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Abstract: Higher-order statistics investigate the phase relationships between frequency components,
an aspect which cannot be treated using conventional spectral measures such as the power spectrum.
Among the widely used higher-order statistics, the bispectrum ranks prominently. By delving into
higher-order correlations, the bispectrum offers a means of extracting additional merits and insights
from frequency coupling, enhancing our understanding of complex signal interactions. This analytical
approach overcomes the limitations of traditional methods, providing a more comprehensive view
of the complex relationships within the frequency domain. In this paper, the extensive use of the
bispectrum in various scientific and technical areas is firstly emphasized by presenting very recent
applications. The main scope of this work is to investigate the consequences of various non-linearities
in the creation of phase couplings. Specifically, the quadratic, the cubic and the logarithmic non-
linearities are examined. In addition, simple recommendations are given on how the underlying
nonlinearity could be detected. The total approach is novel, considering the capability to distinguish
from the bispectral content if two non-linearities are simultaneously present.

Keywords: high order spectra; bispectrum; bi-coherence; non-linearities; phase coupling; quadratic
nonlinearity; cubic nonlinearity; logarithmic nonlinearity

1. Introduction

Over the past decades, higher-order spectra (HOS) [1,2], also known as polyspectra,
have earned recognition as a sophisticated mathematical and signal processing tool for
nonlinear system analysis. It is acknowledged that the traditional power spectrum, defined
as the Fourier transform of the autocorrelation sequence (the second-order cumulant), fails
to provide information about the phase of the system’s frequency response and does not
indicate any evidence of nonlinearity. This means that phase couplings between harmonics
cannot be detected from the power spectrum of the signal, since it only provides information
about the power of each harmonic it contains and not the relevant phases among the
harmonics [1–6]. The HOS are defined as the multidimensional Fourier transform of higher
order cumulants of a stationary random process, thereby overcoming the limitations of
power spectra. The structure of HOS allows the deduction of various properties of signals
that do not emerge when using the power spectrum alone. For instance, different signals
can have the same correlation function or power spectrum, but they can be distinguished by
employing HOS. Additionally, various signal processing methods using HOS are employed
to address problems that cannot be resolved solely through second-order statistics. The
bispectrum, a second-order HOS, serves as a useful tool for identifying processes that are
either non-Gaussian or generated through non-linear mechanisms. The bi-coherence, a
normalized version of the bispectrum, is extensively utilized as an index of the quadratic
phase coupling degree in the signal of interest [1–6].

In addition to bispectrum and bi-coherence, other HOS measures, such as the trispec-
trum and higher-order cumulants, further extend the analysis capabilities for non-linear
systems. These measures provide insights into the intricate relationships among different
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frequency components within a signal, offering a more comprehensive understanding
of the underlying processes. Moreover, the application of HOS is not limited to signal
analysis; it has found utility in diverse fields such as communications, radar and biomedical
signal processing. The ability of HOS to capture non-linearities and non-Gaussian behavior
makes them a valuable tool for uncovering hidden patterns and structures in complex data
sets. Despite their advantages, the computational complexity associated with HOS has
led to the development of efficient algorithms and techniques for their implementation.
Ongoing research continues to explore novel applications and advancements in the use of
higher-order spectra for a deeper understanding of complex systems and signals.

Bispectral analysis is an effective signal processing tool for investigating interac-
tions between oscillations and has been adapted to the continuous wavelet transform for
time-evolving analysis of open systems. In the work by Newman et al. [7], a suitable
normalization of the wavelet bispectrum formula is provided that enables it to be treated
as a density to be integrated.

The material cited in the following paragraphs highlights the great importance of
the bispectrum in the analysis of many categories of signals. Accordingly, as it is well
known, non-linearities play a crucial role in power system signals, serving as key indica-
tors of various physical behaviors, including frequency interactions [1–6], inter-harmonic
effects on power systems [6,8], incipient failures [2], noise cancellation [9] and phase cou-
pling [3,4,9]. Traditional techniques for assessing rotating asymmetry, such as imbalance
and bending shafts, have been proven effective in recent years [4,8–12]. However, these
conventional methods often assume signal linearity and stationarity, limiting their appli-
cability to diverse situations [13–15]. The underlying concept is that as power systems
degrade, they tend to exhibit increased non-linearity, leading to the generation of new
frequency components [16–18]. These new frequencies become phase-coupled with the
original interaction frequencies, giving rise to what are known as non-linear interactions.
The phase coupling correlation between the original interacting frequencies and the new
frequency is recognized as quadratic phase coupling (QPC), serving as a real signature
of non-linear interactions in dynamic systems [6,9,16,18]. Detecting QPC relationships
in a signal is therefore a crucial element in understanding non-linear physical systems,
particularly in the context of power generation.

Furthermore, other bispectral applications incorporate high voltage systems, fault
signals, gear faults and other mechanical issues. Specifically, the work by Mitiche et al. [19]
investigated the classification of insulation faults in a high voltage environment, based
on real-world time-series signals labelled by condition monitoring experts. The proposed
approach exploited the Bispectrum analysis and deep learning for feature extraction and
classification. Grover and Turk [20] proved that deep convolutional neural networks, when
trained on bispectrum images of fault signals using transfer learning, provide highly accu-
rate and reliable results for fault diagnosis that are on par with the state-of-the-art results.
A squeezed modulation signal bispectrum approach was developed by Xu et al. [21] to
concentrate the leaked energy for accurately diagnosing gear faults with motor current sig-
nals. Bollineni et al. [22] developed a more refined method based on convolutional neural
networks and the vibration bispectrum to increase the effectiveness and accuracy of fault
diagnostics in bearings. The work in [23] proposes a novel multiple amplitude modulation
and frequency modulation (AM–FM) demodulation method based on a local modulation
signal bispectrum, which can demodulate the fault features of different components from
the gearbox signal with multi-mesh frequency bands and multi-modulation components.
The research by Hashempour et al. [24] introduced a novel algorithm so that Gaussian
noises that appear in non-linear and unstable vibrations of motors are removed using
wavelet decomposition, and non-linear noises are suppressed using the bispectrum method.
Bispectrum analysis was employed in [25] to study the non-linear dynamic characteristics
of a beam structure containing a breathing crack, from the perspective of numerical simu-
lation and experimental validation. The use of higher-order spectral analysis, especially
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bispectrum and trispectrum analysis, for fault detection is gaining importance in recent
studies due to the many advantages of HOS [26].

