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Abstract: Studying how objects are positioned is vital for improving technologies like robots, cameras,
and virtual reality. In our earlier papers, we introduced a bio-inspired artificial visual system for
orientation detection, demonstrating its superiority over traditional systems with higher recognition
rates, greater biological resemblance, and increased resistance to noise. In this paper, we propose a
hardware-based orientation detection system (ODS). The ODS is implemented by a multiple dendritic
neuron model (DNM), and a neuronal pruning scheme for the DNM is proposed. After performing
the neuronal pruning, only the synapses in the direct and inverse connections states are retained.
The former can be realized by a comparator, and the latter can be replaced by a combination of a
comparator and a logic NOT gate. For the dendritic function, the connection of synapses on dendrites
can be realized with logic AND gates. Then, the output of the neuron is equivalent to a logic OR
gate. Compared with other machine learning methods, this logic circuit circumvents floating-point
arithmetic and therefore requires very little computing resources to perform complex classification.
Furthermore, the ODS can be designed based on experience, so no learning process is required.
The superiority of ODS is verified by experiments on binary, grayscale, and color image datasets.
The ability to process data rapidly owing to advantages such as parallel computation and simple
hardware implementation allows the ODS to be desirable in the era of big data. It is worth mentioning
that the experimental results are corroborated with anatomical, physiological, and neuroscientific
studies, which may provide us with a new insight for understanding the complex functions in the
human brain.

Keywords: visual system; orientation detection; dendritic computation; big data; hardware
implementation

1. Introduction

Understanding and detecting object orientation is fundamental in various techno-
logical domains, including robotics, camera systems, and virtual reality. The traditional
approaches were to model the direction of a neighborhood in terms of the direction of
the gradient of the image [1] or to take the axis with the lowest eigenvalue in the Fourier
domain of the n-dimensional neighborhood [2]. A bio-inspired artificial visual system may
provide a powerful new approach to orientation detection. Neuroscience aims to explain
how the sensory inputs such as sight, smell, taste, hearing, and touch combine with our
perception of the world to generate behavior [3,4]. The visual system supplies approxi-
mately ninety percent of the external information to the brain [5]. About fifty percent of
the nerve fibers are connected to the retina, and two-thirds of all electrical activities in the
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brain are caused by the visual system when we open our eyes [6]. Therefore, vision is more
important than all other senses in our sensory system [7]. Visual information undergoes a
series of transformations in expression as it is transmitted through the visual system, which
relies on the receptive field properties of neurons [8]. The light entering the eye projects
an inverted image onto the retina as it passes through the composite lens, which is the
combination of the cornea and lens. The visual information from the retina is transmitted
along the optic nerve to the visual cortex. The lateral geniculate nucleus (LGN) is connected
to approximately ninety percent of the axons in the optic nerve [9]. The LGN neurons then
transmit the visual image to the primary visual cortex (also called area V1, area 17, or the
striate cortex), which is an important area for processing visual information. Different from
retinal ganglion cells and LGN neurons, which respond indiscriminately to virtually all
stimuli within the receptive field, neurons in the V1 area are more sensitive to complex
visual information, such as orientation and motion [10]. In addition, the processing of
color information is also performed in the V1 area, where the shape and color of the image
acquired from the retina has been radically altered [11]. Anatomical and physiological re-
search elucidates that the combination of circularly symmetric inputs lead to the emergence
of orientation selectivity, and color selectivity is obtained from the transformation of cone-
opponent inputs [12,13]. These landmark contributions have led to crucial speculations
and controversies about how neurons in the V1 area perform computation in our sensory
system [14]. The mechanism underlying the generation of orientation selectivity has been
an important issue and has been critically examined over the past decades [15].

Hubel and Wiesel proposed a simple and long-lasting orientation selective feedfor-
ward model for the first time to explain neuronal computation in area V1 [10]. In this model,
simple cells in area V1 directly receive LGN inputs for specific orientation selectivity. Due
to the requirement for experimental identification of LGN cells and corresponding neurons
in area V1, this prediction was not examined and confirmed until about three decades
later, when the emergence of orientation selectivity in area V1 was corroborated [16–18].
However, the function of neurons in area V1 remains the major unresolved issue concerning
the processing of visual information owing to the lack of explicit data [11,19]. With the ad-
vancement of artificial neural networks, many researchers have applied the convolutional
neural network (CNN), which has the most powerful performance in image recognition, to
orientation detection in recent years. Nagata et al. designed a CNN based on the transfer
learning of AlexNet, which is regarded as one of the most influential techniques in com-
puter vision [20–23]. Yang et al. proposed an embedded implementation of an estimation
algorithm based on CNN for hand detection and orientation [24]. Joshi et al. applied
CNN to automatically detect photo orientation [25]. In addition, a CNN-based approach
to detection and orientation estimation was designed for modeling traffic scenarios with
intelligent vehicles [26]. Jiang et al. proposed a rotational region CNN for the detection
of text orientation in images [27]. A 3D CNN-based workflow was designed to detect
faults and estimate orientation properties from seismic data [28]. Although the CNNs and
their variants have been successfully applied in numerous tasks, they contribute little to
the understanding of the principle of neuronal computation because they are black-box
models [29,30]. It is worth mentioning that the impressive results of CNNs are highly
dependent on intensive pools of data, which indicates that their major strength is con-
tributed by the availability of massive datasets [31]. However, the cost of accessing and
annotating data is undoubtedly high due to the need for a large amount of data to increase
the reliability of the computational results. Therefore, it is of great interest to develop
an efficient model for orientation detection, which may also aid in the understanding of
neuronal computation.

