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Abstract: Wire clamps and vibration-proof hammers are key components of high-voltage transmission
lines. The wire clips and vibration-proof hammers detected in Unmanned Aerial Vehicle (UAV) power
inspections suffer from small size, scarce edge information, and low recognition accuracy. To address
these problems, this paper proposes a small object detection (SOD) model based on the YOLOv8n,
called SOD-YOLO. Firstly, an extra small target detection layer was added to YOLOv8, which
significantly improves the small target detection accuracy. In addition, in order to enhance the
detection speed of the model, the RepVGG/RepConv ShuffleNet (RCS) and a OneShot Aggregation
of the RCS (RCSOSA) module were introduced to replace the C2f module in the model backbone and
neck shallow networks. Finally, to address the excessive focus on low-quality sample bounding boxes
during model training, we introduced Wise-CIoU loss instead of CIoU loss, which improved the
detection accuracy of the model. The experimental results indicate that SOD-YOLO achieved a mean
average precision of 90.1%, surpassing the YOLOv8n baseline model by 7.5% while maintaining
a model parameter count of 3.4 M; the inference speed reached 88.7 frames/s, which meets the
requirement of real-time recognition.

Keywords: YOLOv8; small target detection; wire clamps; vibration-proof hammers

1. Introduction

The power grid is an important public infrastructure for national economic and social
development, and the safe operation of high-voltage transmission lines is essential for
the stable supply and use of electricity. In the operation of transmission lines, due to the
complex and changeable open-air environment, various abnormal situations may occur,
such as loosening, fracturing, or falling off of components like overhanging wire clips,
tension-resistant wire clips, and vibration-proof hammers. These anomalies not only affect
the stable operation of the transmission line but may even cause major safety accidents in
serious cases. These parts belong to the category of small targets, which occupy a small area
in the image with low resolution, high localization requirements, scarce edge information,
and serious misdetection and omission. Therefore, real-time and accurate identification
of small targets on transmission lines is of great significance. The traditional detection
methods mainly rely on manual inspection and simple auxiliary tools, with low inspection
efficiency and high risk, unable to meet the requirements of intelligent inspection. In recent
years, with the popularity of UAV technology in intelligent inspection, inspection efficiency
has greatly improved [1].

The inspection images obtained from UAV photography need to be further subjected
to target detection. Traditional image morphological detection usually uses algorithms
such as the Hough transform [2], LBP texture features [3], Canny edge detection [4], and
other algorithms. However, due to the complexity of the transmission line background and
the blurring of the morphological features of small targets in the image, it is difficult for
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traditional algorithms to recognize them by image shape and edge profile features. Deep
learning-based object detection algorithms with strong feature extraction capability and
good robustness can identify and localize targets more accurately [5].

Currently, deep learning-based object detection algorithms are generally categorized
into one-stage and two-stage detection approaches. Two-stage object detection algorithms
are mainly represented by Region-Based Convolution Neural Networks (R-CNN) [6], Fast
R-CNN [7], Faster R-CNN [8], and so on. Earlier researchers tended to focus more on two-
stage object detection algorithms in the pursuit of higher detection accuracy. Zhang et al. [9]
used the Faster R-CNN deep learning framework to design a two-stage cascade Region
Proposal Network (RPN) to improve the accuracy of defect detection of four types of
anti-vibration hammers. Bao et al. [10] employed focal loss to enhance the classification
performance of the RPN, which was introduced into the Cascade R-CNN, which solved the
problem of data category imbalance. Zhai et al. [11] proposed a geometric characteristic
learning (GCL) model and applied it to Faster R-CNN to generate artificial samples for 3D
modeling. Secondly, to enhance the extraction of geometric features from the vibration-
proof hammer, monochrome-backgrounded artificial samples were employed during the
training stage. Zhou et al. [12] proposed a deep aggregation feature extraction network and
an efficient weighted feature-fusion network to replace the original ResNet and Feature
Pyramid Network (FPN) of Cascade R-CNN, which balances the inference speed and
average accuracy during detection; while the two-stage target detection method offers
improved accuracy, its detection speed is sluggish, failing to fulfill the real-time demands
of UAV detection.