Additionally, Zhu and Li [27] applied the high-order cumulant spectrum and deep
convolutional neural networks to feature the extraction and classification of aircraft target
radar echoes. Liu et al. proposed [28] the utilization of the bispectral slice approach for
the accurate recognition of complex UAV radar signals. A recent work [29] presented the
coupling of frequencies corresponding to planets’ orbital signatures on the sunspot time
series. The bispectrum was proven to be a unique tool to identify couplings of periodic
phenomena on the surface of the sun.

The application of the bispectrum has gained popularity in biological systems, driven
by the prevalent non-linear characteristics inherent in biological mechanisms. Notably, one
such characteristic is the existence of non-linear interactions, which have been identified
in neural [30,31], renal [32,33] and cardiovascular [34,35] systems. In the realm of neural
system studies, the detection of non-linear interactions has proven particularly valuable.
The bispectrum has effectively elucidated changes in interactions related to the levels of
anesthesia and sedation [36]. Moreover, it has been employed in attempts to detect and
predict epileptic seizure events [37]. The widespread adoption of the bispectrum in diverse
biological studies underscores its versatility and effectiveness in uncovering non-linear
interactions, making it a valuable analytical tool for researchers exploring the intricacies
of biological systems. A study by Liu et al. [38] was on the foundation of the bispectrum
approach for feature selection and employed the Vision Transformer model to achieve
an automatic classification of normal and abnormal heart sound signals. Wang et al. [39]
proposed the use of bispectrum analysis energy feature maps with frequency subdivision
to be applied to breast cancer detection.

A novel parametrized multi-synchrosqueezing transform method based on weighted
least squares, the IMSST and the PTFA, namely, PMSST, was proposed in [40]. In the
PMSST, the IMSST is designed to obtain the signal time-frequency representation with
high-energy aggregation.

This work theoretically investigates specific non-linearities, the presence of which
create specific harmonic couplings. Namely, the quadratic non-linearity, which has already
been studied, is firstly elaborated. The second non-linearity is the cubic one, while the third
is the logarithmic non-linearity. The position and the strength of the derived frequency
couplings are thoroughly derived and graphically depicted. A combination of the non-
linearities, e.g., the quadratic and the logarithmic non-linearities, is examined in terms of
the frequency couplings they generate. Finally, a procedure is outlined which helps to
recognize the type of non-linearity present in a specific problem or even the simultaneous
presence of two non-linearities.

By systematically investigating quadratic, cubic and logarithmic non-linearities, this
study aimed to uncover their unique contributions to harmonic couplings. The theoretical
analysis involves a detailed examination of the positions and strengths of the resulting
frequency couplings, providing a comprehensive picture of the non-linear interactions
within the system. This exploration extends to combinations of non-linearities, specifically
focusing on the interplay between quadratic and logarithmic components.

This paper is organized as follows: In Section 2, the theory of high-order spectral
statistics is presented. In Section 3, the position of coupled frequencies is analyzed based
on the bispectrum representation. The quadratic non-linearity and its effect on frequency
coupling is presented in Section 4, while in Section 5 the generation of coupled frequencies
using a cubic non-linearity is provided. In Section 6, the logarithmic non-linearity is
examined as far as the creation of coupled frequencies is concerned. The combination
of two non-linearities, namely, quadratic and logarithmic non-linearities, is examined in
Section 7 along with comments on the derived frequency couplings. In the same section, a
discussion follows on the possibility to reveal the existing non-linearities from the derived
couplings. The conclusions are drawn in Section 8.
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2. Higher-Order Statistics Analysis
2.1. Higher-Order Moments

In the realm of probability and statistics, a fundamental concept involves the central
moment of n, the order for a random variable X. This moment is precisely defined as the
expected value of the nth power of the deviation between the random variable X and its
mean. The formulation encapsulating this definition is concisely presented in the following
formula [1,2]:

m(n)
x = E

{
(X − E{X})n} =

∫ +∞

−∞
(x − E{X})n fX(x)dx (1)

where the notation E{.} represents the expected value operator and the superscript (n)
indicates the order of the central moment. The probability density function of the random
variable X is denoted using fX(x). In this context, the mean value is specified as zero, and
mx

(2) and mx
(3) denote the mean square value and the mean cube value, respectively, and

so forth.
In the domain of higher-order statistics (HOS) signal analysis, the concept of moments

extends to encompass moment functions, particularly correlation functions, related to a
random process. For computational convenience, it is mathematically accepted that the
random process possesses a zero mean. In practical scenarios, such as the analysis of
stator current data from monitored electromechanical systems, the signal mean is initially
computed and subtracted from the signal.

Expanding on the mathematical underpinnings of HOS analysis, various order correla-
tion functions can be computed for the random process. The subsequent equation outlines
these functions [1,2]:

µx = E{x(t)} = 0, or µx = E{x(t)} = a (constant) (2)

Cxx(τ) = E{x∗(t)x(t + τ)} (3)

Cxxx(τ1, τ2) = E{x∗(t)x(t + τ1)x(t + τ2)} (4)

Cxxx···(τ1, τ2, · · · , τn ) = E{x∗(t)x(t + τ1)x(t + τ2) · · · x(t + τn)} (5)

where the superscript (*) denotes the complex conjugate. Specifically, the second-order
correlation function Cxx(τ) corresponds to the well-known autocorrelation function. Ex-
tending further, the third-order correlation function Cxxx(τ1, τ2) is commonly referred to as
the bi-correlation function. Similarly, the fourth-order correlation function Cxxxx(τ1, τ2, τ3)
is termed the tri-correlation, and so forth.

