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Abstract: The fluctuation and intermittency of wind power generation seriously affect the stability
and security of power grids. Aiming at smoothing wind power fluctuations, this paper proposes a
flywheel–battery hybrid energy storage system (HESS) based on optimal variational mode decom-
position (VMD). Firstly, the grid-connected power and charging–discharging power of the HESS
are determined based on the sliding average algorithm. Secondly, the VMD algorithm, optimized
using long short-term memory (LSTM), is used to decompose the hybrid energy storage power
(HESP) into a series of sub-modes with frequencies from low to high. Then, the state of charge of the
battery energy storage system and the speed of the flywheel energy storage system are monitored
in real time, and the primary power of the HESS is modified according to the rules formulated by
fuzzy control. Finally, through a simulation example, it is concluded that the method meets the
requirements of smoothing wind power fluctuations and gives full play to the characteristics of
energy storage battery and flywheel energy storage to ensure the stable operation of the energy
storage system. The method presented in this paper can provide a reference for HESP configuration
and control operation strategy formulation.

Keywords: variational mode decomposition (VMD); long short-term memory (LSTM); flywheel–battery
energy storage system; fuzzy control

1. Introduction

In recent years, the wind power industry has developed rapidly around the world. For
example, in China, wind power generation in 2023 reached 809 billion KWH, a year-on-year
increase of 12.3%. The utilization rate of wind power has also increased yearly, but its
random and intermittent characteristics have had a great impact on the power grid [1]. It
has become urgent for the new generation of power grids to reduce the influence of the
wind power grid connection by suppressing wind power fluctuation using key technology.
In order to avoid adverse effects, wind power plants usually need to be equipped with
corresponding energy storage devices to control wind power fluctuations within a safe
range [2].

Energy storage system devices can generally be divided into two categories [3,4]:
energy-type energy storage and power-type energy storage. Energy-type energy storage
is mainly represented by batteries, which have the advantage of a high energy density.
However, compared to power-type energy storage, their power density is smaller and
their response time is longer, and they are usually used to address high-energy and low-
frequency power fluctuations. Supercapacitor, superconducting magnetic, and flywheel
energy storage, as representatives of power-type energy storage, have the advantages of
high power density and frequent charge and discharge. However, compared to energy-type
energy storage, their energy density is smaller, so they are usually used to handle power
fluctuations with a low volume and high frequency [5].

Electronics 2024, 13, 1362. https://doi.org/10.3390/electronics13071362 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071362
https://doi.org/10.3390/electronics13071362
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9876-2091
https://doi.org/10.3390/electronics13071362
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071362?type=check_update&version=2


Electronics 2024, 13, 1362 2 of 18

Scholars have conducted many studies on wind power fluctuations. Based on the
relationships among the time constant, volatility, and energy storage capacity, Refs. [6–8]
optimized a hybrid energy storage model with a first-order low-pass filter. However, there
is a certain time lag in the implementation of the model, and it is difficult to extract the
eigenvalues accurately. Ref. [9] used wavelet packet decomposition to process the original
power signal for wind farm power fluctuations, and then used the corresponding energy
storage device to calm the power fluctuations. The wavelet packet decomposition method
uses a lower high-frequency component and a higher low-frequency component after sig-
nal decomposition. Ref. [10] proposed a method that uses empirical mode decomposition
(EMD) to process the original wind power data and then uses an energy storage device
to smooth the wind power fluctuation, but the power fluctuation constraint is not fully
considered. Refs. [11–13] introduced EMD to decompose the original wind power data to
obtain high- and low-frequency power and combined it with Hilbert transform to obtain
the instantaneous frequency of the inherent mode function (IMF), select the boundary fre-
quency, and adjust the charge–discharge power of the energy storage system by monitoring
the state of charge (SOC) of the battery energy storage system (BESS) so as to extend the
service life of the battery.

Since modal components with similar frequencies cannot be accurately separated out
in EMD recursive decomposition, mode aliasing occurs, which is easily affected by the
sampling rate, and recursive screening cannot correct errors. Compared to EMD, variational
mode decomposition (VMD) can solve problems such as the mode aliasing phenomenon in
signal decomposition and characteristic frequencies that are difficult to distinguish due to
noise interference [14,15]. Additionally, the VMD rate is high and has good robustness.