To increase the speed of detection, current research mainly uses one-stage target
detection methods such as the Single Shot MultiBox Detector (SSD) [13], You Only Look
Once v3 (YOLOv3) [14], YOLOv7 [15], etc. Tu et al. [16] used the K-means++ clustering
method to calculate an anchor in the YOLOv3 model, resulting in better effect frames to
improve detection accuracy. Jia et al. [17] proposed a YOLOv4 model-based shockproof
hammer identification algorithm. Multi-scale cavity convolution was utilized to increase the
receptive field, resulting in richer global information, which greatly improved the accuracy
of recognition. Yuan et al. [18] introduced the Squeeze and Excitation (SE) attention
mechanism into YOLOv5 in order to further improve the visual recognition of transmission
lines by assigning different weights to the images from the channel dimension, thus
obtaining feature information with different levels of importance. The recognition accuracy
is higher through the improved YOLOv5 network, which is significant in reducing the
workload of inspectors. Di et al. [19] introduced multilayer convolutional operations and
feature pyramid structure into YOLOv5 and established a target detection model suitable
for transmission lines. Lu et al. [20], based on the YOLOv5s algorithm, incorporated
a lightweight Ghost convolution module into the backbone network, which reduces the
feature map redundancy and improves the inference speed in the feature extraction part
of the model. In addition, an attention mechanism based on coordinated attention (CA)
was incorporated to effectively extract key feature information. Yu et al. [21], based on the
YOLOv7 algorithm, achieved hyperparameter optimization using the Genetic Algorithm
(GA) by replacing the convolutional and pooling layers of YOLOv7 with Space to Depth
(SPD) spatial-depth-transformed convolution to improve the accuracy of foreign object
identification for aerial UAVs. Shao et al. [22], based on the YOLOv7 Tiny algorithm, using
the Focal-DIoU (Distance–Intersection over Union) loss function to effectively solve the
problem of sample category imbalance and sample difficulty imbalance. In addition, they
optimized and improved the SPPCSPC_S-F (Spatial Pyramid Pooling and Cross-Stage
Partial Connections) module, which was optimized to reduce the cost of computational
resources and time while ensuring model accuracy.

All in all, the existing models suffer from the problem that detection accuracy and
speed cannot be balanced simultaneously. On the one hand, two-stage target detection
methods cannot adequately capture small targets with shallow features, and their inference
speed is still challenging. On the other hand, the poor effectiveness of multi-scale fusion in
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the first-stage target detection methods leads to low accuracy of the model in recognizing
small objects. In addition, the small object detection effect in UAV inspection images is
also often affected by the complex background. To solve the above problems, an improved
network SOD-YOLO, based on YOLOv8n, is introduced in this article.

The following are the main contributions of this article:

• To enhance the detection ability of the model for small targets, the small object detec-
tion layer (SODL) was incorporated into YOLOv8n, feature maps of different scales
were acquired, and multi-scale feature extraction and fusion were performed. The de-
tection head was designed after large-scale feature mapping to optimize the detection
performance for small targets.

• By integrating the RCSOSA module into the backbone and neck shallow layers of the
SOD-YOLO model, this approach significantly improved the accuracy and speed of
model identification.

• To balance the strength of the bounding box regression and punishment for low-
quality data during model training, we designed the Wise Intersection over Union–
Complete Intersection over Union (WIoU-CIoU) loss as the bounding box regression
loss function. It effectively reduces the harmful gradient of low-quality samples and
improves the detection accuracy of the SOD-YOLO model with the same inference
speed and number of model parameters.

2. Related Work
2.1. YOLOv8 Algorithm

YOLOv8 is a one-stage target detection algorithm open-sourced in January 2023
by Ultralytics. Compared to the previous YOLO model, this model has higher speed
and accuracy and provides a unified framework for model training, including image
classification, target detection, and instance segmentation. In this paper, YOLOv8n is used
as a baseline for improvement, and the model structure is depicted in Figure 1.

Figure 1. The structure diagram of YOLOv8. SC=T, SC=F indicates Shortcut=True, Shortcut=False,
respectively.