When considering linear signals and systems within the context of Equations (2) and (3),
the focus is typically on a weakly stationary signal. However, delving into the interaction
of three harmonic signals in a quadratic non-linear scenario, as will be discussed later, it
is assumed that a random signal exhibits stability up to the third order, as expressed in
Equations (4) and (5).

2.2. Power Spectrum

The Power Spectrum serves as a one-dimensional function of frequency and has
proven highly effective in modeling linear physical problems. The discrete power spec-
trum is acquired through the Fourier transform (FT) of the autocorrelation function
Cxx(τ) [1,2,41]. The estimation of the power spectrum can be expressed using the fol-
lowing equation:

Pxx( f ) = E{X( f )X∗( f )} = E
{
|X( f )|2

}
(6)

where X∗ denotes the complex conjugate of X and X( f ) represents the discrete FT of the
signal x(n). It is crucial to note that the computation of the PS, as described, discards all
information pertaining to phase. Consequently, this characteristic renders the PS unable to
discern phase coupling (PC) signatures.
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2.3. Bispectrum and Bi-Coherence

The bispectrum, derived from applying a two-dimensional Fourier transform to the
third-order autocorrelation function Rxxx(τ1, τ2), proves to be effective in identifying and
quantifying quadratic phase coupling (QPC) [1,2,41]. Additionally, the bispectrum func-
tions as a means to elucidate statistical associations among various frequency components
within a signal. The formal definition is as follows [1]:

B( f1, f2) = E
{

X( f1)X( f2)X∗( f1 + f2)
}

(7)

In order for the bispectrum to exhibit non-zero values at frequencies ( f1, f2), it is
necessary that the Fourier transforms at the individual frequency components f1, f2 and
f1,+ f2 are non-zero. Additionally, these three spectral components must display a correla-
tion. It is crucial to emphasize that during the expectation process the bispectrum becomes
zero due to phase randomization. However, when the phases are coupled, this is not the
case. Unlike the power spectrum, the bispectrum is a complex quantity even when the
signal is real-valued.

The symmetric regions of the bispectrum are depicted in Figure 1 [1,2,41]. Consequently,
the analysis typically concentrates on a single non-redundant region. In this paper, the notation
B( f1, f2) is utilized to denote the bispectrum in the non-redundant triangular region shown
in blue in Figure 1. It is defined as ζ = {( f1, f2) : 0 ≤ f2 ≤ f1 ≤ fe/2; f1 + f2 ≤ fe/2},
where fe is the sampling frequency. Additional information about the computational
regions can be found in [1,2].
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Figure 1. The symmetrical structure of the bispectrum. The blue region is actually the appropriate
space to investigate and recognize the frequencies’ coordinates that contribute to the formation of
coupled components, where the region ζ is {( f1, f2) : 0 ≤ f2 ≤ f1 ≤ fe/2; f1 + f2 ≤ fe/2}.

The bispectrum proves to be highly useful in effectively addressing practical problems,
as exemplified by the following examples [18,42,43]:

• For a stationary zero-mean Gaussian process x(n), its bispectrum consistently
remains zero.

• In contrast to the power spectrum, which discards phase information, the bispectrum
retains it.
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The bispectrum, serving as a quantified expression of higher-order statistics (HOS),
represents the Fourier transform of the third-order cumulant or moment. Non-linearity
influences these cumulants, and the bispectrum captures such effects. The estimated
bispectrum B̂ ( f1, f2) is defined as

B̂( f1, f2) =
1
M

M

∑
k=1

Xk( f1)Xk( f2)X∗
k ( f1 + f2) ≈ E

{
X( f1)X( f2)X∗( f1 + f2)

}
(8)

The expectation operation is crucial in this context, especially in QPC detection. It
involves “ensemble averaging” for estimation: if phases are random, the bispectrum tends
to zero, but if phases are coupled, it does not.

The diagonal slice of the bispectrum is a one-dimensional representation obtained by
setting f 1 = f 2. This measure is defined as [4,8,9]

B̂( f1, f2)
∣∣

f1= f2= f = D̂( f ) ≈ E
{

X2( f )X∗(2 f )
}

(9)

The bi-coherence, represented as the normalized bispectrum in Equation (10), func-
tions as a metric that quantifies the degree of QPC within a signal or between frequency
components of two signals. As bi-coherence is obtained through a normalization procedure,
it does not give the energy coupled at the specific position but it just points out the position
of the couplings. As mentioned earlier, QPC involves estimating the energy in all possible
pairs of frequency components, denoted as f1 and f2 in accordance with the QPC definition,
that is, the phase of the component at f3 (where f3 = f1 + f2) equals the sum of the phases
of f1 and f2 [43,44]:

bic( f1, f2) =
|B( f1, f2)|2

X( f1)X( f2)X( f1 + f2)
(10)

When the analyzed signal displays an arbitrary structure, the presence of PC can
be expected.

3. Bispectrum of Coupled Frequencies

Addition:
Consider three signals, x1 = cos (λ1x + φ1), x2 = cos(λ2x + φ2) and

x3 = cos ((λ 1 + λ2)x + (φ1 + φ2)), where λ1 < λ2. The phase of signal x3 arises from
the sum of the phases of signals x1 and x2, indicating an expected coupling edge at the
coordinates (λ 1, λ2). For instance, if λ1 = 4 and λ2 = 16 (Figure 2), a coupling edge is
anticipated at coordinates (4, 16) (Refer to Figure 3).