Neuronal cell bodies and connections are integrated into various networks in the brain,
with more than 104 dendritic neurons per cubic millimeter. The emergence of orientation
selectivity is necessarily associated with interactions among dendritic neurons. In the prior
studies, we have proposed a dendritic neuron model (DNM) to cope with the lack of neuro-
plasticity in a wide range of artificial neural networks [32,33]. The DNM can be trained to
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prune useless dendrites and redundant synapses, thereby generating a unique topology for
each specific task [34]. This implies that the DNMs with different topologies can simulate
various neuronal functions [35]. In addition, the simplified topology can be implemented
by the logic circuits, which demonstrates that the DNM can obtain excellent performance
by consuming only little computing resources, with easy hardware implementation [36].
The efficiency of the DNM is certainly promising in the era of big data, which brings to
a climax the studies on improvement [37–40]. The performance of the DNMs has been
proven in various fields, such as computer-aided diagnosis [41], bankruptcy prediction [42],
wind speed forecasting [43], and PM2.5 concentration prediction [44]. Only a simple DNM
is required to accomplish these tasks, which is clearly inadequate for the task of dealing
with more complex image data.

In this work, we propose a novel hardware-based orientation detection system (ODS)
using dendritic computation and employ a combination of multiple DNMs to implement it.
In the local receptive fields, numerous dendritic neurons cooperate to detect local orienta-
tion information. The emergence of orientation selectivity relies on the summarization of
local orientation information. The orientation of the neurons with the highest activation
intensity determines the orientation of the object in the image. The ODSs achieve excellent
performance on binary, grayscale, and color datasets. The results demonstrate that the
ODSs can make correct judgments regardless of the shape, size, and location of the objects
because only the information of the positional relationship among objects is utilized, and
the size of the image has no effect on the results. Moreover, the ODSs maintain perfect
accuracy in experiments with actual photographs, which suggests a promising practicality.
The comparison experiments with CNNs and corresponding statistical results indicate
that the ODSs almost overwhelm CNNs in all aspects. It is worth noting that our system
corroborates the finding that inhibition in the visual cortex is important in orientation
selectivity, which is obtained from the physiological experiments. The introduction of the
inhibition scheme successfully enhanced the anti-noise ability of the ODS. Furthermore,
a slightly more refined ODS has yielded even more impressive results. Subsequently, the
ODSs are also implemented by logic circuits, which can drastically accelerate the com-
putation without sacrificing accuracy. These results lead us to believe that the ODS is a
hopeful orientation detection system and may be instructive for understanding human
brain functions. In our past research, a theoretical framework demonstrated that the ODS
has the capacity to effectively address orientation problems, laying a solid foundation for
our practical implementation [45]. In addition, empirical evidence showed that by simply
modifying the inputs of the model, the ODS can also excel in motion direction detection
tasks, further expanding the versatility of DNMs [46]. More exploration into the extensive
possibilities offered by DNMs provided valuable insights into the potential applications
and capabilities of these models.

The rest of this paper is organized as follows: Section 2 provides a detailed introduction
to the ODS. Section 3 describes the experimental setup and datasets. In addition, the results
of simulation are also presented. Finally, the conclusions are drawn in Section 4.

2. Materials and Methods

It is well known that the visual system of mammals starts with the eyes [47]. The
visual system is described in Figure 1A. At the bottom of the eye is the retina, which can be
divided into three functionally distinct parts, called photoreceptors, horizontal cells, and
bipolar cells, which are presented in Figure 1B. In the retina, photoreceptors are specifically
responsible for converting light information into neural activity, and other cells directly or
indirectly connected to them to produce visual information [19]. As shown in Figure 1A,
the preliminary processed and integrated visual information is transmitted to the V1
through the optic nerve, optic chiasm, lateral geniculate nucleus, and optic radiation [11].
The visual field map undergoes many distortions, transformations, and reorganizations
in the process of uploading it to the brain, which is also termed retinal mapping [48,49].
For example, images on the retina are inverted [50]. Retinotopic mapping can be found
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in the brains of various mammals, regardless of huge differences in the size and spatial
arrangement of the brains and the number of neurons of the species [51,52]. The retinotopic
organization was confirmed in the human brain by functional magnetic resonance imaging
(MRI) [53–55]. Therefore, the shape and size of the image change drastically while the
positional relationship among objects is maintained in the process of transmitting visual
information. In other words, the adjacent spots on the retinal image are still adjacent
on the retinally mapped image [56,57]. Significantly different from the retina and lateral
geniculate nucleus, a receptive field with orientation selectivity was first discovered in the
visual cortex of cats [58]. Subsequently, this discovery was further confirmed in the V1 of
monkeys [59]. Therefore, we believe that information of the positional relationship among
objects and dendritic neurons plays an indispensable role in the generation of orientation
selectivity, and we propose a novel orientation detection mechanism based on dendritic
computation. A typical dendritic neuron mainly contains dendrites, cell body (soma),
nucleus, axon, and axon terminal, and dendritic neurons transmit signals through synapses,
which is described in Figure 1C. Based on the dendritic neuron, we propose a combination
of multiple DNMs to realize the orientation detection mechanism.