Long short-term memory (LSTM) overcomes the defects of recurrent neural networks
(RNNs) and challenges such as gradient disappearance, gradient explosion, and lack of
long-term memory in learning and training [16,17]. LSTM is widely used in the field of time
series prediction, such as power load prediction [18–20] and wind speed prediction [21,22].
In Ref. [23], a VMD and LSTM fusion model was used to forecast the sales volume of
new energy vehicles. Ref. [24] proposed a short-time traffic flow prediction method based
on VMD and LSTM neural networks. Ref. [25], based on VMD-LSTM fuel price forecast,
achieved the best performance. Ref. [26] proposed a variational mode decomposition–long
short-term memory (VMD-LSTM) wind power forecasting method, which has good perfor-
mance. With the development of deep learning, a hybrid model of LSTM and VMD has
become the future trend [27].

Aiming at smoothing the power fluctuation of wind power generation, a power
decomposition method of a flywheel–battery hybrid energy storage system (HESS) based
on LSTM-optimized VMD is proposed. Firstly, the grid-connected power and HESS
power are calculated based on the sliding average algorithm. Secondly, the decomposition
algorithm based on LSTM-optimized VMD is used to decompose the hybrid energy storage
power (HESP) into a series of sub-modes with frequencies from low to high to complete the
initial power distribution of the HESS. Then, the state of charge of the BESS and the speed
of the flywheel energy storage system (FESS) are monitored in real time, and the primary
power of the HESS is modified according to the rules formulated by fuzzy control. Finally,
through a simulation example, it is concluded that the HESS can meet the requirements
of smooth wind power fluctuations and give full play to the characteristics of energy
storage battery and flywheel energy storage to ensure the stable operation of the energy
storage system.

The original contributions of this paper are as follows.

(1) The sliding average algorithm is used to determine the charging–discharging power
grid power and the HESS;

(2) The variational mode decomposition algorithm optimized with LSTM is used to
decompose the HESP into a series of sub-modes with frequencies from low to high to
complete the primary power distribution of the HESS;
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(3) The state of charge of the BESS and the speed of the FESS are monitored in real time,
and the primary power of the HESS is modified according to the rules formulated by
fuzzy control;

(4) The feasibility and superiority of the proposed method are verified by comparative
analysis of the curves with LSTM optimization and without LSTM optimization.

The structure of the paper is organized as follows. In Section 2, the principle of the
LSTM-optimized VMD algorithm is introduced in detail. In Section 3, first, the sliding
average algorithm is used to determine the charging–discharging power grid power and
the HESS. Second, the LSTM-optimized variational mode decomposition algorithm is used
to decompose the HESP into a series of sub-modes with frequencies from low to high to
complete the primary power distribution of the HESS, and the primary power of the HESS
is modified according to the rules formulated by fuzzy control. In Section 4, the feasibility
and superiority of the proposed method are verified using a simulation example.

2. Variational Mode Decomposition of Power in HESS
2.1. Flywheel–Battery HESS

With the development of smart grids, the demand for energy storage technology will
become more diverse. It is difficult for any single energy storage technology to fully take
into account the dual requirements of the power density and energy density of power grid
frequency modulation and peak regulation, which easily cause declines in energy efficiency
and durability, restricting the development of the energy storage industry. Therefore, the
use of hybrid energy storage forms and the combination of energy storage systems with
different performance levels can give full play to the advantages of different energy storage
technologies. The development and application trend of energy storage technology is to
meet the needs of power and energy and other aspects.

A diagram of a wind power flywheel–battery HESS and its grid-connected structure
is shown in Figure 1. The structure is mainly composed of three parts: a wind farm, a
BESS (energy-type), and a FESS (power-type) (composed of HESS and control system). The
function of the control system is to collect the real-time power signal of the wind farm and
control the charging–discharging state of the HESS in real time under the constraints of the
grid-connected wind power grid standard to effectively suppress the fluctuation of wind
power output.
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According to Figure 1, the power relationship of the HESS is as follows:

Pw = Pout + Phess = Pout + Pb + Pf (1)

where Pw is the active power in MW emitted by the wind farm; Pout is the grid-connected
power; Pb is the charge–discharge power of the BESS in the HESS; Pf is the charge–discharge
power of the FESS in the HESS; Phess is the charge–discharge power of the HESS. It is
specified here that when Phess is positive, it means that the HESS is charged, and when Phess
is negative, it means that the HESS is discharged.

