chinese ancient paintings. Zhou et al. [32]
used color information extracted from deep features to improve the inpainting quality
of color in missing regions. Additionally, they proposed a multi-step feature refinement
model to effectively transfer feature information from undamaged areas to damaged
areas. Lv et al. [33] believe that introducing prior information can improve the quality of
the inpainting results. To achieve this, they designed a GAN network model with two
generators. The model first uses an edge inpainting network to repair the contour edges
and then uses the edges to guide the content completion network to complete the image
inpainting. Peng et al. [34] proposed a model that uses dual-domain partial convolution
to process valid pixels and combines frequency conversion to promote effective fusion of
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multi-scale features. Deng et al. [35] believe that most existing mural inpainting models
neglect the importance of structural guidance, making it impossible to fill in complex and
diverse damaged content with structures. Thus, the authors proposed a structure-guided
model based on GAN for the inpainting of ancient murals.

3. Method

An inpainting model for Chinese ancient paintings is proposed based on edge-guided
and multi-scale residual blocks, namely Edge-MSGAN, for ancient paintings’ rich line
structure characteristics.

3.1. Overall Structure of Edge-MSGAN

The Edge-MSGAN mainly consists of three parts, as shown in Figure 1, which are
the ancient painting completion network, the multi-branch color correction network, and
the Markov discriminator. The model first uses the Canny edge detection algorithm [36]
to detect the outline of the original ancient painting, and then uses the obtained edge
image to guide the ancient painting completion network to reconstruct the missing parts.
Finally, the inpainting result is input into a multi-branch color correction network for local
color adjustment.

Ancient painting completion network Conv

Inpainting result

[ ¢ Jm ,

MSRB

Polarized self-attention

Residual block

Feature fusion

Multi-branch color correction network Markov discriminator

L gt

Figure 1. Overall structure diagram of Edge-MSGAN.

The U-Net [37] with skip connections [38] is employed in the ancient painting com-
pletion network and multi-branch color correction network to achieve multi-scale feature
fusion. The ancient painting completion network also uses a multi-scale residual block
(MSRB) between the encoder and decoder. MSRB combines dilated convolution [39] and
channel attention mechanisms in order to expand the perceptual field and extract vital
features. Additionally, the polarized self-attention (PSA) mechanism can focus on key areas
of ancient paintings, which preserves the essential details during encoding. As a result, the
network generates high-quality ancient paintings with consistent content and complete
semantics during decoding.



Electronics 2024, 13,1212

50f 20

Input feature

3.2. Polarized Self-Attention

The attention mechanism is a crucial technique that finds extensive use in deep
learning-based methods. It allocates distinct weights to various features, allowing the
model to automatically identify and concentrate on the most relevant information. This
results in an improved ability of the model to process essential information. There are
three main types of attention mechanisms: the spatial attention mechanism [40], channel
attention mechanism [41,42], and channel-spatial hybrid attention mechanism [43-45]. The
spatial attention mechanism evaluates the importance of spatial location information. It en-
hances useful features and reduces useless ones. The channel attention mechanism models
the relationship between channels. It ensures that important channels receive more atten-
tion. The channel-spatial hybrid attention mechanism combines the spatial and channel
attention mechanisms. It can be used in parallel or series to capture critical features.

For large, damaged ancient paintings inpainting, the model must be able to capture
the relationship between distant pixels. To address this issue, the Edge-MSGAN model
incorporates the polarized self-attention (PSA) mechanism [46]. PSA operates on two
branches, separately processing self-attention in the channel and spatial dimensions, and
finally fusing the results. This approach enables the model to better capture the feature
correlation of distant pixels, making it highly effective when dealing with large-scale
damage. The structure of PSA is shown in Figure 2.

Channel

— Reshape — — —

B

Output feature

— - =

® Matrix Multiplication @ Element-wise Multiplication @ Element-wise Addition

Conv

Softmax Layer Normalization Sigmoid / Global Pooling

- ———— -

Figure 2. Structure of the polarized self-attention mechanism.