Figure 1. Visual system: (A) flowchart of visual system; (B) organization of the retina; (C) dendritic
neuron.

2.1. Dendritic Neuron Model

As shown in Figure 2A, the DNM consists of synapses, dendrites, a membrane, and a
cell body [60]. The DNM receives input signals from neighbor neurons, and the transmis-
sion of information starts from the synapses and then moves to the dendrites, membrane,
and finally to the cell body. The detailed definitions of the DNM and its unique schemes
are introduced in this section.
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2.1.1. Model Structure

Sandford Palay proved that existence of synapses in an epoch-making study [61].
The connection between two neurons is named the synapse; this special area allows the
presynaptic neuron to send electrical or chemical signals to the postsynaptic neuron [62].
In the DNM, a neuron receives a signal across a synapse, and the synapse is defined as a
sigmoid function. The postsynaptic potential Si,m of presynaptic potential xi to the mth
dendrite can be described as follows:

Si,m =
1

1 + e−k(wi,mxi−qi,m)
, (1)

where i ∈ [1, 2, . . . , I], and I represents the number of presynaptic neurons; m ∈ [1, 2, . . . , M],
where M is the number of dendrites; k denotes a distance parameter; and wi,m[−1.0, 1.0]
and qi,m[−1.5, 1.5] represent the weight and bias, respectively, which can be modified by
learning or designed based on experience. In this paper, they are designed based on our
knowledge of ODM and local orientation detective neurons. In this work, the backprop-
agation algorithm is employed as the learning algorithm. It is worth noting that not all
stimuli can trigger an action potential [63]. The postsynaptic potential is only caused when
the presynaptic potential exceeds the threshold potential [64]. The threshold potential θi,m
corresponding to each synapse is given as follows:

θi,m =
qi,m

wi,m
. (2)

According to the relationship between signal strength xi and threshold θi,m, the signals
can be grouped into the subthreshold signal (xi < θi,m), threshold signal (xi = θi,m), and
suprathreshold signal (xi > θi,m).

In the brain, the dendrites extend from the cell body and receive electrical or chemical
signals from synapses [65]. As related research in neuroscience shows that multiplication
plays an important role in auditory spatial receptive field and visual neurons [66,67],
multiplication is employed in the dendrite, which is the simplest nonlinear operation. The
dendritic function Dm can be mathematically defined as follows:

Dm =
I

∏
i=1

Si,m. (3)

This can be regarded as the product of the outputs of the synapses. The positive and
negative ions drive the electrical potential away from the resting potential through ion
channels in the cell membrane to activate neurons [68]. Therefore, all electrical or chemical
signals from dendrites collectively affect the membrane potential V. The membrane func-
tion is interpreted as an accumulation process, which is implemented by linear summation
in the DNM. This process is determined by:

V =
M

∑
m=1

Dm. (4)

Although the terminals of both the dendrites and axon are extremely complex, each
neuron has only one cell body, which is the central processing unit. Similar to the synapses,
a key nonlinear processing operation is also performed in the cell body, which means that
the neurons triggers a response only when the total signal reaching the cell body exceeds
a certain threshold potential θsoma [69]. Thus, the cell body is also defined as a sigmoid
function, which can be mathematically expressed as follows:

O =
1

1 + e−k(V−θsoma)
. (5)
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where O is the output of the cell body. Then, the neuron response is taken over by the axon,
which is the output unit of the neuron and responsible for transmitting signals to other
neurons through the axon terminal [70].

Figure 2. Main components of the DNM: (A) architectural description of the DNM; (B) four kinds
of synapses; (C) six cases of connection states; (D) the logic circuit gate represented by each connec-
tion state.

2.1.2. Synapse Evolution Scheme

As mentioned above, the synapse is a neuronal junction between a neuron and its
target neuron [71]. Neurons transmit nerve signals from axons to target neurons through
neurotransmitters. Depending on the role played by the neurotransmitters in stimulating
the target neurons, they can be divided into excitation or inhibition neurotransmitters [72].
In other words, if the potential change caused by the neurotransmitters stimulates the target
neuron to an action, then it is an excitatory postsynaptic potential (EPSP). On the other
hand, if it inhibits the target neuron, it is an inhibitory postsynaptic potential (IPSP) [73].

In the DNM, the synapses can evolve through learning and eventually form four
types of connections: direct connection, inverse connection, constant 1 connection, and
constant 0 connection, which are illustrated in Figure 2B. As shown in Figure 2C, six cases
of connection states are presented, and each special connection state is described in detail
as follows:

1. Direct connection (0 < qi,m < wi,m, with wi,m = 1.0 and qi,m = 0.5.): In the case
of a direct connection, the threshold signal and suprathreshold signal can cause an
excitatory action potential. An EPSP is generated and delivered to the dendrite of
the target neuron, which is approximately 1. Otherwise, the subthreshold signal is
represented as an IPSP, and the synapse approximately outputs 0.
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2. Inverse connection (wi,m < qi,m < 0, with wi,m = −1.0 and qi,m = −0.5.): Contrary
to the direct connection, an inhibitory action potential is caused by the threshold
signal and suprathreshold signal in an inverse connection. It means that the synapse
produces an IPSP, and its output is approximately 0. Conversely, the subthreshold
causes an excitatory synapse, and an EPSP is triggered. The output of this synapse is
close to 1.