2.2. Variational Mode Decomposition

VMD is a method for the non-recursive variational mode decomposition of non-stationary
signals. A new signal pre-processing method proposed by Konstantin Dragominetskiy in
2014, in which all modes are extracted simultaneously, can be used to combine signals
composed of multiple frequencies. The alternating multiplier method is used to optimize
multiple finite-bandwidth IMFs. The essential aim of the algorithm decomposition is to
filter and reduce noise, and most of these modal components have their corresponding
center frequencies.

In VMD decomposition, the input signal f is decomposed into k mode functions uk(t),
and each uk(t) has a bandwidth with limited center frequency. The sum of the bandwidth
estimates of each uk(t) is the minimum, and the constraint condition f is equal to the sum
of all modes. The constraint variational equation is expressed as follows:

min
{uk},{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f

(2)

where {uk} = {u1, u2, . . . , uk} is the set of all sub-modes; {ωk} = {ω1, ω2, . . . , ωk} is
the center frequency; δ(t) is the impulse function; k is the number of modes. The last
determines how many modes are included in the decomposition result. If the value of K is
too small, multiple real modes may be mixed together. If the value of K is too large, it may
lead to the appearance of false modes.

To solve the variational constraint model, the alternating direction method of mul-
tipliers (ADMM) is used, the Lagrange operator λ and the quadratic penalty term α are
introduced, and the variational constraint model of the formula is transformed into an
unconstrained variational expression. The augmented Lagrange expression is obtained
as follows:

({uk}, {ωk}, λ) = α ∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jwkt

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)− ∑
k

uk(t)

∥∥∥∥∥
2

2

+

[
λ(t), f (t)− ∑

k
uk(t)

]
(3)

where α is the penalty factor; λ is the Lagrange multiplication operator.
The modal components and center frequencies are optimized, the saddle points of

the augmented Lagrange function are searched, and the expressions of uk, ωk, and λ after
iteration are alternately optimized using Parseval–Fourier isothermal transform. Through
calculation, the expression un+1

k can be obtained as

un+1
k = argmin

uk∈X

α

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jwkt

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)− ∑
k

uk(t) +
λ(t)

2

∥∥∥∥∥
2

2

 (4)

where X represents the set of all uk, and n is the number of iterations. The Fourier isometric
transform converts Equation (4) into the following frequency domain:
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ûn+1
k = argmin

ûk , uk∈X

α

∥∥∥∥j(ω − ωk)

[
1 +

ω

|ω|

]
ûk(ω)

∥∥∥∥2

2
+

∥∥∥∥∥ f̂ (ω)− ∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥∥∥
2

2

 (5)

where f̂ (ω) is the Fourier transform of f (t), and ω is the random frequency.
In the reconstructed approximation term, the conjugate symmetry of the real signal is

used to change Equation (5) into a frequency non-negative half-space integral form, which
is solved in the frequency domain by Parseval’s theorem.

ûn+1
k = argmin

ûk , uk∈X


∫ ∞

0

[
4α(ω − ωk)

2|ûk(ω)|2
]
+

∣∣∣∣∣ f̂ (ω)− ∑
i

ûi(ω) +
λ̂(ω)

2

∣∣∣∣∣
2

dω

 (6)

For the frequency, if û(ω) = 0, then

ûn+1
k (ω) =

f̂ (ω)− ∑i ̸=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω − ωk)
2 (7)

As can be seen in Equation (7), ûn+1
k (ω) can be equivalent to a Wiener filter for

the current residual signal. The whole spectrum of the real mode is obtained by the
conjugate symmetry. Using

{
ûn+1

k (ω)
}

, the inverse Fourier transform is used to obtain the

time domain {uk(t)}. Similarly, in order to obtain ωn+1
k , the smallest value of the center

frequency update problem can be transformed into the corresponding frequency domain,
expressed as

ωn+1
k = argmin

ωk

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jwkt

∥∥∥∥2

2

}
= argmin

ωk

{∫ ∞

0
(ω − ωk)|ûk(ω)|2dω

}
(8)