3.3. Multi-Scale Residual Blocks

Capturing the color and detailed texture information of ancient paintings is crucial
for inpainting models. We propose a multi-scale residual block (MSRB) to achieve this.
The MSRB consists of a 3 x 3 convolutional branch and a 5 x 5 convolutional branch, as
shown in Figure 3. This enables the model to integrate features of different scales, capturing
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multi-scale information in ancient paintings. In addition, the ReLU activation function
is introduced after each convolution to enhance the non-linear capability of the residual
block. MSRB can reuse low-level features from the input and retain the original style of the
painting through residual connections. This also helps to alleviate problems of gradient
disappearance and explosion, leading to improved stability and convergence of the model.
The MSRB is formulated by (1):

M, = FCA{W{xl x [Q1, Q2] + bl} + M, _1 (1)
where Fc 4 is the attention mechanism operation, fol and b are the weight tensor and

offset tensor of the I-th layer, [Q1, Q2] is the feature fusion of the two convolutional layers,
and M,,_1 is the output of the previous residual block.

Input
/ll\ )
3x3 5%5
Conv Conv
ReLU ReLU
Concat Concat
3x3 5x5
Conv Conv
ReLU ReLU
Concat
1x1
Conv
SENet
& »

¢

Output

Figure 3. Multi-scale channel attention residual block.

The MSRB introduces the attention mechanism network (SENet) [47] after feature
fusion. SENet consists of two parts, squeeze and excitation. The core idea is to adaptively
weight the channels of the feature map after convolution, obtaining the weights of each
channel, so that the network pays more attention to the most useful channel features.

In the squeeze operation, a feature map C x H x W is compressed into C x 1 x 1 to
represent global information. The squeeze is formulated by (2):

1 XE
ZC:FSq(uC): WXH;ZluC(lI]) (2)
1=1]=

where z € RC is the channel descriptor, z is the c-th element of z, F; is the squeeze
operation, and u.(i, j) is the feature map at (i, j).
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Excitation first performs full connection on the result of squeeze to obtain a vector of
the C/r dimension, and, after ReLU activation, the vector of the C/r dimension is changed
back to a vector of the C dimension. The weight is finally obtained by sigmoid activation.
The excitation is formulated by (3):

S = Sigmoid(W, - ReLU(W;z)) ©)]

where S is a statistic, W, € RC* ¥ is the up-sampling weight for dimension increment,
Wi € R7*C is the down-sampling weight for dimension decrement, the reduction ratio
r is a hyperparameter, z € RC is the result obtained by the squeeze, and Wz is a fully
connected operation.

3.4. Multi-Branch Color Correction Network

The multi-branch color correction network is an improved version of the ancient
painting completion network. It owns two additional branches, as shown in Figure 4.
These branches use three layers of 5 x 5 and 7 x 7 kernel sizes to gather a wider range
of contextual information. With the multi-branch color correction network, it is possible
to extract features from various levels and scales, and then merge them to more precisely
adjust the color of the inpainting area.

o 5x5 branch .
'/ // \I
I V. , |
Y | Y aNi e
: 7x7 branch :
'\ y ,‘
N Conv Residual block Polarized self-attention ,/

Figure 4. Structure diagram of multi-branch color correction network.

3.5. Markov Discriminator

For inpainting models of ancient paintings, an ordinary discriminator that outputs a
vector for the whole image cannot capture all of the intricate details. To address this issue,
the Markov discriminator [48] was introduced. It divides the input image into multiple
blocks of 70 x 70 and performs binary classification discrimination on each of these blocks.
This enables the discriminator to evaluate the localization and details more accurately than
an ordinary discriminator. As a result, the feedback information provided by the Markov
discriminator is more informative for the ancient painting completion and multi-branch
color correction networks. This improves the generation of more realistic and intricate
ancient paintings. The Markov discriminator consists of five convolutional layers, as shown
in Table 1.
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Table 1. Parameters of convolutional layers in the Markovian discriminator.