Subtraction:
Consider three signals, x1 = cos (λ1x + φ1), x2 = cos(λ2x + φ2) and

x3 = cos ((λ 2 − λ1)x + (φ2 − φ1)), where λ1 < λ2. The phase of the signal x3 results
from the subtraction of the phases of signals x1 and x2, suggesting there will be a coupling
edge at the coordinates (λ 1, λ2 − λ1). For example, if λ1 = 4 and λ2 = 16 (Figure 4), a
coupling edge is expected at coordinates (4, 12) (See Figure 5).

It is worth noting that in the case of subtraction, the result aligns with the case of
adding signals x1 and x3. In other words, if the signals are x1 = cos(λ1x + φ1) and
x3 = cos ((λ 2 − λ1)x + (φ2 − φ1)) initially, where λ1 < λ2, and the phase of the signal
x2 = cos(λ2x + φ2) can be derived by adding the phases of signals x1 and x3, then a
coupling edge is expected at the coordinates (λ 1, λ2 − λ1).

In summary, for three signals where one has a phase resulting from the addition or
subtraction of the phases of the other two, coupling edges will occur at the coordinates
corresponding to the two smallest phases of these signals.
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In the field of signal processing, the phenomenon of coupling edges, as described in
the context of signal addition and subtraction, highlights the complex relationships between
signal phases. When signals x1 and x2 are combined to yield x3, the coupling edge appears
at specific coordinates, revealing a harmonic interaction between frequencies λ1 and λ2.
This coupling effect, visualized in Figure 3, provides information on the synchronization of
the signal phases.

Conversely, in the signal subtraction scenario, where phase x3 results from the differen-
tiated interaction between x1 and x2, the resulting coupling edge is realized in coordinates
determined by (λ 1, λ2 − λ1). This complex dance of frequencies, exemplified in Figure 5,
shows the delicate balance required to de-phase the signal to yield a coherent result.

Moreover, the interesting statement, that in the case of signal subtraction the results
mirror those of signal addition, highlights the symmetric nature of these signal functions.
This symmetric behavior, enclosed by coupling edges at fixed coordinates, speaks to the
underlying mathematical elegance that governs signal interactions.

It is important to note that these observations extend to three-signal scenarios, where
the phase relationships are more complex. In cases where the phase of one signal is obtained
by adding or subtracting the phases of two other signals, the coupling ends appear fixed at
coordinates corresponding to the two smaller phases. This generalization adds a level of
universality to the coupling phenomenon, demonstrating its applicability to various signal
processing scenarios.

In conclusion, exploring the coupling edges in signal processing reveals a rich tapestry
of relationships where the addition or subtraction of signal phases orchestrates complex
patterns at specific frequency coordinates. These insights not only deepen our understand-
ing of signal behavior, but also open avenues for further exploration in the colorful field of
signal processing.

4. Bispectrum at the Output of Quadratic Non-linearities
4.1. Two Sinusoids as Input to the Qundratic System without dc Component

Consider three signals, x1 = cos (λ1x + φ1), x2 = cos(λ2x + φ2) and
x3 = (cos (λ1x + φ1) + cos(λ2x + φ2))

2, where λ1 < λ2. The analysis of signal x3 reveals
its derivation from the square of the sum of the other two signals, x1 and x2. Therefore,
signal x3 is calculated as

x3 = (cos (λ1x + φ1) + cos(λ2x + φ2))
2 =

= cos2(λ1x + φ1) + 2cos(λ1x + φ1)cos(λ2x + φ2) + cos2(λ2x + φ2) =

= 1
2 + 1

2 ∗ cos(2λ1x + 2φ1) + cos(λ1x + φ1 + λ2x + φ2) + cos(λ2x + φ2 − λ1x − φ1) +
1
2 + 1

2 ∗ cos(2λ2x + 2φ2) =

= 1 + 1
2 ∗ cos(2λ1x + 2φ1) + cos( (λ 1+λ2)x + (φ1 + φ2)) + cos ((λ 2 − λ1)x + (φ2 − φ1))+

1
2 ∗ cos(2λ2x + 2φ2)

(11)

The anticipated coupling edges in the phase pairs, as elucidated in Section 3 are
expected to manifest through the addition or subtraction of signals. Specifically, these
coupling edges are predicted to occur at coordinates (2λ 1, λ2 − λ1) and ( λ2 − λ1, λ2 + λ1).

The above mathematical representation highlights a remarkable relationship between
the three signals, x1, x2 and x3. Signal x3 is complexly constructed as the square of the sum
of x1 and x2. The distribution of the expression presents a combination of quadratic terms
involving the cosine functions λ1x + φ1 and λ2x + φ2. This formulation emphasizes the
interplay of frequencies and phases in the composition of x3.

The synergy of x1 and x2 in x3 introduces interesting dynamics, where the sum of their
squares contributes to the complex pattern observed in x3. Visually, this can be seen as the
constructive interference of the individual signals, resulting in a new signal with a distinct
frequency and amplitude profile.

To illustrate (see Figure 6), let us consider the example where λ1 = 4 and λ2 = 16:

(cos (4x + φ1) + cos(16x + φ2))
2 =

= 1 + 1
2 ∗ cos(8x + 2φ1) + cos(20x + (φ1 + φ2)) + cos(12x + (φ2 − φ1))+

1
2 ∗ cos(32x + 2φ2)

(12)
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Figure 6. Above: A composite signal of two harmonics with frequencies λ1 = 4 and λ2 = 16. Bellow:
The same signal squared according to Equation (12). The parameter “Time” in the horizontal axis is
normalized to the sampling period of the digital system used.

The coordinates for the expected coupling edge resulting from the sum of the square
of signals are (8, 12) and (12, 20). These coordinates represent the phase pairs where cou-
pling edges are anticipated, showcasing the intricate relationships among the signals and
their frequencies.

