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Abstract: The DC voltage ratio standard device is an important tool for calibrating DC voltage
transformers. At the 1100 kV voltage level, an increase in electric field intensity will increase the local
heat generated inside the device, affecting the accuracy of its measurement. Using a suitable grading
ring can even out the electric field intensity and reduce the maximum field strength to improve its
measurement accuracy. This article mainly optimizes the design of the grading-ring structure of the
1100 kV DC voltage ratio standard device. First, a finite-element model of the 1100 kV DC voltage
ratio standard device was built based on ANSYS; the electric field distribution around the voltage
divider was calculated and analyzed, and a data set was constructed based on the calculation results.
Secondly, for the optimization of electric field strength, this article presents the design of the nation
standard device neural network, which learns the relationship between the structural parameters
of the toroidal core and the field strength under the PyTorch 1.8 deep learning framework. Due to
the strong convergence performance, few parameters, and ease of implementation of the grey wolf
optimization algorithm, this study selected this algorithm to optimize the structural parameters of the
grading ring. Finally, simulation examples are established in Python for validation. The experimental
results indicate that the maximum field strength of the grading ring decreased from 12,161.1348 V/cm
to 10,009.2881 V/cm, a reduction of 17.69%. The optimized structural parameters of the grading ring
effectively reduced the electric field intensity around the 1100 kV DC voltage proportional standard
device, providing a reliable and practical design approach for the selection of the DC voltage ratio
standard device.

Keywords: DC voltage ratio standard device; finite-element method (FEM); NSD neural network;
grey wolf optimization algorithm; optimization of grading ring

1. Introduction

The uneven distribution of energy resources and loads in China determines that the
pattern of “transmitting electricity from the west to the east” and “transmitting electricity
from the north to the south” will not change in the next 40 years [1]. The development
of high-voltage direct current (HVDC) transmission can achieve flexible and controllable,
low-loss, and highly reliable long-distance transmission across regions throughout China. It
will provide assurance for large-scale optimization and mutual compensation of resources,
making the future role of HVDC transmission even more crucial in the strategic develop-
ment of China’s energy [2]. Accurate measurement of high DC voltage is the foundation for
ensuring the safe, stable, and economical operation of DC transmission systems, holding

Electronics 2024, 13, 1308. https://doi.org/10.3390/electronics13071308 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071308
https://doi.org/10.3390/electronics13071308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1471-3872
https://doi.org/10.3390/electronics13071308
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071308?type=check_update&version=2


Electronics 2024, 13, 1308 2 of 13

significant importance for safeguarding China’s energy security [3]. Establishing a national
DC voltage proportional standard device to achieve self-calibration of values and conduct-
ing on-site calibration tests to achieve accurate transmission of values are effective means to
ensure that DC voltage proportional values are accurate and reliable [4]. Currently, China
has put into operation the world’s highest-voltage-level, highest-transmission-capacity, and
longest-transmission-distance DC transmission project—the Changji-Guquan ± 1100 kV
DC transmission project. However, a high-precision 1100 kV DC voltage ratio standard
device has not been established, and the corresponding on-site transmission technology for
the 1100 kV DC voltage ratio standard device is not yet mature. This has led to the inability
to trace the 1100 kV DC voltage ratio standard device, impacting the safety of the system
operation [5,6].

The DC voltage ratio standard device adopts the resistive voltage division princi-
ple [7]. Therefore, during the development of the standard device, three main influencing
factors are primarily considered: first, the variation in resistance value due to changes in
environmental temperature and the self-heating of resistance components; second, corona
discharge caused by high voltage; and third, the influence of leakage current along the
insulation support [8]. In 2015, China established the national standard for 1000 kV DC
voltage ratio. However, with the highest voltage level of China’s UHVDC (ultra-high
voltage direct current) transmission projects reaching 1100 kV, there is an urgent need to
establish a 1100 kV DC voltage standard [9]. The electric field strength and distribution
around the DC voltage ratio standard device affect the local heating of resistors at rated
voltage. As the voltage level increases, the field strength distribution becomes more uneven,
leading to greater local heating. This, in turn, causes significant changes in the resistance
values of internal resistor components, impacting the accuracy of the voltage divider. In
severe cases, it may result in thermal breakdown of resistor components [10]. The structural
parameters of the grading ring directly influence the magnitude and distribution of the
electric field around the DC resistor standard voltage divider. Installing an optimally
designed grading ring can effectively improve the potential and electric field distribution,
reduce the variation in resistance values of internal resistor components and insulation
resistors within the voltage divider, and enhance the measurement accuracy of the DC
standard resistor voltage divider.