Layer Kernel Stride Output (H x W) Output Channels Activation Function
Conv-1 4 x4 2 128 x 128 64 Leaky-ReLU

Conv-2 4 x4 2 64 x 64 128 Leaky-ReLU

Conv-3 4 x4 2 32 x 32 256 Leaky-ReLU

Conv-4 4 x4 1 31 x 31 512 Leaky-ReLU

Conv-5 4 x4 1 30 x 30 1 Sigmoid

3.6. Loss Function

Given the unique color, texture and stylistic characteristics of ancient paintings, this
paper combines the following loss functions to constitute the overall loss function of the
model. The total loss function is formulated by (4):

Lotar = LPerceptuul + L+ LHistogmm + Lty 4)

where Lpgceptuar 18 the perceptual loss [49], which aims to minimize the feature space
distance between the inpainting result and the original ancient painting, the L; loss [50] is
used to measure the absolute distance between the inpainting result and the original ancient
painting, Lyistogram is the histogram loss [51], which calculates the loss by comparing the
color histogram of the inpainting result and the original ancient painting, and Lty is the
TV loss [52], which is used to measure the difference between adjacent pixels and thus
constrain pixel changes.

3.6.1. Perceptual Loss

We use a pre-trained VGG19 network to extract the features of the ancient paintings. By
comparing the differences between the inpainting result and the original ancient painting
in the feature space, the style and structural features of the ancient painting are preserved.
The perceptual loss is formulated by (5):

LPerceptuul = 2 H(P] (y) - %(?) Hg )

j
where vy is the original ancient painting, ¥ is the inpainting result, ¢ is the feature extraction
layer of VGG19, and ¢; is the output features of the j-th layer.

3.6.2. L1 Loss

L1 loss, also known as mean absolute error (MAE), aims to calculate the average of
the absolute errors between the inpainting results and the original ancient paintings. This
helps to preserve the details, textures, and overall characteristics of the ancient painting.
The L, loss is formulated by (6):

3 1f(x) — vil
L== 6)

where f(x;) and y; are the inpainting results and the corresponding ancient paintings of
the i-th respectively, and # is the number of images.
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Original ancient paintings

3.6.3. Histogram Loss
Histogram loss is used to measure the difference in color distribution. The proposed

model adopts the histogram loss to adjust the color distribution of the inpainting results.
The histogram loss is formulated by (7):

L
LHistogmm = 2 wl”Oi - R(Oi) ||12-“ (7)
=1

where wj is the weight of the I-th layer, O; is the activation function layer, R is histogram
matching, R(O;) is the activation function layer after histogram matching, and || - || is the
Frobenius norm.

3.6.4. Total Variation Loss

Total variation loss measures the smoothness by calculating the pixel gradient value.
Introducing the TV loss can avoid excessive noise and flaws. The TV loss is formulated

by (8):

2 2
Ly =) \/(xi,j—l —x;) "+ (xiv1,j — xi) )
ij
where i and j are the pixel coordinates, and x; ; is a pixel point in the input image.

4. Experiments

This section will introduce the dataset, training process, comparison experiments, and
ablation study.

4.1. Construction of Dataset

A dataset containing 12,509 images of Chinese ancient paintings has been established
for the purpose of the inpainting of ancient paintings. These images are obtained by
cropping four famous paintings from different times and styles. One of these paintings,
Along the River During the Qingming Festival, is a copy of an original work, painted by Zhang
Zeduan during the Song Dynasty, which was painted by the Ming Dynasty painter Qiu
Ying. The construction process of the dataset is detailed in Figure 5. Initially, original
ancient paintings were cropped with a size of 256 x 256 using Photoshop. Blank samples
were excluded to ensure the diversity and quality of the dataset. Subsequently, the dataset
was divided into a training set, validation set, and test set, with quantities of 10,500, 1373,
and 624 respectively, as shown in Table 2. To accommodate different damage rates, a mask
dataset publicly available in [5] was adopted, which provides mask images with damage
rates ranging from 1% to 60%.