A detailed explanation further clarifies the intricacies of coupling edges at the specified
coordinates (12, 20) and (8, 12) in the context of signal phases. According to the principles
described in Section 3, the occurrence of coupling edges at (12, 20) is evidenced by the
generation of signals whose phases are aligned with the values 12 and 20.

For the coupling edge at (12, 20), a signal with the phase generated from the signals
cos(20x + (φ1 + φ2)) and cos(12x + (φ2 − φ1)) is indentified, exemplifying the intricate
interplay between these signals’ components.

Likewise, the coupling edge at (8, 12) is attributed to the signal cos(20x + (φ1 + φ2)),
whose phase can be derived from the signals cos(8x + 2φ1) and cos(12x + (φ2 − φ1)). This
specific combination of signal phases contributes to the formation of a coupling edge at the
specified coordinates. These results are illustrated in Figure 7.

The emphasis on the unique nature of these combinations, substantiated by the
principles outlined in Section 3, reinforces the understanding that such coupling
edges are intricately linked to specific phase relationships and cannot arise with alter-
native combinations, underscoring the precision and predictability that is inherent in the
described signal.
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Figure 7. (a) Harmonics power derived after passing two sinusoids with frequencies λ1 = 4 and
λ2 = 16 through a quadratic non-linearity. No dc is present at the input of the non-linearity. (b) Two
peaks are derived in the bispectral representation at positions (20, 12) and (12, 8) with equal strength,
when the two sinusoids pass through a quadratic non-linearity.
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A detailed example provides a concrete illustration of the principles discussed in
Section 3, emphasizing the limitations and specific conditions under which coupling edges
occur. Considering the signals cos(20x + (φ1 + φ2)) and cos(32x + 2φ2), the examination
of their addition and subtraction sheds light on the resulting signal expansions:

1. Addition scenario: The attempt to derive the signal resulting from the addition of
cos(20x + (φ1 + φ2)) and cos(32x + 2φ2) leads to an expansion that includes
cos(52x + (3φ1 + φ2)). However, this specific signal does not exist, highlighting
the selective nature of coupling edges.

2. Subtraction scenario: On the other hand, the subtraction of signals yields
cos(12x + (φ2 − φ1)), a signal that indeed exists. According to the principles out-
lined in Section 3, a coupling edge is expected at coordinates (20, 12) in the case
of subtraction. Importantly, the symmetry of the coordinates (12, 20) and (20, 12)
indicates that no additional coupling edge was formed beyond the two mentioned,
reinforcing the comprehensive understanding of coupling edge generation.

This analysis underscores the specificity and predictability associated with coupling
edges, as they are intricately linked to the unique combinations and relationships among
signal phases, as articulated in the preceding sections.

In practical terms, representing x3 as a square of the sum of x1 and x2 has impli-
cations for signal analysis and processing. Understanding the complex nature of x3
provides a basis for extracting meaningful information from complex signal structures,
paving the way for applications in fields such as communications, signal processing and
waveform analysis.

According to what has been exposed so far, a quadratic non-linearity was
applied to a signal consisting of two equal-in-power sinusoids, x1 = cos (λ1x + φ1), and
x2 = cos(λ2x + φ2). The peaks in the bispectrum appear as they are presented in Table 1.

Table 1. Bispectral coordinates for two equal-in-power sinusoids with frequencies λ1 and λ2 going
through a quadratic non-linearity with λ2 > λ1.

Coordinates of the Bispectral Peaks

Bispectral Peaks f1 f2

1st peak 2λ1 λ2 − λ1

2nd peak λ2 − λ1 λ2 + λ1

4.2. Two Sinusoids as Input to the Quαdratic System with dc Component

Consider three signals, x1 = cos (λ1x + φ1), x2 = cos(λ2x + φ2) and
x3 = (1 + cos (λ1x + φ1) + cos(λ2x + φ2))

2, where λ1 < λ2. The 3rd signal, x3, is de-
rived from the square of the sum of the other two signals (x1 and x2) with the presence of
the constant term 1, which introduces a dc component to the signal. This representation
underscores the multifaceted composition of x3, encompassing both dc and the combined
influence of the squared x1 and x2. Expanding this expression, the following is obtained:

x3 = (1 + cos (λ1x + φ1) + cos(λ2x + φ2))
2 =

= 1 + cos2(λ1x + φ1) + 2cos(λ1x + φ1)+2 cos(λ2x + φ2) + 2cos (λ1x + φ1)cos(λ2x + φ2) + cos2(λ2x + φ2) =

= 1 + 1
2 + 1

2 ∗ cos(2λ1x + 2φ1) + 2cos(λ1x + φ1)+2 cos(λ2x + φ2) + cos(λ1x + φ1 + λ2x + φ2)

+ cos(λ2x + φ2 − λ1x − φ1) +
1
2 + 1

2 ∗ cos(2λ2x + 2φ2) =

= 2 + 1
2 ∗ cos(2λ1x + 2φ1) + 2cos(λ1x + φ1)+2 cos(λ2x + φ2) + cos( (λ 1+λ2)x + (φ1 + φ2)) + cos ((λ 2 − λ1)x

+(φ2 − φ1))+
1
2 ∗ cos(2λ2x + 2φ2)

(13)

The anticipation of coupling edges, as elucidated in the previous sections, extends beyond
the conventional coordinates (2λ 1, λ2 − λ1) and ( λ2 − λ1, λ2 + λ1) observed in scenarios without
a dc component. In the presence of a dc component, additional coupling edges are expected to
emerge at coordinates (λ 1, λ2), ( λ1, λ1), (λ 2, λ2) and ( λ1, λ2 − λ1). This diversity in coupling
edges is attributed to the influence of the dc component, introducing distinct combinations of
phases. Specifically, these coupling edges manifest at coordinates (λ 1, 2λ1) and ( 2λ1, 2λ1), where the
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combinations of these phases, when added together, result in combinations that exist in the signal’s
development. The incorporation of a dc component thus contributes to a richer set of coupling edges,
encompassing a variety of phase pairs that showcases the interplay between signals and the influence
of the added constant term. The above results are presented in Figure 8 for the example λ1 = 4 and
λ2 = 16.