3. Constant 1 connection (qi,m < 0 < wi,m, with wi,m = 1.0 and qi,m = −0.5; qi,m <
wi,m < 0, with wi,m = −1.0 and qi,m = −1.5.): There are two cases for constant 1
connection. In both cases, the synapse can only output an EPSP regardless of the input
signal. It means that the synapse ignores the input and consistently outputs 1.

4. Constant 0 connection (0 < wi,m < qi,m, with wi,m = 1.0 and qi,m = 1.5; wi,m < 0 <
qi,m, with wi,m = −1.0 and qi,m = 0.5.): This is the same as the constant 1 connection
in that there are also two cases for the constant 0 connection. However, contrary to
the constant 1 connection, the subthreshold, threshold, and suprathreshold signals
can all cause an IPSP in a constant 0 connection. In other words, no matter what the
input signal is, the synapse remains at approximately 0 output.

2.1.3. Neural Pruning Scheme

During the normal growth of the nervous system, the synapses and dendrites can be
selectively pruned without losing the neurons [74]. This pruning phenomenon is widely de-
scribed and provides an important neuroplasticity mechanism in neurodevelopment [75,76].
In the DNM, the neuronal pruning scheme can be divided into two stages: the synaptic
pruning stage and the dendritic pruning stage.

1. Synaptic pruning stage: In the dendritic function, the multiplication operation is used
and any value multiplied by 1 is equal to itself. The output of the synapse in the
constant 1 connection state is always 1, which suggests that these synapses do not
contribute to dendritic function. Therefore, these synapses can be eliminated without
affecting the results.

2. Dendritic pruning stage: Similar to the synaptic pruning stage, any value multiplied
by 0 is equal to 0, and the output of the synapse in the constant 0 connection always
remains 0. Thus, even if there is only one synapse in a constant 0 connection state
on a dendrite, the other synapses in the entire dendrite can be ignored. The linear
summation operation is adopted in the membranous function, which indicates that
the entire dendrites have no effect on the membrane. Those dendrites that contain
synapses with a constant 0 connection state can be pruned completely.

2.1.4. Hardware Scheme

After synaptic pruning and dendritic pruning, only the synapses in the direct and
inverse connections states are retained, and a unique neuron topology is formed for the task.
Furthermore, a simplified neuron topology structure can be implemented through logic
circuits, which is shown in Figure 2D. Specifically, the synapse in a direct connection can be
simulated by a comparator, and the synapse in an inverse connection can be replaced by a
combination of a comparator and a logic NOT gate. The corresponding action potential θ in
each synapse refers to Equation (2). For the dendritic function, the connection of synapses
on dendrites can be realized with logic AND gates. Then, the outputs of the dendrites are
collected and transmitted to the membrane, and the linear summation operation in the
membrane is equivalent to a logic OR gate. Finally, the cell body can be implemented with
a wire. Compared with other machine learning methods, this logic circuit circumvents
floating-point arithmetic and therefore requires very little computing resources to perform
complex classification.

2.2. Orientation Detection Mechanism

Recent advances in morphology, physiology, and developmental biology have demon-
strated that the microcircuit plays a crucial role in the activity of cortical neurons, such as
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the generation of direction selectivity [77,78]. Studies have confirmed that the interaction
between synapses and dendrites can only perform simple logical operations [79–82]. The
active electrical property of a dendrite lays the foundation for neural computation, which
is also the basis of the brain [83]. As shown in Figure 3A, the human layer 2/3 cortical neu-
rons can implement logical AND, OR, and AND operations, and a related model has been
proposed [84]. It is worth mentioning that the DNM can perfectly realize this biological
model, and the corresponding models are presented in Figure 3B.

Figure 3. Hardware implementation of the ODS-01: (A) schematic model of a L2/3 pyramidal
neuron [84]; (B) hardware implementation of the DNM; (C) flowchart of the ODS-01; (D) hardware
implementation of the ODS-01.

Studies have shown that the brain is similar to a digital computer [85–87]. To be
specific, they both transmit information through electrical signals and contain a large
number of base units that can only perform simple operations [88,89]. The limited medium
in the sensory space in which physiological stimuli can elicit sensory neuronal responses is
called the receptive field [90]. As seen in Figure 3C, an individual neuron is not capable
of generating orientation selectivity, and the neurons in the receptive field cooperate to
produce local orientation information. When the edge of the dark or bright bar in the
receptive field is horizontal, the local orientation is judged to be 0◦. In the same way,
the edges of the dark or bright bars that are vertical will be regarded as 90◦. Similarly,
when the dark or bright bars are placed diagonally or anti-diagonally, the local orientation
information of 135◦ and 45◦ will be generated respectively. Note that, when the projection
in the receptive field is chaotic or pure, in other words, when there is no orientation
information in image, the neurons are in a state of mutual inhibition or collective rest. Based
on this, we propose a relatively simple possible solution to the interaction of neurons in the
receptive field. The preliminary orientation detection mechanism (ODS-01) is implemented
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by the DNM, which only contains the simplest logical XOR operations, which can be
observed in Figure 3D. After the collaboration of six neurons, three binary code outputs
(N2, N1, and N0) can be obtained, which indicate that the corresponding neurons are in an
active or resting state. As shown in Table 1, N2, N1, and N0 suggest the local orientation
information of the receptive field. Finally, all the local orientation information is aggregated.
The orientation of the object in the image is judged based on the stimulation degree
of all neurons, which is consistent with the orientation of the neuron with the highest
activation intensity.