In the past, many researchers have devoted themselves to the optimization design
of grading ring structures, employing various methods including exhaustive methods,
orthogonal methods, neural networks, and genetic algorithms [11–15]. Reference [11]
continuously adjusted the grading ring structure parameters in the computational model,
comparing the electric field intensity with and without the installation of the grading
ring and varying the size and position of the grading ring. However, it did not use
optimization methods. Reference [12] took the potential distribution of insulator strings as
the optimization target for grading-ring size and position, calculating the maximum voltage
borne by a single insulator under different size and position combinations to determine
the optimal parameters for the grading ring. However, the exhaustive search method
suffers from low efficiency, and in this literature the large step size used in the exhaustive
search method makes it difficult to find the optimal parameters. Reference [13] proposed
an insulation grading-ring parameter optimization method based on an improved genetic
algorithm, with the maximum surface electric field along the insulator as the objective
function. They established a mathematical model for the optimization of grading-ring
parameters to improve the electric field intensity on the insulator surface, achieving a
good improvement in the electric field intensity. Reference [14] applied the orthogonal
experimental method of multi-objective optimization to optimize the size parameters and
installation position of the grading ring. However, this method may lack precision in
the optimization of the grading ring. Reference [15] used an artificial neural network
to fit the relationship between grading-ring structural parameters and the maximum
surface electric field, obtaining optimized structural parameters. Nevertheless, there is
still room for further optimization of the obtained parameters. Most optimization designs
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for the grading ring are not precise enough, often relying on exhaustive methods and
orthogonal experimental methods. However, using neural networks can provide more
accurate optimization parameters, resulting in a greater improvement in the distribution
and maximum strength of the electric field.

Regarding the above-mentioned issue, the work of this paper is divided into the
following three points:

1. The construction of a finite element model of the 1100 kV DC voltage ratio standard
device using ANSYS simulation software 2022 R1, and the calculation and analysis of
its surrounding electric field distribution.

2. The proposal of a neural network named NSD based on the results of the electric field
calculation to fit the relationship between the structural parameters of the grading
ring and the electric field intensity.

3. The utilization of the grey wolf optimization algorithm to optimize the structural
parameters of the grading ring. The optimal selection of the grading ring’s struc-
tural parameters significantly improves the size and distribution of the electric field
around the DC voltage ratio standard device, thereby enhancing the measurement
accuracy of the standard device. The aforementioned work provides guidance for the
establishment of the 1100 kV DC voltage ratio standard device.

2. Establishment of the Simulation Computational Model for the 1100 kV DC Voltage
Ratio Standard Device

Firstly, we utilized ANSYS simulation software to construct a finite element model of
the 1100 kV DC voltage ratio standard device, and calculated and analyzed its surrounding
electric field distribution. In ANSYS, a simulation model is constructed using the finite
element method to provide data support for the standard device design [16]. Through the
finite element method, we successfully transformed the infinite domain problem into a
finite domain problem. Therefore, for the 1100 kV standard device, the solutions for the
electric field and potential distribution can ultimately be understood by addressing the
following issues.

In the solution domain:
∇2E = 0, (1)

At different media and continuous interfaces:

n(D1 − D2) = 0, (2)

At the potential on the conductor side:

V1 = V0, (3)

At the potential along the finite boundaries:

V2 = 0, (4)