Electronics 2024, 13, 1287 13 of 22 
 

 

𝑥 = (1 + 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) + 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 )) = = 1 + 𝑐𝑜𝑠 (𝜆 𝑥 + 𝜑 ) + 2 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) +2𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) + 2 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) + 𝑐𝑜𝑠 (𝜆 𝑥 + 𝜑 ) = = 1 + 12 + 12 ∗ 𝑐𝑜𝑠(2𝜆 𝑥 + 2𝜑 ) + 2 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) +2𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) + 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 + 𝜆 𝑥 + 𝜑 )+ 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 − 𝜆 𝑥 − 𝜑 ) + 12 + 12 ∗ 𝑐𝑜𝑠(2𝜆 𝑥 + 2𝜑 ) = = 2 + ∗ 𝑐𝑜𝑠(2𝜆 𝑥 + 2𝜑 ) + 2 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) +2𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) + 𝑐𝑜𝑠((𝜆 +𝜆 )𝑥 + (𝜑 + 𝜑 )) + 𝑐𝑜𝑠((𝜆 − 𝜆 )𝑥 +(𝜑 − 𝜑 )) + ∗ 𝑐𝑜𝑠(2𝜆 𝑥 + 2𝜑 )  

(13)

The anticipation of coupling edges, as elucidated in the previous sections, extends 
beyond the conventional coordinates (2𝜆 ,  𝜆 − 𝜆 ) and (𝜆 − 𝜆 , 𝜆 + 𝜆 ) observed in 
scenarios without a dc component. In the presence of a dc component, additional cou-
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Figure 8 for the example 𝜆 = 4 and 𝜆 = 16. 
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component, the two sinusoids derive many peaks in the bispectral representation when passed 
through a quadratic non-linearity, as explained in Section 4.2. 

According to the above material, when a signal consisting of two sinusoids 𝑥 =cos(𝜆 𝑥 + 𝜑 ) and 𝑥 = cos(𝜆 𝑥 + 𝜑 ) of equal strength plus a dc component equal to 1 
is going through a quadratic non-linearity, it presents a lot of bispectral peaks, which are 
given in Table 2. 

Table 2. Bispectral coordinates 𝑓  and 𝑓  at which bispectral peaks appear. They are given with 
respect to the two equal-in-power sinusoids 𝜆  and 𝜆  containing a dc term and going through a 
quadratic non-linearity (𝜆 >  𝜆 ). 

 Coordinates Of The Bispectral Peaks 
Bispectral Peaks 𝒇𝟏 𝒇𝟐 

1st peak 2𝜆  𝜆 − 𝜆  

2nd peak 𝜆 − 𝜆  𝜆 + 𝜆  

3rd peak 𝜆  𝜆  

4th peak 𝜆  𝜆  

5th peak 𝜆  𝜆  

6th peak 𝜆  𝜆 -𝜆  

7th peak 2𝜆  𝜆  

8th peak 2𝜆  2𝜆  

5. Bispectrum at the Output of Cubically Non-Linear System 
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Figure 8. (a) Harmonics power derived after passing two sinusoids with frequencies λ1 = 4 and
λ2 = 16 including a dc component through a quadratic non-linearity. (b) With the presence of dc
component, the two sinusoids derive many peaks in the bispectral representation when passed
through a quadratic non-linearity, as explained in Section 4.2.
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According to the above material, when a signal consisting of two sinusoids x1 = cos(λ1x + φ1)
and x2 = cos(λ2x + φ2) of equal strength plus a dc component equal to 1 is going through a quadratic
non-linearity, it presents a lot of bispectral peaks, which are given in Table 2.

Table 2. Bispectral coordinates f1 and f2 at which bispectral peaks appear. They are given with
respect to the two equal-in-power sinusoids λ1 and λ2 containing a dc term and going through a
quadratic non-linearity ( λ2 > λ1).

Coordinates Of The Bispectral Peaks

Bispectral Peaks f1 f2

1st peak 2λ1 λ2 − λ1

2nd peak λ2 − λ1 λ2 + λ1

3rd peak λ1 λ1

4th peak λ2 λ2

5th peak λ1 λ2

6th peak λ1 λ2-λ1

7th peak 2λ1 λ1

8th peak 2λ1 2λ1

5. Bispectrum at the Output of Cubically Non-Linear System
Consider three signals, x1 = cos (λ1x + φ1), x2 = cos(λ2x + φ2) and

x3 = (cos (λ1x + φ1) + cos(λ2x + φ2))
3, where λ1 < λ2. The representation in the bispectral space

of signal x3 reveals its derivation from the cube of the summation of the other two signals (x1 and x2).
Therefore, the signal x3 is calculated as

x3 = (cos (λ1x + φ1) + cos(λ2x + φ2))
3 =

= cos3(λ1x + φ1) + 3cos2(λ1x + φ1)cos(λ2x + φ2) + 3cos(λ1x + φ1)cos2(λ2x + φ2) + cos3(λ2x + φ2) =
= cos2(λ1x + φ1)cos(λ1x + φ1) + 3cos2(λ1x + φ1)cos(λ2x + φ2) + 3cos(λ1x + φ1)cos2(λ2x + φ2)

+ cos2(λ2x + φ2) cos(λ2x + φ2) =

=
(

1
2 + 1

2 cos(2λ1x + 2φ1)
)

cos(λ1x + φ1) + 3
(

1
2 + 1

2 cos(2λ1x + 2φ1)
)

cos(λ2x + φ2)