Table 1. Five states of receptive fields.

Orientation N2 N1 N0

0◦ 0 1 0
45◦ 1 1 0
90◦ 0/1 0 1

135◦ 0/1 1 1
Resting 0/1 0 0

However, the results of the noise experiments show that although ODS-01 is simple,
its anti-noise ability is very poor. In addition, we found that ODS-01 is not foolproof.
To be specific, when the object in the image has only a single pixel, there is no doubt
that it has no orientation information, which is shown in Figure 4A. From Figure 4B, we
can observe that ODS-01 shows the same response in 45◦ and 135◦ orientations, which is
undoubtedly inconsistent with the facts. We further hypothesize that neurons inhibited
each other in response to neurons with supplementary angles and propose the second-
generation orientation detection mechanism (ODS-02) [91–93]. It can be found that the
responses of ODS-02 in 45◦ and 135◦ orientations counteracted each other, which is shown
in Figure 4C. Finally, differences in intercortical connections can lead to a diversity of
circuits [94,95]. Considering the diversity of colors in color images, we refine and propose
the third-generation orientation detection mechanism (ODS-03), which is presented in
Figure 4D.

Figure 4. Inhibition scheme and ODS-03: (A) an example of receptive fields scanning; (B) activation
intensity of neurons without inhibition scheme (ODS-01); (C) activation intensity of neurons with
inhibition scheme (ODS-02); (D) flowchart of ODS-03.

3. Experiment and Discussion
3.1. Experimental Setup

In our experiments, nine image datasets are used to estimate the performance of ODSs
and a randomly positioned bar with arbitrary size and orientation in each image, which
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are described in Figures 5–8. Each of the first eight datasets contains 10,000 images. In the
first five datasets, the image size is 100 × 100 pixels, which are generated randomly. In our
generating process, the shapes are fixed in order to define the orientation more easily, and
the specific labels of their own orientations are given by observation. In the first dataset,
the background of the image is set to be white and the object is black. On the contrary,
the object is white and the background is black in the second dataset. In the third dataset,
the colors of the background and objects are generated randomly. Grayscale images are
considered in the fourth dataset, which is also determined randomly. To further examine
the effectiveness of the mechanism, color images are utilized in the fifth dataset. The colors
of the background and objects in the color dataset are also randomly generated. With the
advancement of technology, the capacity of photographs to cover the fine structures of the
actual world has been improved [96]. In the last decade, large-scale visual recognition has
become a challenge and has attracted the attention of many researchers [97]. Therefore,
large-scale binary, grayscale, and color images (1000 × 1000 pixels) are adopted in the
next three datasets. Finally, the actual photographs (3024 × 3024 pixels) are selected to
estimate the utility of the mechanism. We use different long objects that can be found in
our daily life such as pencil, remote controller, sticky notepad, spoon, and so on as the
subjects of this study. All experiments are independently performed 30 times to avoid
statistical randomness.

Figure 5. Description of (A) dataset-01, (B) dataset-02, and (C) dataset-03.

3.2. Performance Evalution Criteria

The following two criteria are adopted to evaluate the performance of the mechanisms:

1. Accuracy: This indicates the rate at which the orientations judged by the mecha-
nism match the corresponding target orientations in the datasets. The mean and
standard deviation (mean ± std) of the accuracy rates are provided to compare these
mechanisms.

2. Nonparametric statistical method: Wilcoxon signed rank test is employed as a non-
parametric statistical method to determine whether there are significant differences
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between the mechanisms [26,98]. The p values computed for all the pairwise compar-
isons are provided, and the level of significance is set to be 0.05.

Figure 6. Description of (A) dataset-04 and (B) dataset-05.

Figure 7. Description of (A) dataset-06, (B) dataset-07, and (C) dataset-08.
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Figure 8. Description of dataset-09.

3.3. Comparisons of ODSs

First, the ODSs are applied to detect the orientation of objects in 10,000-pixel (100 × 100)
image datasets. It can be seen in Table 2 that all ODSs are perfectly qualified for these tasks.
In addition to the experiments on small-scale images, the performance of the ODSs on
large-scale (1000 × 1000 pixels) images is also impressive. Therefore, we can conclude that
regardless of whether the image is binary or grayscale, or even color, the ODSs are proven
to be excellent orientation detection mechanisms in ideal datasets.

Table 2. Orientation detection performance of ODSs.

100 × 100 pixels

Datasets ODS-01 ODS-02 ODS-03

Binary-WB 100.00 100.00 100.00
Binary-BW 100.00 100.00 100.00
Binary-Mix 100.00 100.00 100.00
Grey 100.00 100.00 100.00
Color 100.00 100.00 100.00

1000 × 1000 pixels

Datasets ODS-01 ODS-02 ODS-03

Binary-Mix 100.00 100.00 100.00
Grey 100.00 100.00 100.00
Color 100.00 100.00 100.00

3024 × 3024 pixels

Datasets ODS-01 ODS-02 ODS-03

Real 73.21 75.00 100.00

Furthermore, the performance of the ODSs on actual photographs aroused our interest.
The performance of ODS-01 and ODS-02 on actual photographs has declined to 73.21
and 75.00, respectively, due to the complexity of the actual photographs. We can also
clearly observe that the accuracy of ODS-02 with an inhibition mechanism is improved
compared to conventional ODS-01, and ODS-03 with a relatively refined mechanism can
still maintain 100.