The center frequency is iteratively updated to

ωn+1
k =

∫ +∞
0 ω|ûk(ω)|2dω∫ +∞

0 |ûk(ω)|2dω
(9)

The Lagrange operator λ is updated to

λ̂n+1
k (ω) = λ̂n

k (ω) + τ[ f̂ (ω)− ∑
k

ûn+1
k (ω)] (10)

The precision convergence criterion ε > 0. When the accuracy meets the following
requirements, the iteration process stops:

∑
k

∥ûn+1
k − ûn

k ∥
2
2

∥ûn+1
k ∥2

2

< ε (11)

where ûn+1
k (ω), λ̂n+1

k (ω), f̂ (ω), and ûi(ω) are the Fourier transforms of ûn+1
k (t), λ̂n+1

k (t), f̂ (t),
and ûi(t), respectively. A flow chart of the VMD algorithm is shown in Figure 2.
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2.3. VMD Optimized with LSTM

As an excellent RNN algorithm, LSTM is widely used in the field of prediction. The
structure of LSTM includes a forget gate, an input gate, and an output gate [28]. The
structure of the LSTM is shown in Figure 3.

Input gate it, which controls how much of the input at the current time can enter the
memory cell, is calculated as follows:

it = σ(bi + ωi,hht−1 + ωi,xXt) (12)

Forget gate ft determines how much of the memory cell from the previous moment
will be transmitted to the current moment t.

ft = σ
(

b f + ω f ,hht−1 + ω f ,xxt

)
(13)
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The status of memory cell ct remembers the value of the circular layer neurons status
at time t.

ct = ct−1 ∗ ft + it ∗ c̃t (14)

c̃t = tan h(ωc,xxt + ωc,hht−1 + bc)
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Output gate ot determines what proportion of the memory value of the storage mem-
ory cell can be output.

ot = σ(bo + ωo,hht−1 + ωo,xxt) (15)

ht = ot ∗ tan h(ct) (16)

where xt is the input data at t time step, ht denotes the output data at t − 1 time step. σ is
the sigmoid function and ∗ represents the element-wise product. ω and b are the weight
matrices and bias vectors.

The predicted values yt can be obtained from (17) as follows:

yt = f
(
by + ωyht

)
(17)

where ωy and by are the weight matrix and bias, respectively, which determine the contri-
bution of the extracted features. f is the activation function, such as sigmoid, tanh.

In this paper, the LSTM-optimized VMD parameters are the modal number α and
penalty factor α. The parameters of the LSTM model are as follows: 2 input and 2 output
layer variables; 100 hidden layer units; 1 hidden layer; 200 epochs; an adjustable parameter;
a batch size of 128. A flow chart of the LSTM-optimized VMD algorithm [29] is shown
in Figure 4.
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3. HESP Distribution Strategy
3.1. Sliding Average Algorithm

The principle of the sliding average is as follows: take a sliding window of length
L, which slides forward and backward along the sampling point. Each time the sliding
window advances by one sampling point, a new sampling point is added. Similarly, every
time the window goes back one sampling point, a new sampling point is added in front of
it. Keep the L sample points of the sliding window unchanged. This can be described by
the following formula.

y(n) =
1
L

L−1

∑
i=0

x(n − i) (18)

where x(n) and y(n) are the input and filtered output values of the NTH data series, and n
represents the sequence number of the data.

The adaptive sliding average method is used to extract grid-connected power from
the original wind power data. The power of the HESS is calculated from the wind power
minus the grid-connected power, and further power distribution is carried out. In this
way, the phenomenon of insufficiency or over-leveling can be avoided [30]. The specific
implementation method is shown in Figure 5.
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3.2. First Power Allocation

After the grid-connected power and HESS power are obtained, the proposed LSTM
is used to optimize the VMD parameters, and the HESS power is decomposed into a
series of IMFs with frequencies from low to high. The boundary point of the high- and
low-frequency components was determined by observing the signal characteristics of each
IMF in the frequency domain, and the IMF is reconstructed. The reconstruction power is
as follows: 

Pb(t) = Plow(t) =
j

∑
k=1

uk(t)

Pf (t) = Phigh(t) =
k
∑

k=j+1
uk(t)

(19)

Plow(t) is the low-frequency reconstruction of power, compensated for by the BESS,
giving full play to the characteristics that lithium-ion batteries can discharge for a long
time and which have a larger capacity of energy storage, meaning the HESS has a longer
peak load capacity [31]. Phigh(t) is a high-frequency reconstruction power, compensated
for by the FESS, giving full play to the advantages of fast charge–discharge response, high
power charge and discharge, and long life, meaning the HESS has a strong frequency mod-
ulation ability, avoiding the shortcomings of the frequent changes in the charge–discharge
frequency modulation of lithium-ion batteries; j is the dividing point between high and
low frequency.