+ 3cos(λ1x + φ1)
(

1
2 + 1

2 cos(2λ2x + 2φ2)
)
+

(
1
2 + 1

2 cos(2λ2x + 2φ2)
)

cos(λ2x + φ2) =

= 1
2 cos(λ1x + φ1) +

1
2 cos(2λ1x + 2φ1)cos(λ1x + φ1) +

3
2 cos(λ2x + φ2) +

3
2 cos(2λ1x + 2φ1)cos(λ2x + φ2)

+ 3
2 cos(λ1x + φ1) +

3
2 cos(2λ2x + 2φ2)cos (λ1x + φ1) = · · · =

= 9
4 cos(λ1x + φ1) +

9
4 cos(λ2x + φ2) +

1
4 cos(3λ1x + 3φ1) +

1
4 cos(3λ2x + 3φ2) +

3
4 cos((2λ1 − λ2)x + (2φ1 − φ2))

+ 3
4 cos((2λ2 − λ1)x + (2φ2 − φ1)) +

3
4 cos((2λ1 + λ2)x + (2φ1 + φ2)) +

3
4 cos((2λ2 + λ1)x + (2φ2 + φ1))

(14)

The observations of the above relationships highlight a combination of scenarios involving both
the square of the sum of two signals (as discussed in the previous section) and the presence of a dc
component. Consequently, following the principles outlined in Sections 2 and 3, the appearance of
coupling edges in the phase pairs formed by their summation (or subtraction) from one or more of
the other signals is expected.

The subsequent example in Figure 9 provides a concrete illustration with λ1 = 4 and λ2 = 16.
According to the above material, a signal consisting of two sinusoids x1 = cos(λ1x + φ1) and

x2 = cos(λ2x + φ2) of equal strength, when going through a cubic non-linearity presents a lot of
bispectral peaks, which are given in Table 3.
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= 12 cos(𝜆 𝑥 + 𝜑 ) + 12 cos(2𝜆 𝑥 + 2𝜑 ) cos(𝜆 𝑥 + 𝜑 ) + 32 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) + 32 cos(2𝜆 𝑥 + 2𝜑 ) 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 )+ 32 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) + 32 cos(2𝜆 𝑥 + 2𝜑 ) 𝑐𝑜𝑠(𝜆 𝑥 + 𝜑 ) = ⋯ =  = cos(𝜆 𝑥 + 𝜑 ) + cos(𝜆 𝑥 + 𝜑 ) + cos(3𝜆 𝑥 + 3𝜑 ) + cos(3𝜆 𝑥 + 3𝜑 ) + cos (2𝜆 − 𝜆 )𝑥 + (2𝜑 − 𝜑 ) +cos (2𝜆 − 𝜆 )𝑥 + (2𝜑 − 𝜑 ) + cos (2𝜆 + 𝜆 )𝑥 + (2𝜑 + 𝜑 ) + cos (2𝜆 + 𝜆 )𝑥 + (2𝜑 + 𝜑 )   

(14)

The observations of the above relationships highlight a combination of scenarios 
involving both the square of the sum of two signals (as discussed in the previous section) 
and the presence of a dc component. Consequently, following the principles outlined in 
Sections 2 and 3, the appearance of coupling edges in the phase pairs formed by their 
summation (or subtraction) from one or more of the other signals is expected. 

The subsequent example in Figure 9 provides a concrete illustration with 𝜆 = 4 
and 𝜆 = 16. 
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Figure 9. (a) Harmonics power derived after passing two sinusoids with frequencies 𝜆 = 4 and 𝜆 = 16 without a dc component through a cubic non-linearity. (b) The two sinusoids derive many 
peaks in the bispectral representation when passed through a cubic non-linearity. Peaks with dif-
ferent strengths are present. 
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Figure 9. (a) Harmonics power derived after passing two sinusoids with frequencies λ1 = 4 and
λ2 = 16 without a dc component through a cubic non-linearity. (b) The two sinusoids derive many
peaks in the bispectral representation when passed through a cubic non-linearity. Peaks with different
strengths are present.



Electronics 2024, 13, 1287 16 of 21

Table 3. Bispectral coordinates for two equal-in-power sinusoids with frequencies λ1 and λ2, with
λ2 > λ1, going through a cubic non-linearity.

Coordinates of the Bispectral Peaks

Bispectral Peaks f1 f2

1st peak λ1 λ1

2nd peak 2λ1 λ1

3rd peak λ2 − λ1 λ1

4th peak λ2 + λ1 λ2

5th peak 2λ1 2λ1

6th peak λ2 2λ1

7th peak 2λ2 − λ1 2λ1

8th peak λ2 + 2λ1 λ2 − λ1

9th peak 2λ2 + λ1 λ2 − λ1

10th peak λ2 − λ1 λ2 − λ1

11th peak λ2 λ2 − λ1

12th peak λ2 + 2λ1 λ2 + 2λ1

6. Bispectrum at the Output of a Logarithmic Non-Linear System
Finally, considering the case when the signal a + x1 + x2 with x1 = cos(λ1x + φ1) and