Damaged samples

Samples

Blank samples

Figure 5. Dataset construction process.
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Table 2. Detailed information about the ancient painting inpainting dataset.
Chinese Ancient . .. . o R
A Dynasty Painter Original Size Training Set Validation Set Test Set Total
Paintings
Along the River During the Ming Qiu Ying 159,010 x 4339 978 128 9% 1202
Qingming Festival
Spring Morning in the Min Qiu Yin 102,680 x 5299 641 157 9% 894
Han Palace & & /
Duwelling in the Yuan Huang Gongwang 196,301 x 5197 4722 464 202 5388
Fuchun Mountains & gwang !
A Thousand Li of Rivers Song Wang Ximeng 152,089 x 6083 4159 624 230 5025
and Mountains

4.2. Training Process

The Edge-MSGAN is trained by using the ancient painting inpainting dataset that we
constructed, with a batch size of 8. The learning rate of the discriminator and generator
are set to 1.0 x 10~% and 1.0 x 107>, respectively. The weights of the loss function for
the L; loss, perceptual loss, histogram loss, TV loss, and adversarial loss are 1, 0.1, 0.0005,
0.01, and 0.1, respectively. The Adam optimizer is used to optimize the parameters of the
generator and discriminator.

The curve of the loss function value during the Edge-MSGAN training process is
displayed in Figure 6. At the beginning, when the number of iterations is small, the
generator produces poor quality ancient paintings that are easily distinguishable by the
discriminator. This leads to a rapid decline in generator loss (G_loss) and large fluctuations
in discriminator loss (D_loss). However, as the number of iterations increases, the generator
gradually improves and produces better quality ancient paintings, resulting in a steady
decline in G_loss and eventual stabilization. The fluctuation amplitude of D_loss also
decreases with the training of the generator, making the difference between the generated
ancient paintings and original ancient paintings gradually smaller. A plot of G_loss over
iteration is shown in Figure 6a. Initially, the value of G_loss is approximately 0.73. As the
iterations progress to 50,000, it is greatly decreased to almost 0.2. At 100,000 iterations,
G_loss further decreases to around 0.1. Similarly, the amplitude of D_loss in Figure 6b
decreases with each iteration and reaches around 0.615 by 100,000 iterations. Based on
the above analysis, at the end of training, both G_loss and D_loss stabilize, with values
of around 0.1 and 0.615, respectively, indicating that the generator can generate high-
quality ancient paintings and that the discriminator can correctly distinguish between
original ancient paintings and generated paintings. This proves that the proposed Edge-
MSGAN model can achieve a stable state during training and complete the task of ancient
painting inpainting.

08 T T T T 0.80

0.60 -

0.33 i

0 JD.I[)DD 40.600 60.600 SD.I[)DD lD[)TD[)D 0 20,000 40,000 60,000 80,000 100,000

Iteration Iteration
(a) (b)
Figure 6. Plot of the loss function value for Edge-MSGAN. (a) Plot of G_loss and (b) plot of D_loss.
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4.3. Experimental Results

The inpainting results based on the proposed dataset are shown in Figure 7. The
first row depicts the inpainting results of A Thousand Li of Rivers and Mountains, while the
second and third rows showcase the inpainting results of Dwelling in the Fuchun Mountains.
The fourth and fifth rows demonstrate the inpainting results of Spring Morning in the Han
Palace. Edge-MSGAN is able to successfully restore the elements of mountains, rivers, trees,
and buildings in landscape paintings, as shown in the first three rows of Figure 7. The
mountains and rivers retain their original lines and flow, while the trees regain their natural
forms and branches. In figure paintings, the last two rows of Figure 7 show the recovery
of facial features, clothing textures, and gestures. The details of the face are preserved,
and the contours of the eyes, nose, and mouth are clear. In summary, our proposed model
owns significant inpainting effects, whether it is applied to landscape paintings, such as
A Thousand Li of Rivers and Mountains and Dwelling in the Fuchun Mountains, or figure
paintings, such as Spring Morning in the Han Palace.
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Figure 7. Inpainting results of the proposed model. (a) Original ancient paintings, (b) edge of ancient

paintings, (c) damaged ancient paintings, and (d) inpainting results.
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4.4. Comparison Experiments