3.4. Comparisons of ODSs and CNNs

In this section, we compare the ODSs with the CNNs in 10,000-pixel (100 × 100) image
datasets to further verify the detection performance of the ODSs, which are provided
in Table 3. Each image is scanned only four times in the ODSs. Therefore, considering
fairness of comparison, the number of convolutional layers is set to be 1, and the number
of convolution kernels in the CNN-04 is set to be 4. In addition, the CNN-30 with 30 con-
volution kernels has also been adopted as a competitor for the ODSs. The tiling size of
the convolutional layers is set to be 3 × 3. The pooling layer using a 2 × 2 tiling region
reduces the dimensionality of the features. Sixty-four fully connected neurons are used
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in the fully connected layer. A method for stochastic optimization (ADAM) is employed
as the learning algorithm. In order to ensure that the CNNs achieve the best results, the
number of epochs is set to be 30. The training curves of CNNs are also provided in Figure 9.
The CNNs are trained by 75% of the entire images, and their degree of learning is estimated
on 25% of the images.

Figure 9. Training curves of CNNs. (A) Training curve of CNN-04 with one convolutional layer.
(B) Training curve of CNN-04 with two convolutional layers. (C) Training curve of CNN-04 with
three convolutional layers. (D) Training curve of CNN-04 with four convolutional layers. (E) Training
curve of CNN-30 with one convolutional layer. (F) Training curve of CNN-30 with two convolutional
layers. (G) Training curve of CNN-30 with three convolutional layers. (H) Training curve of CNN-30
with four convolutional layers.

We find that as the dataset becomes complex, the performance of CNNs declines. The
higher std values indicate that the performance of CNNs is unstable. It is obvious that all
p values are less than the level of significance, which means that ODS-03 is significantly
better than all CNNs. Moreover, we increase the convolutional layers of CNNs to improve
their performance. The added convolutional layers contain sixty-four convolution kernels
with 3 × 3 tiling regions. These experiments are conducted on the color images (100 × 100)
dataset. As the consumption of computing resources increases, the accuracy has indeed
improved. However, the accuracy and the corresponding statistical results still show that
ODS-03 significantly outperforms the CNNs. Moreover, it is not worth the gain to consume
huge computing resources in exchange for a small increase in the accuracy rate. In contrast,
ODS-03 does not require learning and can be hardwareized by simple logic circuits. As
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logic operations rather than floating-point operations are used in the logic circuits, this
undoubtedly increases the speed of data processing of ODS-03. Therefore, we can conclude
that ODS-03 is able to achieve outstanding performance and satisfactory efficiency simulta-
neously in orientation detection when compared with the CNNs. Moreover, in orientation
detection systems, running speed is also a crucial performance evaluation criterion. We
conducted corresponding experiments with ODS, one-channel CNN, four-layer CNN, and
EfN, comparing them in terms of speed. Table 4 displays the running speeds of the four
systems. It is evident that ODS runs much faster than the other three systems.

Table 3. Orientation detection performance of ODSs and CNNs.

Datasets CNN-04 CNN-30 ODS-01 ODS-02 ODS-03
Mean ± Std p Mean ± Std p Mean ± Std p Mean ± Std p Mean ± Std

Binary-WB 93.46 ± 0.69 9.07 × 10−7 95.23 ± 0.45 9.07 × 10−7 100.00 ± 0.00 1.00 100.00 ± 0.00 1.00 100.00 ± 0.00
Binary-BW 91.89 ± 12.87 9.11 × 10−7 96.33 ± 0.40 9.02 × 10−7 100.00 ± 0.00 1.00 100.00 ± 0.00 1.00 100.00 ± 0.00
Binary-Mix 94.21 ± 2.83 9.09 × 10−7 94.08 ± 9.17 9.08 × 10−7 100.00 ± 0.00 1.00 100.00 ± 0.00 1.00 100.00 ± 0.00
Grey 90.87 ± 1.66 9.09 × 10−7 90.53 ± 2.25 9.12 × 10−7 100.00 ± 0.00 1.00 100.00 ± 0.00 1.00 100.00 ± 0.00
Color 89.17 ± 12.25 9.10 × 10−7 89.17 ± 12.25 9.10 × 10−7 100.00 ± 0.00 1.00 100.00 ± 0.00 1.00 100.00 ± 0.00

CNNs with different convolutional layers on color image dataset

Layers-02 94.67 ± 13.11 9.08 × 10−7 95.05 ± 13.16 9.04 × 10−7 - - - - -
Layers-03 98.55 ± 1.36 9.05 × 10−7 98.08 ± 0.93 9.06 × 10−7 - - - - -
Layers-04 93.44 ± 15.47 9.09 × 10−7 98.47 ± 1.19 9.04 × 10−7 - - - - -

Table 4. Device and duration of orientation detection system.