3.3. Secondary Power Correction

The VMD algorithm, after parameter optimization, completed the primary power
distribution but did not take into account the fact that the overcharge and over discharge
of the energy storage device will seriously affect its life, especially for the battery system,
where the high cost per unit capacity limits its energy storage capacity. Therefore, based on
the primary allocation, the SOC of the BESS and the speed of the FESS were considered,
and the fuzzy control rules were adopted to make the second correction of the power
instruction in real time [32]. The fuzzy control process is shown in Figure 6. The corrected
power instruction is as follows:{

P̂b(t) = Pb(t) + Kb(t)·Pb− f (t)
P̂f (t) = Pf (t) + K f (t)·Pf− f (t)

(20)
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As shown in Figure 6, the fuzzy controller of the BESS has two input variables and
one output variable.

First input variable: real-time SOC;
Theory domain range of SOC: [0, 1];
Fuzzy subset of SOC: {BVL, BS, BM, BH, BVH};
SOC level: {very low, low, moderate, high, very high};
Second input variable: normalized power instruction Pb;
Theory domain range of Pb: [−1, 1];
Fuzzy subset of Pb: {BNH, BNL, BZO, BPL, BPH};
Power level of Pb: {negative high, negative low, zero, positive low, positive high};
First output variable: correction coefficient of the power Kb;
Theory domain range of Kb: [−0.2, 0.2];
Fuzzy subset of Kb: {BNH, BNL, BZO, BPL, BPH};
Level of correction coefficient Kb: {negative high, negative low, zero, positive low,

positive high}.
The fuzzy control rules of the BESS are shown in Table 1.

Table 1. Fuzzy control rules of BESS.

Kb(t) SOCb(t)
BVL BL BM BH BVH

Pb(t)

BNH BPH BPL BZO BZO BZO
BNL BPL BPL BZO BZO BNL
BZO BPL BPL BZO BZO BNL
BPL BPL BZO BZO BNL BNL
BPH BZO BZO BZO BNL BNH

As shown in Figure 6, the fuzzy controller of the FESS has two input variables and
two output variables.

First input variable: flywheel speed, n f (t);
Theory domain range of n f (t): [4000, 6000];
Fuzzy subset of n f (t): {FVL, FS, FM, FH, FVH};
Flywheel speed of n f (t): {very low, low, moderate, high, very high};
Second input variable: the normalized power instruction Pf ;
Theory domain range of Pf : [−1, 1];
Fuzzy subset of Pf : {FNH, FNL, FZO, FPL, FPH};
Power level of Pf : {negative high, negative low, zero, positive low, positive high};
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The first output variable: correction coefficient for the power K f ;
Theory domain range of K f : [−0.2, 0.2];
Fuzzy subset of K f : {FNH, FNL, FZO, FPL, FPH};
Level of correction coefficient K f : {negative high, negative low, zero, positive low,

positive high}.
The fuzzy control rules of the flywheel system are shown in Table 2.

Table 2. Fuzzy control rules of FESS.

Kf(t) nf(t)
FVL FL FM FH FVH

Pf(t)

FNH FPH FPL FZO FZO FZO
FNL FPL FPL FZO FZO FNL
FZO FPL FPL FZO FZO FNL
FPL FPL FZO FZO FNL FNL
FPH FZO FZO FZO FNL FNH

3.4. Power Distribution Flow Chart of HESS

A flow chart of the power distribution of the HESS is shown in Figure 7.
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4. Simulation and Discussion
4.1. Wind Power