To verify the effectiveness of the proposed method, this paper selects four typical mod-
els in recent years for comparison on our dataset. These models are as follows. (1) PI[53]:
This model introduces two parallel training paths, namely the reconstruction path and
generation path based on a variational autoencoder (VAE), to achieve diverse inpainting
results. (2) LG [54]: This model uses local networks with different receptive fields and
global networks to perform image inpainting. (3) EC [55]: This model adopts a two-stage
adversarial model, where the edge generator is responsible for inpainting the edges of
missing areas, and the image completion network uses the edge as prior information to
fill in the missing image areas. (4) RFR [11]: The recurrent feature reasoning module can
utilize the correlation between pixels, strengthening the constraints of deeper pixels and
thus improving the effect of inpainting large broken areas.

4.4.1. Qualitative Comparison

The inpainting results using the comparison models and the proposed model are
presented in Figure 8. The first two images in Figure 8c display successful inpainting of
most of the content and texture. However, the last three images show poor results, with
large areas of missing content. Figure 8d shows improved texture structures and details
over Figure 8c. However, in the third ancient painting of Figure 8d, there is noise and
structural distortion in the inpainting areas. Figure 8e shows reduced texture distortion
and noise compared with Figure 8d, but color deviation and missing facial contours remain.
Figure 8f improves the structural distortion compared with Figure 8e. However, some
minor issues still exist, such as color deviation, incomplete facial contours, and irregular
blocky textures.

®  (© @ ©  ®» @

Figure 8. Comparison of inpainting results using different models (White boxes are used for compari-
son of details). (a) Original ancient paintings, (b) damaged ancient paintings, (c) PI, (d) RFR, (e) EC,
(f) LG, and (g) Edge-MSGAN (ours).
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In contrast, the proposed Edge-MSGAN model restores texture structure that other
models cannot. The second ancient painting in Figure 8g solves the blurring problem that
appeared in the previous four models and restores clear details. The third painting shows
minimal loss of structure and deviation in color. In the fourth painting, the proposed model
performs the inpainting without any distortion in the structure. In the fifth painting, the
proposed model successfully restores the eyes, eyebrows, and other crucial areas. This
qualitative comparison clearly demonstrates that the proposed model’s inpainting effect
is outstanding.

4.4.2. Quantitative Comparison

In this experiment, we take mean square error (MSE), structure similarity index
measure (SSIM), peak signal-to-noise ratio (PSNR) and learned perceptual image patch
similarity (LPIPS) as evaluation metrics on our test set.

MSE measures the pixel difference, and the smaller its value, the better the inpainting
result. MSE is formulated by (9):

1
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where M and N are the length and width of the image, respectively, and I(i, j) and K(i, j)
are the pixels of the different images at the same position.

SSIM measures the similarity between two images. It is more consistent with human
visual perception, and the larger its value is, the more similar the images are. SSIM is
formulated by (10):

SSIM = I(x,y) - c(x,y) - s(x, ) (10)

where [(x,y), c(x,y), and s(x, y) are the brightness comparison, contrast comparison and
structure comparison of the image, respectively.

PSNR is obtained by calculating the mean square error (MSE) between the pixels at
the corresponding positions, with a larger value indicating a less distorted image. PSNR is
formulated by (11):
obits _ 1

MSE

where, bits represents the number of bits occupied by each pixel.