The YOLOv8 model comprises three main parts: backbone, neck, and head. The back-
bone is mainly responsible for extracting key features from input images. The backbone
consists of multiple Conv, Cross-Stage Partial Network Fusion (C2f), and spatial pyramid
pooling fast (SPPF) modules. The Conv module consists of Conv2d, batch normalization,
and the SiLU activation function. YOLOv8 refers to the C3 module in YOLOv3 and the
Efficient Layer Aggregation Network (ELAN) idea in YOLOv7 to use the C2f structure,
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which uses more gradient streams in parallel and adds the Split operation to the perfor-
mance of the model in feature extraction; the structure of the module is shown in Figure 2.
Meanwhile, the C2f structure reduces the number of module parameters and computational
complexity compared to the C3 structure, which improves the running speed of the model.
The SPPF module is an effective spatial pyramid pooling structure that enables the network
to feature extract at different scales by dividing the image into pyramid layers of different
sizes. The FPN [23] and Path Aggregation Network (PAN) [24] modules are used in the
YOLOv8 neck architecture to enhance the characterization of features at different scales of
the model through multilayer feature fusion and enhancement. The Decoupled Head struc-
ture is adopted to learn the target category information and location information through
different network branches to avoid interference caused by the network in processing
different tasks. In addition, to avoid the complexity and uncertainty of anchor matching,
the anchor-free method is employed for generating the bounding box of the target object
by making predictions directly at each position in the network.

Figure 2. The structure diagram of the C2f module.

2.2. Small Object Detection Layer (SODL)

The UAV inspection images have high resolution, so there are problems such as small
target areas relative to the background and inconspicuous target features. Having a large
downsampling rate in the YOLOv8 baseline model generates a smaller feature map size.
This results in small targets object occupying fewer pixels on the feature map, making it
difficult to obtain feature information of the targets. In addition, multiple targets occluding
each other cause the model to have difficulty distinguishing target categories, leading to
the phenomenon of missed and false detection.

To solve the above problems, an SODL was incorporated into YOLOv8 to fuse the
shallow and deep features of small targets to enhance the model’s ability to learn about
small targets. Five layers P1, P2, P3, P4, and P5 are included in the backbone network of the
YOLOv8 network model. The resolution of the network input is 640 × 640, and five different
multi-scale feature maps are generated after five downsamplings of the backbone network:
320 × 320 (P1), 160 × 160 (P2), 80 × 80 (P3), 40 × 40 (P4), and 20 × 20 (P5). The original
model designs three detection heads on the P3, P4, and P5 layers with different sizes of
receptive fields, which can cover the detection of different target scales. However, due to
the specific scenario of UAV transmission line inspection in this paper, a large number of
targets with a resolution of less than 32 × 32 exist in the data. Furthermore, the receptive
fields of the P3 layer feature maps remain sizable, containing more background information
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and potentially interfering with the detection of small targets. Therefore, we added an extra
high-resolution detection head in the P2 layer of YOLOv8 and only two downsampling
operations to obtain rich shallow feature information of small targets. Second, the deep
network feature information was effectively fused in the neck part to further improve the
model detection accuracy. However, adding an extra small target detection layer made
the model computationally larger and the Frames Per Second (FPS) lower. However, it
demonstrated a great improvement in small target detection accuracy.

2.3. RCSOSA

In UAV power inspection, both inference speed and detection accuracy play crucial
roles. As deep learning continues to evolve rapidly, increasingly intricate network archi-
tectures, such as ResNet [25], Convnext [26], Swin Transformer [27], etc., have greatly
improved the detection accuracy of vision tasks, but all of them make the inference of the
models slower. On the other hand, some lightweight models such as MobileNetv3 [28] use
deeply separable convolution and a linear bottleneck structure to reduce model compu-
tation and parameters. ShuffleNet improves the parallel capability of the model through
channel shuffle and group convolution. Although the lightweight model can accelerate the
model inference speed, the accuracy of small target detection cannot meet the detection
requirements. To tackle the preceding issues, Kang et al. [29] proposed the RCSOSA module
by considering the detection accuracy and inference speed together. Firstly, inspired by
ShuffleNet [30], the authors designed a structured parameterized convolution based on
channel shuffle called RCS, and the framework of the module is illustrated in Figure 3.

Figure 3. The structure diagram of the RCS module. Where (a) and (b) denote the RepVGG module
and the RepConv module, respectively.

The RCS structure is trained using the RepVGG structure with 3 × 3 convolution,
1 × 1 convolution, and Identity branches. The multi-branch topology allows for richer
feature information during training. In the inference stage, structure reparameterization is
performed, using 3 × 3 RepConv instead of 3 × 3 convolution, 1 × 1 convolution, and Iden-
tity branches. The multi-branch topology allows for richer feature information during
training. The simple single-branch structure reduces the memory and computation in
the inference phase to increase the inference speed. Concat splicing is done in channel
dimension by RepVGG with RepConv followed by Concat splicing with the Channel Split
part of the tensor. Finally, the two-branch feature map channels are recombined through
Channel Shuffle to promote the information exchange between different channels to extract
richer feature information. To mitigate the computational burden associated with the RCS
module, the RCSOSA module is proposed by combining RCS and One-Shot Aggregation
(OSA), as shown in Figure 4. This module achieves feature reuse by repeatedly stacking
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RCS modules. Three feature cascades are retained on the OSA pathway to reduce the
computational effort and achieve fast inference with high accuracy.