In order to verify the effectiveness of the proposed strategy, for this study, we used the
3.3 MW wind power data of a wind farm. The recording interval is 1 min and the sampling
time is 900 min. The simulation experiment was carried out in MATLAB(R2020a), and the
power curve is shown in Figure 8.
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4.2. Grid-Connected Power and HESP

Using Formula (1) in Section 2.1 of this paper, the grid-connected power was extracted
from the wind power data using the sliding average method. The power of the HESS was
calculated by subtracting the grid-connected power from the wind power, and further
power distribution was performed, as shown in Figure 9. The orange solid line is the grid-
connected power, and the green solid line is the HESS power. Pout is the grid-connected
power and Phess is the HESS power.
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4.3. HESP Decomposition

The HESS power was decomposed using the LSTM-optimized VMD method. The
HESS power of IMF1-IMF6 after decomposition is shown below in Figure 10.

According to the preliminary power decomposition in Formula (19), IMF1-IMF3 was
selected for low-frequency and IMF4-IMF6 for high-frequency decomposition.
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4.4. Fuzzy Rule

The second revision to the fuzzy rule is shown in Figure 11.
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4.5. Flywheel Energy Storage Power

According to the primary power distribution and the secondary power correction
based on fuzzy reasoning, the power of the FESS is the high-frequency power component
of the HESS; the reconstruction curve is shown in Figure 12. By comparing the curves
optimized with LSTM to those without LSTM optimization, it can be seen that the power
curves are all in the high-frequency range. The LSTM optimization method can better
realize the fast charging–discharging of the flywheel and reduce the charging–discharging
depth of the battery.
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4.6. Battery Energy Storage Power

According to the primary power distribution and the secondary power correction
based on fuzzy reasoning, the battery system power is the low-frequency power component
of the HESS. Figure 13 shows the reconstruction curve, and Figure 14 shows the comparison
of the depth of discharge (DOD) of the battery system. By comparing and analyzing the
curves with LSTM optimization to those without LSTM optimization, it can be seen that the
low-frequency power curve with LSTM optimization has less fluctuation, and the depth
of charge–discharge is shallower. This avoids the overcharge and over discharge of the
battery, delays the attenuation of the battery system, and prolongs the service life.
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4.7. Discussion

The wind power, grid-connected power, flywheel power, and battery power were
integrated into a chart, as shown in Figure 15.
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From the above curve and the comparative analysis as shown in Table 3, the following
can be seen:

(1) The power curve of the FESS fluctuates greatly, and the charge–discharge frequency is
high, which meets the requirements of power-type energy storage;

(2) The power curve of the BESS fluctuates less, and the charge–discharge frequency is
low, which meets the requirements of energy storage;

(3) The fluctuation of the grid-connected power curve is very small, which realizes the
suppression of power fluctuation;

(4) The low-frequency component of battery energy storage reconstructed using the
LSTM-optimized VMD decomposition method has the advantage of extending the
life of lithium battery systems. The depth of charge–discharge is shallower, which
avoids the overcharge and over discharge of the battery, delays the attenuation of the
battery system, and prolongs the service life.

Table 3. Comparison of methods and advantages.

References Method
Advantage

Smoothing Wind
Power Fluctuations SOC Constraint DOD

Method of this paper VMD+LSTM Yes Yes Reduce DOD of BESS

Reference [30] VMD Yes Yes Reduce DOD of
supercapacitor

Reference [32] VMD+GWO (gray wolf
optimization) Yes Yes NO

Reference [33] Wavelet packet
decomposition Yes Yes NO

5. Conclusions

In this paper, a hybrid flywheel–BESS based on optimal variational mode decomposi-
tion is proposed to smooth out wind power fluctuations. Firstly, the grid-connected power
and charging–discharging power of the HESS were determined using the sliding average
algorithm, and the HESP was decomposed using the LSTM-optimized VMD algorithm.
Then, the power of the HESS was modified according to the rules formulated by fuzzy
control. Finally, the feasibility and superiority of the proposed method were verified by a
simulation example. The method proposed in this paper provides a reference for HESP
configurations and control strategies.

Although the proposed method has certain feasibility and superiority, there are still
many shortcomings in this paper:

(1) This paper lacks the study of a wind power generation model, so this would be the
next step;

(2) We only used LSTM to optimize VMD; the next step will be to try to use other
algorithms for optimization and to carry out comparative research.
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