LPIPS evaluates similarity close to human perception. It is more consistent with human
perception than PSNR and SSIM. The lower the value, the more similar the inpainting
result is to the original ancient painting. LPIPS is formulated by (12):

PSNR = 10 log,, (11)

1 . . 2
LPIPS = d(x,x,) = ;th lw; © (y;qw - yéhw) H2 (12)
W

where x is the original ancient painting, x, is the inpainting result, and d is the distance
between x, and x. LPIPS first extracts the features of the [-th layer, activates the output of
each layer and normalizes it, denoted as %w, yAf)hw e RHXWixC and then calculates the 12
distance after multiplying ® the weights w; € R

The inpainting results in Figure 8 correspond to the quantitative metrics presented
in Table 3. Based on the analysis of the metrics used to evaluate the performance of the
different models, it is evident that the PI model has the lowest PSNR and SSIM values,
while the MSE and LPIPS values are the highest. The reason behind this is that the PI model
tends to cause a loss of information, which in turn leads to missing edges. After comparing
the PI model with the RFR model, it can be observed that the RFR model has shown an
improvement in both the PSNR and SSIM, while the MSE and LPIPS have decreased. The
introduction of a progressive mechanism on the feature map level during the inpainting
process in the RFR model is responsible for this improvement. However, the downside of
this model is that it produces some noise. Compared with the RFR model, the EC model
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shows improvement in PSNR and SSIM while that for LPIPS has decreased. This is because
the EC model introduces edge structures. However, it is restricted by ordinary residual
networks, which results in an incapability to achieve shared and reused feature information
and leading to the failure of filling local details. Compared with the other models, the
LG model produces better PSNR and SSIM, due to its use of a large receptive field coarse
network to repair the overall structure and some texture details, as well as a small receptive
field local refinement network to eliminate artifacts. However, the local refinement network
has a smaller receptive field, which means that it cannot capture global information when
the damaged area is large. This leads to a more severe patchiness effect, resulting in higher
LPIPS value.

Table 3. Comparison of evaluation metrics of different models on the test set.

Model PSNR 1 SSIM 1 MSE | LPIPS |
PI 31.9015 0.8870 0.0010 0.0790
RFR 33.4395 0.9115 0.0007 0.0710
EC 33.6492 0.9145 0.0007 0.0546
LG 33.7284 0.9198 0.0007 0.0562
Edge-MSGAN (Ours) 34.7127 0.9280 0.0006 0.0495

Compared with the comparison model, the proposed model in Figure 8g extends the
receptive field by utilizing the multi-scale residual block (MSRB), and also incorporates
edge guidance to provide additional constraints, which helps to reconstruct the edge
structure of the ancient paintings. Furthermore, the proposed model improves the accuracy
of inpainting content by introducing the PSA mechanism, which in turn helps the model
to learn the importance of different areas. To utilize features at different levels and scales,
multi-branch structures are introduced in the color correction stage. This enables the model
to capture more comprehensive feature information. The proposed model achieves the best
inpainting results by incorporating edge prior information, MSRB, PSA, and multi-branch
color correction networks. It has the highest values of PSNR and SSIM and the lowest
values of MSE and LPIPS. In conclusion, both qualitatively and quantitatively, the proposed
model outperforms the comparison models.

The PSNR and SSIM values of the proposed model and comparison models are
presented in Figure 9, for different mask rates ranging from 10% to 50%. As depicted
in Figure 9a, the PSNR of all inpainting models decrease with an increase in mask rate,
but the decline rate varies significantly. At lower mask rates, only the LG model has a
higher PSNR than the proposed model. However, as the mask rate increases, the proposed
model gradually outperforms other models, as its PSNR values are higher than those of the
comparison models.

PSNR in different mask rates SSIM in different mask rates

- Edge-MSGAN
-o- RFR

- EC

- Pl

- LG

- Edge-MSGAN
- RFR

- EC

Pl

LG

06 7 T T T T

30 40 50 10 20 30 40 50
Mask rate(%) Mask rate(%)

(a) (b)

Figure 9. Line charts of PSNR and SSIM in different mask rates. (a) PSNR in different mask rates and
(b) SSIM in different mask rates.



Electronics 2024, 13,1212

15 of 20

As shown in Figure 9b, the SSIM values decrease as the mask rate increases. Although
the proposed model is similar to the EC model and slightly inferior to the LG model at low
mask rates, its benefits become more evident as the mask rate increases. The SSIM values
of the proposed model are higher than other models, particularly when the mask rate is
high. This indicates that the proposed model performs better under high mask rates.