Orientation Detection System Device Type Duration

ODS GPU NVIDIA Tesla P100 3 min 2 s
1-Channel CNN GPU NVIDIA Tesla P100 4 min 47 s

4-Layer CNN GPU NVIDIA Tesla P100 5 min 58 s
EfN GPU NVIDIA Tesla P100 29 min 14 s

3.5. Performance of ODSs and CNN on Images with Noise

In this section, in order to further verify the ability of the ODSs to resist noise, salt-and-
pepper noise is added to the color images (100 × 100) dataset to evaluate the performance
of the mechanisms. The experiments are carried out on a wide range of noise densities,
which are set within a range of 1% to 30%. In addition, the best performing CNN-30 in
the previous section is employed as a competitor, which has four convolutional layers. It
can be clearly observed in Table 5 that the accuracy of all mechanisms has declined even
if the noise is only increased by 1% (100 pixels). Noise causes the accuracy of the CNN
to decrease, and the large Std values indicate that the CNN is extremely unstable. The
CNN has completely lost its detection ability once the noise density reaches 12%. The
accuracy of ODS-01 suggests that ODS-01 basically has no anti-noise ability. We speculate
that this is due to the lack of inhibition mechanism, which is proved in the experiments with
ODS-02. Compared with ODS-01, the accuracy of ODS-02 has been significantly improved.
The accuracy of ODS-02 can still be maintained at 93.78% when the noise density reaches
12%. Even if the noise density is increased to 30%, the accuracy of ODS-02 can still reach
68.87%. The performance of the more refined ODS-03 has been further improved when
compared to ODS-02 and maintains accuracy at 80.25%. The statistical results show that
ODS-03 significantly outperforms CNN and ODS-01 in all cases of added noise density.
Compared with ODS-02, ODS-03 can achieve comparable performance at 1% and 2% of the
added noise density. As the noise density increases, the advantages of ODS-03 gradually
emerge, enabling it to perform significantly better than ODS-02. Shaded error bars are
also provided in Figure 10, which contains continuous shaded error regions around the
accuracy lines rather than discrete bars. We can observe that the std value of the CNN is
very large, while those of the ODSs are hardly noticeable. ODS-03 always produces the best
results and has the slowest decline in its accuracy curve. Therefore, it can be concluded that
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ODS-03 not only has an excellent performance in orientation detection but also outstanding
anti-noise capability.

S

S

S

Figure 10. Comparison of shaded error bars on the datasets with noise.

Table 5. Accuracy comparison on datasets with noise.