In the equation, E represents the electric field strength within the region to be solved,
n is the normal direction perpendicular to the interface of the media, D1 and D2 are
the electric potential displacements perpendicular to the interface on either side of the
boundary; Vo is the specific potential value on the conductor side, V1 is the potential on the
conductor side, and V2 is the potential along the finite boundary. To ensure the accuracy of
the simulation analysis and reduce computational time, the solution domain is divided into
three regions. Theoretical analysis indicates that the electric field concentration is highest
in the central region, requiring the highest precision. Therefore, special attention is given to
the core region, which includes the standard device and the grading ring, and it is densely
meshed. Conversely, the other two regions are sparsely meshed according to the principle
of gradually decreasing density with distance from the center.
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The 1100 kV DC voltage ratio standard device is internally divided into an inner-
shielding resistor layer, a measuring resistor layer, and an outer-shielding resistor layer.
Each resistor layer is composed of series-connected resistors distributed uniformly in
a helical pattern along the insulation tube from the top to the bottom of the standard
device. Therefore, the standard device is not a strictly three-dimensional axisymmetric
structure. However, at each resistor node position the measuring resistor and the shielding
resistor are in parallel, and the resistance values of the measuring resistor and the shielding
resistor are the same for each layer; the potentials of the three resistor layers are very close.
When the inner-shielding resistor layer forms equipotential shielding with the measuring
resistor layer, it significantly reduces the leakage current along the insulating support of
the measuring resistor layer. Due to its minimal impact on the electric field distribution,
the inner-shielding resistor layer was ignored in the electric field simulation model to
simplify calculations, with only the measuring resistor layer and outer-shielding resistor
layer considered. As both the measuring resistor layer and outer-shielding resistor layer
have a uniform distribution of resistance from top to bottom, to further simplify the model
they are replaced by two cylinders with equal resistance distribution. In the end, the
1100 kV standard device is simplified into a three-dimensional axisymmetric structure.
When constructing the ANSYS finite element model for a three-dimensional axisymmetric
structure, modeling can be carried out by taking half of the main axis profile in two
dimensions. This approach simplifies the three-dimensional electrostatic field problem
into a two-dimensional electrostatic field problem. In this model, voltage is used as the
degree of freedom for solving each element node. When conducting electrostatic field
calculations, a DC high voltage is applied through a high-voltage conducting rod to the
top of the measuring resistor layer and the outer-shielding resistor layer, with the bottom
grounded. The constructed finite-element model of the 1100 kV DC voltage ratio standard
device is shown in Figure 1.
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Figure 1. Finite-element model of 1100 kV DC voltage ratio standard device.

Analysis of Calculation Results

This paper conducted electric field distribution calculations on the 1100 kV DC voltage
ratio standard device using the ANSYS finite-element simulation software. The simulation
results are shown in Figure 2. The maximum field strength is concentrated around the
two grading rings, indicating a significant impact of the grading rings on the electric field
distribution of the DC voltage ratio standard device. The field strength is also relatively
high at the flange, as it is a sharper point. The maximum field strength of the DC voltage
ratio standard device with the initial parameters of the grading ring is 12,161.1348 V/cm.
To prevent corona discharge and aging of the insulating sleeve, it is necessary to minimize
the electric field intensity under the rated voltage. Therefore, the optimization design of
the grading-ring structure parameters of the 1100 kV DC voltage ratio standard device is
carried out with the maximum field strength around the standard device as the target.
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Figure 2. The initial DC voltage ratio standard device electric-field simulation diagram. E in the
figure represents the electric field strength in various places.

3. The Construction of the NSD Neural Network

Secondly, based on the calculation results of the electric field, we propose a neural
network named NSD to fit the relationship between the structural parameters of the grading
ring and the electric field intensity. The NSD neural-network model structure consists
of four fully connected layers. The input layer comprises six neurons, representing the
normalized feature parameters of the main grading ring R, H, L (inner radius, distance from
center to ground, and distance from center to symmetry axis) and the auxiliary grading
ring R′, H′, L′ (inner radius, distance from center to ground, and distance from center
to symmetry axis). The first fully connected layer serves as the feature extraction stage,
extracting input grading-ring parameter information for parameter augmentation. The
second-to-fourth fully connected layers constitute the feature learning and prediction stage,
employing parameter fusion techniques to refine and reuse network features, reducing the
time cost of model training and inference, and enhancing feature representation capability.

The normalization formula is given by:

Xnorm =
X − Xmin

Xmax − Xmin
, (5)

In the equation X represents the raw data, Xmin is the minimum value in the dataset,
Xmax is the maximum value in the dataset, and Xnorm normalized is the normalized data.

For deep neural networks, when using the Sigmoid function for backpropagation,
the problem of vanishing gradients often occurs, making it difficult to train deep neural
networks. On the other hand, the ReLU function can alleviate the issue of overfitting. There-
fore, the ReLU function is chosen as the activation function for the input and output layers.