In conclusion, the proposed model outperforms other models in terms of PSNR and
SSIM values. It exhibits superior performance in ancient paintings inpainting, particularly
at higher mask rates.

4.5. Ablation Study

An ablation experiment was conducted on the ancient painting inpainting dataset
to verify the effect of TV loss, multi-scale residual blocks (MSRB), additional branch
structures added to the color correction network, and polarization self-attention (PSA) on
the inpainting ability of the proposed model Edge-MSGAN.

The results of the ablation experiments are presented in Table 4 for quantitative
comparison. TV loss plays a crucial role in optimizing the smoothness of the inpainting
process, thereby reducing noise and discontinuity in the inpainting area. The removal of
TV loss leads to an increase in noise and discontinuity, causing a decrease in the PSNR and
SSIM values, and an increase in MSE and LPIPS values.

Table 4. Ablation study.

Without TV Loss Without MSRB Without Branch Without PSA Edge-MSGAN (Ours)
PSNR 1 33.3866 33.1841 33.8397 329173 34.7127
SSIM 1 0.9135 0.9182 0.9182 0.9087 0.9280
MSE | 0.0007 0.0007 0.0007 0.0008 0.0006
LPIPS | 0.0580 0.0595 0.0553 0.0644 0.0495

The MSRB model uses a multi-scale feature fusion and channel attention mechanism
to handle relationships between different scales and channels. This results in improvements
in texture inpainting and handling detail loss. When MSRB is not used, there is severe
detail loss, which causes a decrease in consistency of texture and color. This is reflected in
lower PSNR and SSIM values and higher MSE and LPIPS values.

The multi-branch color correction network that was built can correct the color devia-
tion, while still preserving the edge details. If the additional branch is removed, various
issues, like color deviation and loss of detail, may occur in the inpainting results, which
leads to lower PSNR and SSIM, and higher MSE and LPIPS.

PSA allows the system to learn the correlation between the inpainting area and the
surrounding pixels. By dynamically adjusting the weights between them, PSA focuses
more on pixels that are similar to the inpainting area. This results in a more consistent blend
between the inpainting area and the surrounding area. In the absence of PSA, the fusion
between the inpainting area and the surrounding area may not be as effective, leading to
lower PSNR and SSIM, and higher MSE and LPIPS.

In conclusion, after removing the above modules, the PSNR and SSIM values of the
inpainting results decreased, while the MSE and LPIPS values increased, indicating their
importance in Edge-MSGAN.

The difference between the inpainting results before and after using the corresponding
modules is shown in Figure 10. MSRB can capture more details of ancient paintings
through multi-scale feature extraction, thereby improving the quality and clarity of the
inpainting results. By comparing Figure 10a with Figure 10b, it can be observed that, after
adding MSRB, the phenomena of detail loss and blurred inpainting areas are reduced. The
proposed model uses TV loss to adjust the difference between adjacent pixels, resulting
in the elimination of incoherent textures. A comparison between Figure 10c,d shows
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an improvement in the smoothness of the inpainting results after adding TV loss. By
comparing Figure 10ef, it can be observed that, when the color correction network does not
add branches, there is a problem of color deviation in the inpainting results, with missing
clothing and facial contour lines in the characters. After adding two branches, the color and
edge clarity in the inpainting results are improved. Comparing Figure 10g,h, it is evident
that PSA prevents issues such as over-smoothing and color inconsistency. Its introduction
reduces errors in filling.

(8) (h)

Figure 10. Results comparison before and after using the module (White boxes are used for compar-
ison of details). (a) With MSRB, (b) without MSRB, (c) with TV loss, (d) without TV loss, (e) with
additional branch, (f) without additional branch, (g) with PSA, and (h) without PSA.