Noise CNN ODS-01 ODS-02 ODS-03
Mean ± Std p Mean ± Std p Mean ± Std p Mean ± Std

01 95.55 ± 13.50 9.11 × 10−7 51.69 ± 0.08 9.04 × 10−7 99.99 ± 0.01 3.00 × 10−1 99.99 ± 0.01
02 82.61 ± 29.73 9.12 × 10−7 49.90 ± 0.00 8.52 × 10−7 99.92 ± 0.02 2.18 × 10−1 99.92 ± 0.03
03 62.65 ± 36.63 9.01 × 10−7 49.90 ± 0.00 8.70 × 10−7 99.73 ± 0.04 6.84 × 10−5 99.78 ± 0.04
04 82.61 ± 29.73 9.12 × 10−7 49.89 ± 0.01 8.93 × 10−7 99.44 ± 0.05 1.10 × 10−6 99.59 ± 0.05
05 45.56 ± 33.25 9.08 × 10−7 49.89 ± 0.01 9.05 × 10−7 99.06 ± 0.08 1.58 × 10−6 99.28 ± 0.08
06 45.22 ± 32.72 9.04 × 10−7 49.87 ± 0.01 9.01 × 10−7 98.54 ± 0.11 9.09 × 10−7 98.92 ± 0.08
07 45.35 ± 32.92 9.12 × 10−7 49.86 ± 0.02 9.06 × 10−7 97.99 ± 0.11 9.06 × 10−7 98.54 ± 0.13
08 47.23 ± 33.19 9.09 × 10−7 49.83 ± 0.03 9.05 × 10−7 97.28 ± 0.13 9.09 × 10−7 98.11 ± 0.10
09 28.63 ± 17.01 9.08 × 10−7 49.81 ± 0.02 9.06 × 10−7 96.49 ± 0.15 9.09 × 10−7 97.61 ± 0.13
10 26.09 ± 10.58 9.09 × 10−7 49.77 ± 0.03 9.10 × 10−7 95.73 ± 0.15 9.09 × 10−7 97.06 ± 0.15
11 25.88 ± 9.44 9.11 × 10−7 49.73 ± 0.04 9.09 × 10−7 94.85 ± 0.17 9.08 × 10−7 96.53 ± 0.16
12 24.16 ± 0.00 9.05 × 10−7 49.68 ± 0.04 9.05 × 10−7 93.78 ± 0.18 9.09 × 10−7 95.85 ± 0.15
13 24.16 ± 0.00 9.09 × 10−7 49.64 ± 0.05 9.08 × 10−7 92.84 ± 0.23 9.12 × 10−7 95.30 ± 0.20
14 24.16 ± 0.00 9.10 × 10−7 49.56 ± 0.05 9.01 × 10−7 91.72 ± 0.22 9.10 × 10−7 94.58 ± 0.21
15 24.16 ± 0.00 9.10 × 10−7 49.51 ± 0.05 9.00 × 10−7 90.59 ± 0.20 9.10 × 10−7 93.94 ± 0.21
16 30.70 ± 19.98 9.12 × 10−7 49.40 ± 0.07 9.12 × 10−7 89.43 ± 0.31 9.09 × 10−7 93.11 ± 0.23
17 24.16 ± 0.00 9.11 × 10−7 49.35 ± 0.06 9.10 × 10−7 88.17 ± 0.26 9.12 × 10−7 92.47 ± 0.25
18 24.16 ± 0.00 9.08 × 10−7 49.25 ± 0.08 9.11 × 10−7 86.83 ± 0.25 9.09 × 10−7 91.65 ± 0.27
19 24.16 ± 0.00 9.02 × 10−7 49.15 ± 0.09 9.04 × 10−7 85.46 ± 0.30 9.10 × 10−7 91.00 ± 0.20
20 24.16 ± 0.00 9.08 × 10−7 49.04 ± 0.07 9.10 × 10−7 84.01 ± 0.28 9.10 × 10−7 90.04 ± 0.28
21 24.16 ± 0.00 9.09 × 10−7 48.94 ± 0.10 9.09 × 10−7 82.54 ± 0.34 9.10 × 10−7 89.23 ± 0.23
22 24.16 ± 0.00 9.10 × 10−7 48.82 ± 0.10 9.08 × 10−7 81.13 ± 0.35 9.12 × 10−7 88.39 ± 0.24
23 24.16 ± 0.00 9.12 × 10−7 48.68 ± 0.09 9.11 × 10−7 79.53 ± 0.28 9.11 × 10−7 87.45 ± 0.29
24 24.16 ± 0.00 9.10 × 10−7 48.56 ± 0.10 9.10 × 10−7 77.99 ± 0.39 9.11 × 10−7 86.39 ± 0.29
25 24.16 ± 0.00 9.11 × 10−7 48.45 ± 0.13 9.09 × 10−7 76.52 ± 0.44 9.10 × 10−7 85.55 ± 0.30
26 24.16 ± 0.00 9.12 × 10−7 48.28 ± 0.11 9.09 × 10−7 75.05 ± 0.30 9.08 × 10−7 84.49 ± 0.25
27 24.16 ± 0.00 9.12 × 10−7 48.13 ± 0.12 9.12 × 10−7 73.51 ± 0.38 9.12 × 10−7 83.54 ± 0.37
28 24.16 ± 0.00 9.12 × 10−7 47.95 ± 0.11 9.11 × 10−7 71.90 ± 0.45 9.12 × 10−7 82.49 ± 0.33
29 24.16 ± 0.00 9.10 × 10−7 47.87 ± 0.12 9.08 × 10−7 70.50 ± 0.39 9.06 × 10−7 81.32 ± 0.27
30 24.16 ± 0.00 9.12 × 10−7 47.65 ± 0.14 9.12 × 10−7 68.87 ± 0.47 9.11 × 10−7 80.25 ± 0.38

4. Conclusions

In this work, we proposed a novel hardware-based orientation detection system (ODS)
using dendritic computation and employed a combination of multiple DNMs to implement
it. The ODS proposed in this study has the following advantages:

1. It is precise: The ODSs can make completely correct judgements for all tests without
adding noise.
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2. It is fast: Very little prior knowledge is used to design the mechanism and no iterative
learning is required.

3. It is flexible: It has no limitation on the size of the image, and the shape, size, and
location of the object in the image has no effect on the accuracy.

4. It has a simple structure: The ODSs combine several simple DNMs to complete
complex tasks. Only the information of the positional relationship among objects in
the image is considered.

5. Its structure allows parallel computation: All neurons at the same level can operate in
parallel, making detection faster by parallel computation.

6. Its anti-noise capability is very powerful: The inhibition scheme bestows the ODSs
with the ability to resist noise.

7. It can be further enhanced: The slightly more refined structural design in this study
significantly improved the accuracy of the mechanism. We can foresee that further
refinement will make the mechanism even stronger.

8. It can be further extended: In this study, a 2 × 2 receptive field is employed to detect
four orientations of the objects. More complex interactions among receptive fields
or wider receptive fields are considered to extract orientation information at more
angles, which will be investigated in our future works.

9. It can be easily implemented by hardware: Benefiting from the easy hardware imple-
mentation property of the DNM, the ODSs can also be realized on simple devices such
as field programmable gate arrays (FPGA). Being free from floating-point computation
can further speed up the processing of data.

10. It is suitable for big data: The advantages mentioned above enable the ODS to handle
explosive high-dimensional data with ease in the era of big data.

11. It is highly interpretable: Different from most black-box models in machine learning,
the ODS is designed based on prior knowledge and corroborated with studies in
physiology, anatomy, and neuroscience. Hence, we encourage researchers from
relevant fields to conduct biological experiments to examine the proposed mechanism.
When testing with a tiny light spot, the neurons in the corresponding receptive field
show mutual inhibition or no response, as assumed, which can further verify the
inhibition scheme in the ODSs. Therefore, we believe that the proposed system may
provide a new perspective for understanding the relevant brain functions.

It is worth pointing out that the proposed method is only capable of identifying the
orientation of simple objects and also needs to be compared with other neural identification
techniques, such as the dedicated YOLO v.5 system.
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