The ReLU function is given by:

f (x) = max(0, x), (6)

The established neural network can capture the mapping relationship between the
parameters R, H, L, R′, H′, L′ and E. The number of nodes in each layer gradually increases
and then decreases, according to powers of 2. Data is first encoded and then decoded, and
through further experimental comparison the selection of the optimal number of layers in
the model is determined. The results of the NSD neural network are shown in Figure 3.
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4. Simulation Case Validation
4.1. Construction of the Dataset

When optimizing the structure of the grading ring in the 1100 kV DC voltage ratio
standard device, a significant field strength is concentrated on the surface of the grading
ring during simulation. Therefore, the maximum field strength on the surface of the grading
ring is chosen as the objective function. The structural parameters of the grading ring
are considered as inputs. The 1100 kV DC voltage ratio standard device includes the
main grading ring and the auxiliary grading ring, so there are six input variables, and the
mapping relationship is as follows:

E = F(R, H, L, R′, H′, L′), (7)

The optimized structure is as shown in Figure 4. The range of grading-ring structure
and position parameters is shown in Table 1.
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Table 1. The range of grading-ring structure and position parameters.

The Structural Parameters The Range of Values/mm

R 400–500
H 7200–7350
L 1250–1400
R′ 550–800
H′ 8150–8300
L′ 550–800

To achieve the electric field optimization of the 1100 kV DC voltage ratio standard
device, this paper first created a dataset of the maximum electric field strength for different
grading-ring structures. The dataset is derived from ANSYS simulation results, where the
range of grading-ring structural parameters during simulation is shown in Table 1. The
dataset consists of 4096 data samples, which are split into training, validation, and testing
sets, with a ratio of 8:1:1.

4.2. Experimental Setup

The experiment was conducted on the Ubuntu 20.04 operating system, using Python
version 3.8.0, CUDA version 11.2, and training and testing were performed on the deep
learning framework based on PyTorch 1.8. Two NVIDIA GeForce RTX 3090-24G GPUs
were utilized for acceleration during the training process. The training was configured
with 100 epochs, a batch size of 32, an initial learning rate of 0.001, and the Adam optimizer
for parameter optimization.

4.3. Experimental Results and Analysis

This paper conducted comparative training of various models in the same experi-
mental environment, including ridge regression [17], decision tree regression [18], random
forest regression [19], gradient boosting regression [20], K-nearest neighbors regression [21],
and neural network regression.

When evaluating the performance of the models, the following four metrics were
selected: mean absolute error (MAE), mean squared error (MSE), root mean squared error
(RMSE), and mean percentage error (MPE). The formulas for these metrics are as follows:

MAE =
1
n

n

∑
i=1

|y i − ŷ i|, (8)

MSE =
1
n

n

∑
i=1

(y i − ŷ i)
2, (9)

RMSE =
√

MSE, (10)

MPE =
1
n

n

∑
i=1

(
y i − ŷ i

yi
)× 100, (11)

The training results are shown in Table 2.

Table 2. The comparative training results for various models are presented.

Different Approaches MAE MSE RMSE MPE

Ridge Regression 31.4276 1963.4010 44.3100 0.2977%
Decision Tree Regression 32.2879 2649.9785 51.4779 0.1505%

Random Forest Regression 23.5440 1393.8218 37.3339 −0.0014%
Gradient Boosting Regression 23.4262 1365.6969 36.9553 0.1703%

K-Nearest Neighbors Regression 28.8105 1628.9967 40.3608 0.4186%
Neural Network Regression 22.1815 1119.1966 33.4544 0.1196%
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From Table 2, it can be observed that the MAE, MSE, and RMSE of the neural network
regression method are the smallest among the six regression methods. The MPE of random
forest regression is relatively small compared to neural network regression, but the other
three indicators are larger than neural network regression. Therefore, it can be considered
that neural network regression is the optimal method among the six regression methods.

The comparison between the predicted electric field values and the real values for
each model is shown in Figure 5.
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Figure 5. Comparison chart of predicted values and actual values for each model. (a) Ridge Regres-
sion; (b) Decision Tree Regression; (c) Random Forest Regression; (d) Gradient Boosting Regression;
(e) K-Nearest Neighbors Regression; (f) Neural Network Regression.