Figure 4. The structure diagram of the RCSOSA module.

3. Methods

To enhance the detection capabilities of tiny targets in inspection images of drones,
we introduce the SOD-YOLO model, the architecture of which is depicted in Figure 5.
Firstly, we incorporated a small object detection layer into the SOD-YOLO model. By fusing
shallow and deep features and adding a detection head after the shallow feature map,
the sensitivity to small targets was enhanced and the accuracy of the model’s detection
was significantly enhanced. Secondly, the RCSOSA module was added to the shallow
network of the backbone and neck of the SOD-YOLO model, replacing the original C2f
module, to improve the inference speed of the model and the improvement of small
target recognition accuracy. In addition, most studies have not considered the issue of
low-quality samples in the training dataset, and, if the model excessively regresses to the
bounding box of low-quality samples, it will decrease the detection the model’s precision.
To tackle this issue, drawing inspiration from Wise-IoU [31], we devised the Wise-CIoU
bounding box loss function as a replacement for the CIoU bounding box loss function
employed in the baseline model. We added a dynamic non-monotonic focusing method to
the default CIoU [32] of YOLOv8. Instead of the traditional IoU, this method uses “outlier”
as the primary criterion for assessing the quality of anchor boxes. It introduces a strategic
approach to gradient gain assignment, which aims to alleviate competition among top-
performing anchor frames while minimizing the negative impact of low-quality samples
on the gradients. To a certain extent, this approach helped to minimize the bounding
box regression loss, enhanced convergence speed, and, ultimately, boosted the model’s
detection precision.
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Figure 5. The framework diagram of SOD-YOLO.

The CIoU incorporates three important factors, namely the overlapping area of bound-
ing boxes, the distance from the center point and the aspect ratio, and consists of the
following components:

1. Penalty term RCIoU . The penalty term RCIoU is employed to facilitate the alignment
of the predicted box with the real box. The formula for this is given below.

RCIoU =
ρ2(b, bgt)

c2 + αv (1)

where b and bgt are denoted as the centroids of the prediction box and the real box,
respectively, and ρ denotes the computation of the Euclidean distance between the
two centroids, and c denotes the diagonal distance of the smallest enclosing region
that can contain both the prediction box and the real box. In addition, α and v denote
the weight parameter and the bounding box aspect ratio similarity, respectively.

2. Weight parameter α. The formula of it is as follows:

α =
v

(1 − IoU) + v
(2)

3. Prediction of the overlap ratio between bounding boxes and real bounding boxes IoU.
The formula is shown below.

IoU =
A ∩ B
A ∪ B

(3)

A denotes the prediction box and B denotes the ground-truth box.
4. Similarity of bounding box aspect ratio v. The formula of it is as follows:

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(4)

where w and h represent the width and height of the predicted bounding box, while
wgt and hgt correspond to the width and height of the ground-truth bounding box.

Combining the aforementioned four equations, the final LCIoU loss function is calcu-
lated as detailed below.

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (5)
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Based on Wise-IoU loss, we first used CIoU as a penalty term and designed LCIoUv1.
This is a bounding box loss function that includes a two-layer attention mechanism and is
calculated using the following formula:

LCIoUv1 = RCIoU LIoU (6)

In Formula (6), LIoU ∈ [0, 1]. This considerably diminishes the RCIoU of superior-
quality anchor boxes.

Wise-IoU defines an outlier degree for dynamic non-monotonic focusing β, used to
assess the quality of anchor frames. The larger the outlier value, the worse the quality of
the anchor box. We allocated a smaller gradient gain to it, which effectively prevented
low-quality samples from generating larger harmful gradients. The formula is as follows:

β =
L∗

IoU

LIoU
∈ [0,+∞) (7)

where L∗
IoU represents the monotonic focusing coefficient, and LIoU is the exponential

running average with momentum m.
Combining LCIoUv1 and outlier degree β, we designed a Wise-CIoU and added outlier

β to the loss function. The formula is presented below.

LWise−CIoU = rLCIoUv1, r =
β

γαβ−γ
(8)

Among them, α and γ are hyperparameters used to adjust the size of r. When β is
not equal to γ, the anchor box obtains the highest gradient gain. Among them, LIoU is a
dynamic parameter, so LWise−CIoU will choose the optimal gradient gain strategy at the
current moment.