x2 = cos(λ2x + φ2) goes through a logarithmic transformation, where a is selected so that the
signal is always positive, a large variety of new frequency components appear, as shown in Figure 10a
(in the example using λ1 = 4 and λ2 = 16). The produced peaks in the bispectrum cover all the
available region in points that are additions or subtractions of λ1 and λ2 and their multiples. This
result is depicted in Figure 10b.
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Figure 10. (a) Harmonics power derived after passing two sinusoids with frequencies 𝜆 = 4 and 𝜆 = 16 through a logarithmic non-linearity. (b) The two sinusoids derive many peaks in the 
bispectral representation when passed through a logarithmic non-linearity. Peaks with different 
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Figure 10. (a) Harmonics power derived after passing two sinusoids with frequencies λ1 = 4 and
λ2 = 16 through a logarithmic non-linearity. (b) The two sinusoids derive many peaks in the
bispectral representation when passed through a logarithmic non-linearity. Peaks with different
strengths are present. (c) The two sinusoids derive many peaks in the bispectral representation when
are passed through a logarithmic non-linearity. Bispectral representation is depicted in carpet form
which reveals that the bispectral energy covers like a textile the whole bispectral region of interest in
points that are additions or subtraction of λ1 and λ2 and their multiples.
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In order to be able to recover weak peaks at the output of the bispectral representation of the
specific logarithmic non-linearity, a special preprocessing was applied. Explicitly, all the derived
bispectral content was multiplied by 1000 so that all values became quite large, and much larger than
1, so that the weak peaks could be easily preserved as far as their strength has a comparable size to
the strong peaks. For this specific case, in Figure 10c the same bispectral representation is depicted in
carpet form, which reveals that the bispectral energy covers like a textile the whole bispectral region
of interest in points that are additions or subtraction of λ1 and λ2 and their multiples.

7. Detecting Non-Linearities and Simultaneous Non-Linearities
According to the experimental results obtained in the previous sections, it is evident that

the quadratic non-linearity gave a restricted number of bispectral peaks even if the original signal
contains a dc component b and Figure 8b). These peaks appeared in positions where the largest of
their coordinates at most being at the sum of the original frequencies. The same happened for the
case with dc present, although more peaks were present. All peaks were restricted to a region, the
maximum coordinate of which was again at most the sum of the original frequencies.

Similarly, in the case of the cubic non-linearity, a more extensive coverage of the bispectral region
was obtained, although it was restricted by a coordinate at 2λ2 + λ1 where λ2 > λ1 (Figure 9b).

Finally, the output from the logarithmic non-linearity covered all of the spectral region, al-
though most of the peaks were very weak, a fact that corresponds to the generation of new coupled
frequencies that are weak but strongly coupled (Figure 10b,c).

However, when two non-linearities were present in sequential mode, then the obtained output
had a bispectral content, which extended all over the region in which the bispectrum was defined.
This is explicitly shown in Figure 11. Accordingly, the presence of two sequential non-linearities can
be concluded when the whole bispectral region of support is covered with bispectral peaks.

In conclusion:

1. The sequential effect of two non-linearities of polynomial type in any order gives an output
with bispectrum which normally covers the bispectral region to a certain extent, as defined by
the degree of the polynomials.

2. In case a logarithmic non-linearity is one of the two sequential non-linearities affecting the
signal, then since the output of the logarithmic non-linearity is very rich in bispectral content,
the total bispectral content covers all the available bispectral region. This example is depicted
graphically in Figure 11a–d.
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Figure 11. The two sinusoids 𝑥 = cos(𝜆 𝑥 + 𝜑 ) and 𝑥 = cos(𝜆 𝑥 + 𝜑 ) with 𝜆 = 4 and 𝜆 =16 going through a quadratic non-linearity gives the spectrum in (a). This composite signal is then 
fed to a logarithmic non-linearity providing a signal with the specific spectrum in (b). The bispec-
trum of the signal at the output of the logarithmic non-linearity is presented in two forms (c,d). 
Both these figures show the extension of the bispectrum to all of the available bispectral region. 
Bispectral representation is depicted as a carpet which reveals that the bispectral energy covers like 
a textile the whole bispectral region of interest in points that are additions or subtraction of 𝜆  and 𝜆  and their multiples, with strong existence everywhere. 
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Figure 11. The two sinusoids x1 = cos(λ1x + φ1) and x2 = cos(λ2x + φ2) with λ1 = 4 and λ2 = 16
going through a quadratic non-linearity gives the spectrum in (a). This composite signal is then fed
to a logarithmic non-linearity providing a signal with the specific spectrum in (b). The bispectrum
of the signal at the output of the logarithmic non-linearity is presented in two forms (c,d). Both
these figures show the extension of the bispectrum to all of the available bispectral region. Bispectral
representation is depicted as a carpet which reveals that the bispectral energy covers like a textile
the whole bispectral region of interest in points that are additions or subtraction λ1 and λ2 and their
multiples, with strong existence everywhere.

8. Conclusions
In this work, the effect of specific non-linearities on simple sinusoids was elaborated. In general,

new frequencies were created which were phase coupled with the original sinusoids. The way the
original frequencies and the new created frequencies were interrelated was extensively investigated.
The bispectral space was used to prove the above relationships and to demonstrate graphically the
coupled frequencies.

Quadratic, cubic and logarithmic non-linearities were examined as far as their effect on the
bispectral signature of their output. Furthermore, simple recommendations were given on how the
underlying non-linearity can be detected. The total approach is novel when considering the capability
to distinguish from the bispectral content if two non-linearities are simultaneously present.

In the case of a quadratic non-linearity, its output has a restricted number of bispectral peaks
even if the original signal contains a dc component. Similarly, in the case of cubic non-linearity, a
more extensive coverage of the bispectral region was obtained, although this was again restricted in
the area of bispectral region of support. In contrast, the output from the logarithmic non-linearity
covered all of the spectral region, although most of the peaks were very weak when they were not
close to the origin ( f1 = 0, f2 = 0).

Finally, when two non-linearities were present in sequential mode then the obtained output
had a bispectral content which extended all over the region in which the bispectrum was defined.
Accordingly, the presence of two sequential non-linearities can be determined when the bispectral
region of support is covered by bispectral peaks.

It was found that the sequential effect of two non-linearities of the polynomial type in any order
gives an output with a bispectrum which normally covers the bispectral region to a certain extent, as
defined by the degree of the polynomials. In cases when a logarithmic non-linearity is one of the two
sequential non-linearities affecting the signal, then since the output of the logarithmic non-linearity is
very rich in bispectral content, the total bispectral content covers all of the available bispectral region.
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