The above figure shows that compared to the other five traditional machine learning
regression methods, neural network regression has the closest match between predicted
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and actual values. It indicates that neural network regression has the best fitting effect on
the electric field strength.

The number of fully connected layers was changed, and comparative training of neural
network models with different numbers of fully connected layers was conducted in the
same experimental environment. The experimental results are shown in Table 3.

Table 3. The comparative training results for various models are presented.

Number of Fully Connected Layers MAE MSE RMSE MPE

1 layer 43.6270 3124.4137 55.8965 −0.0165%
2 layers 25.4261 1527.3979 39.0819 0.0754%
3 layers 23.3974 1252.3595 35.3887 −0.1283%
4 layers 20.6108 1213.2336 34.8315 0.1232%
5 layers 24.2319 1237.6127 35.1797 −0.3209%
6 layers 22.5858 1229.7693 35.0681 0.4705

From Table 3, it can be observed that as the number of fully connected layers increases
from 1 to 4, MAE, MSE, and RMSE gradually decrease, indicating a reduction in the model’s
prediction errors. Although MPE slightly increases, overall the model’s errors decrease.
However, as the number of fully connected layers continues to increase, MAE, MSE, and
RMSE instead increase, suggesting an increase in prediction errors. This may be due to
the occurrence of overfitting in the model. Therefore, the neural network model with four
layers of fully connected layers is chosen as the final model in this study.

The loss curve of the neural network training with four layers of fully connected layers
is shown in Figure 6.
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Figure 6. Loss Curve.

Figure 6 shows that when the number of fully connected layers is four, the model has
a low loss value, and between 90 and 100 s, the model is in a stable and convergent state.

5. Optimization of Grading-Ring Structure Based on GWO Algorithm
5.1. GWO Algorithm

Finally, we optimized the structural parameters of the grading ring through the
grey wolf optimization algorithm. The grey wolf optimization (GWO) algorithm is an
optimization algorithm inspired by the hunting behavior of grey wolves [22,23]. In this
algorithm, the fitness value is calculated for each variable combination, and the optimal
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solution, second-best solution, third-best solution, and other solutions are determined
through non-dominated solution sorting [24]. These solutions are defined as alpha wolf,
beta wolf, delta wolf, and other wolves, respectively. The distance between a wolf and its
prey can be calculated by the following formula:{

D =
∣∣C · Xp(t)− X(t)

∣∣
C = 2η1

, (12)

The formula is as follows: D is the distance vector, t is the iteration number, Xp is the
prey’s position vector, X is the grey wolf’s position vector, C is the swing coefficient, and η1
is a random number between 0 and 1.

The formula for the position of a grey wolf from the t-th iteration to the (t + 1)-th
iteration is given by:

X(t + 1) = Xp(t)− Q · D, (13)

where Q is the convergence coefficient.

Q = 2qη2 − q, (14)

where q is a constant and η2 is a random number between 0 and 1.
When searching for optimization, the position of the wolves at time t is unknown. It

needs to be determined by the positions of the α-wolf, β-wolf, and δ-wolf. Therefore, the
position update for each wolf is implemented by the following formula:{

X1 = Xα(t)− A1 · Dα

Dα = |J1 · Xα(t)− X(t)| , (15)

{
X2 = Xβ(t)− A2 · Xβ

Dβ =
∣∣J2 · Xβ(t)− X(t)

∣∣ , (16)

{
X3 = Xδ(t)− A3 · Dδ

Dδ = |J3 · Xδ(t)− X(t)| , (17)

X(t + 1) = (X1 + X2 + X3)/3, (18)

where X1, X2 and X3 are the position vectors of the three new wolves, and J1, J2, and J3
are constants.

When all wolf positions are updated, the optimization of the position vectors for the
t-th iteration is completed [25,26].

5.2. Choice of the Objective Function

The goal of optimizing the grading ring is to find a set of parameters that minimize
the surface electric field of the grading ring, i.e.,:

min(Emax) = min(F(R, H, L, R′, H′, L′)), (19)

The specific approach involves first constructing a neural network model capable of
fitting the simulation of the electric field in the 1100 kV DC voltage ratio standard device.
Subsequently, optimization calculations are performed to select the grading-ring structure
parameters that minimize the electric field intensity.