Based on the experimental results shown in Figure 10 and Table 4, it can be concluded
that introducing TV loss, MSRB, branches to the multi-branch color correction network,
and polarization self-attention mechanism PSA addressed the issues of detail loss, texture
blurring, over-smoothing, and color deviation. These modules play an important role in
ancient painting inpainting.

4.6. Experiment on Murals

In order to evaluate the effectiveness of the Edge-MSGAN model in various scenarios,
we conducted inpainting experiments on mural dataset [50]. These experiments are then
compared with the contrast models discussed in Section 4.4. The mural dataset consists of a
total of 1714 murals, including 1564 training images, 50 testing images, and 100 validation
images. The murals are obtained from the Mogao Grottoes in Dunhuang, and include both
real murals and artist reproductions of Dunhuang murals. The dataset contains 525 real
murals that were obtained through scanning, along with 1189 reproduction murals that
were obtained through the scanning of art books.

The experimental results and corresponding quantitative metrics for each model are
presented in Figure 11 and Table 5. Due to the PI causing information loss, missing edges
and distorted contours, the PSNR and SSIM values are the lowest, while the MSE value is
high and the LPIPS value is the highest. Compared with the PI model, RFR’s results exhibit
improvement, as evidenced by the increased values of PSNR and SSIM, and decreased
LPIPS. However, the inpainting results of RFR still suffer from edge distortion, leading to a
slight increase in MSE. The results of the EC model do not show improvement compared
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with RFR. Additionally, the EC model has a severe color deviation problem, which causes a
decrease in PSNR and SSIM, and an increase in MSE and LPIPS. The LG model exhibits
improvement over the EC model. As a result, PSNR and SSIM increase while MSE decreases.
However, facial contour completeness is poorer, resulting in increased LPIPS. Compared
with the previous four models, the proposed Edge-MSGAN improves color deviation
and accurately restores the details, colors, and textures of murals, and all the indexes
are optimal.
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Figure 11. Inpainting results of different models using the mural dataset (White boxes are used for
comparison of details). (a) Original mural images, (b) damaged mural images, (c) PI, (d) RFR, (e) EC,
(f) LG, and (g) Edge-MSGAN (ours).

Table 5. Comparison of evaluation metrics of different models on the mural test set.

Model PSNR 1 SSIM 1 MSE | LPIPS |

PI 19.1456 0.7180 0.0131 0.2235

RFR 20.1886 0.7457 0.0152 0.1747

EC 19.9326 0.7341 0.0156 0.1828

LG 21.1360 0.7894 0.0086 0.1969
Edge-MSGAN (Ours) 23.8079 0.8794 0.0047 0.0979

Based on the inpainting results obtained from the constructed ancient painting inpaint-
ing dataset and existing mural dataset, the proposed model has demonstrated excellent
performance in the digital inpainting of historical and cultural heritage such as ancient
paintings. This indicates that the model has a wide range of applications in the inpainting
of ancient paintings and other cultural heritages.

5. Conclusions

A Chinese ancient painting inpainting model is proposed in this paper based on
edge guidance and multi-scale residual blocks. The model effectively restores the texture,
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contour, and color by utilizing the edge images of original ancient paintings, an ancient
painting completion network, a multi-branch color correction network, and a Markov
discriminator. During the ancient painting completion stage, multi-scale residual blocks
are used to better handle the details and texture information of different scales in ancient
paintings. Additionally, a polarized self-attention mechanism is employed to increase the
model’s focus on important structures, edges, and details of ancient paintings. Furthermore,
a multi-branch color correction network is designed to achieve feature transmission and
fusion at different levels and scales, which helps in restoring the color consistency of
ancient paintings. Through testing on the ancient painting inpainting dataset, the proposed
model demonstrates excellent performance in various types of ancient paintings inpainting,
whether it is landscape or figure painting. The inpainting results exhibit clear lines, rich
details, and harmonious colors. Moreover, inpainting experiments are conducted on mural
datasets to validate the model under different scenarios, proving its effectiveness and
applicability. This research aims to fully embody the integration of culture and technology
and provide technological support for the digital inpainting of cultural heritage such as
ancient paintings.
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