The optimization variables selected include the inner radius of the main grading
ring, the distance from the center to the ground and the distance from the center to the
symmetry axis, as well as the corresponding parameters for the auxiliary grading ring.
The optimization goal is to minimize the maximum electric field strength between the two
grading rings. The range of values for the optimization variables is defined as follows:



Electronics 2024, 13, 1308 11 of 13



1250 mm ≤ L ≤ 1400 mm
400 mm ≤ R ≤ 500 mm
7200 mm ≤ H ≤ 7350 mm
550 mm ≤ L′ ≤ 800 mm
150 mm ≤ R′ ≤ 280 mm
8150 mm ≤ H′ ≤ 8300 mm

, (20)

5.3. Optimization Results and Analysis

The optimization step sizes for parameters R, H, L, R′, H′, and L′ are set as [0.05, 0.01,
0.05, 0.05, 0.01, 0.05]. After 300 iterations, the GWO algorithm obtains the parameter values
and optimized electric field strength for the three best solutions, as shown in Table 4.

Table 4. The parameter values and optimized electric field strength.

Schemes
L

/mm
R

/mm
H

/mm
L’

/mm
R’

/mm
H’

/mm
E

/V/mm

Scheme 1 1550 290 7300 900 290 8150 9988.7482
Scheme 2 1350 500 7350 750 249 8250 10,392.8254
Scheme 3 1350 500 7350 820 220 8250 11,023.7231

Comparison reveals that Scheme 1 has the minimum electric field intensity and is se-
lected as the final optimization solution. Based on these parameters, electric field simulation
was conducted, and the simulation results are shown in Figure 7.
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From Figure 7, it can be observed that the finite-element simulation results under
the optimal grading-ring structure parameters have a small deviation compared to the
predicted output results, indicating high accuracy. Moreover, the maximum electric field
strength after optimization is reduced to 10,009.2881 V/cm, which is a 17.69% decrease
compared to the initial maximum electric field strength.

6. Discussion

This paper conducted simulation calculations of the electric field of the 1100 kV DC
voltage ratio standard device using ANSYS software. It designed the NSD neural network
and applied the GWO algorithm to optimize the grading-ring structure of the standard
device. However, there are still some shortcomings:

1. The modeling of the 1100 kV DC voltage ratio standard device in ANSYS can be
further refined. The standard device is composed of thousands of resistors and
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is not entirely a three-dimensional axisymmetric model. However, for the sake of
simplifying calculations and reducing modeling difficulty, this paper regarded it as a
three-dimensional axisymmetric model and treated serial resistors as cylinders.

2. This paper only optimized the structural parameters of the grading ring using the
grey wolf optimization algorithm, and the results were relatively ideal. However, it
did not compare results with other optimization algorithms. There may be room for
further improvement in the structural parameters of the grading ring.

7. Conclusions

This paper, based on finite-element simulation, calculated the electric field distribution
around the 1100 kV DC voltage ratio standard device. The NSD neural network was
designed, and the GWO algorithm was applied to optimize the grading-ring structure of
the standard device. The conclusions are as follows:

The simulation model for the 1100 kV DC voltage ratio standard device was estab-
lished, and the electric field was calculated. The maximum field strength under the initial
grading-ring parameters was 12,161.1348 V/cm, which may lead to corona discharge and
aging of the insulating sleeve.

During the design, the neural network model was compared with five other regression
models. The neural network model showed the smallest MAE, MSE, and RMSE, indicating
the best regression performance. When comparing neural network models with different
numbers of fully connected layers, the model with four layers performed the best. Therefore,
a neural network model with four fully connected layers was selected.

The GWO algorithm was employed for optimization, resulting in the optimized
parameters for the main grading ring: an inner radius of 490 mm, distance from the center
to the ground of 7300 mm, and distance from the center to the symmetry axis of 1550 mm.
For the auxiliary grading ring the parameters are the following: an inner radius of 290 mm,
distance from the center to the ground of 8150 mm, distance from the center to the symmetry
axis of 900 mm. The maximum electric field strength obtained was 10,009.2881 V/cm,
representing a 17.69% reduction compared to the initial grading-ring parameters.
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