4. Experiments
4.1. Dataset

The experimental data in this article come from State Grid Zhejiang Company, and 3376
transmission line inspection images were collected by UAVs shooting high-voltage trans-
mission towers. The dataset was annotated using the image annotation software labelimg,
and randomly divided into the training set, validation set, and test set according to the
ratio of 7:2:1. The label category information and the number of targets contained in it are
shown in Table 1. Shockproof hammer has the highest proportion in the dataset, with a
total of 9045 targets.

Table 1. Dataset label categories and quantities.

Category Training Set Validation Set Test Set

suspension clamp 1401 419 188
strain clamp 3114 874 461

shockproof hammer 6265 1859 921

In this paper, small targets are defined according to the ratio of the target bounding
box area to the squared area of the image, when it is less than 0.03. A total of 7227 targets
in this dataset meet the definition of small targets, accounting for 46.62% of all targets.
Among them, shockproof hammer has the highest percentage of the total number of small
targets. Figure 6 depicts the distribution of target object sizes for each type of labels.
From the figure, it is evident that the small targets are primarily located in the lower left
position, indicating a large proportion of small targets in the dataset.
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Figure 6. Dataset target size distribution. The colour shades in the graph indicate the density of the
target size distribution. The darker the color, the denser the distribution of targets at that size. The
lighter the color, the more sparsely distributed the target is at that size.

4.2. Experimental Platform and Hyperparameter Settings

This experiment was performed on the Ubuntu 18.04 operating system utilizing
Python 3.9.18, Pytorch 1.12.1, and CUDA 11.4. Training, validation, as well as testing were
done using NVIDIA GeForce RTX 3060.

In our experiments, the preprocessing images were resolved at 640 × 640 pixels, with
200 epochs and the batch size of 16. The model optimizer employed was Stochastic Gradient
Descent (SGD), and the learning rate was fixed at 0.01. In addition, to save memory and
speed up training, the cache was set to True. To improve the model generalization, the
mosaic enhancement technique was used and mosaic enhancement was switched off in the
last 10 rounds of epoch of model training.

4.3. Evaluation Metrics

Evaluation metrics are essential to assess the model’s performance. To test the effec-
tiveness of the proposed method, Precision (P), Recall (R), Average Precision (AP), Mean
Average Precision (mAP), Frames Per Second (FPS), and Giga Floating Point Operations
(GFLOPs) were used as the evaluation metrics for the performance of the algorithms in this
experiment. P, R, AP, and mAP were computed as outlined below.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
∫ 1

0
P(r)dr (11)

mAP =
1
k

k

∑
i=0

APi (12)

In the above equation, Precision (P) denotes the proportion of the samples predicted by
the model to be positive samples that are correctly identified as positive samples, whereas
True Positive (TP) indicates the number of samples correctly identified by the model as
belonging to the positive category, and which, in fact, do belong to the positive category,
and False Positive (FP) refers to the number of samples that the model incorrectly predicts
as belonging to the positive category, when they actually belong to the negative category.
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Recall (R) indicates the percentage of positive samples correctly identified by the model
out of all actual positive samples, whereas False Negative (FN) denotes the number of
samples that are predicted to be negative but are positive. Average Precision (AP) denotes
the average of the precision at different recall rates, and Mean Average Precision (mAP)
denotes the average of the AP of each category, that is, the ability of the response model to
compute the identified categories.

In addition, FPS is the quantity of images that the model can process per second,
and GFLOPs can be utilized to measure the complexity of the model. The above two
metrics can be utilized to comprehensively assess the detection speed and efficiency of
the model.

4.4. Experimental Results

(1) To verify the superior accuracy and detection speed of the SOD-YOLO model,
a comparison with other models on the same dataset was conducted, and the findings are
presented in Table 2.

Table 2. Comparison of performance of various models.

Model P (%) R (%) mAP@0.5 (%) Parameters (M) GFLOPs FPS

YOLOv3 [14] 91.3 83.8 88.2 103.7 282.2 24.4
YOLOv3-tiny 88.9 68.4 74.2 12.1 18.9 120.1
YOLOv5n [33] 88.2 75.2 80.6 2.5 7.1 71.7
YOLOv6n [34] 90.3 64.6 80.7 4.3 11.8 81.1

YOLOv8n 90.0 76.1 82.6 3.0 8.1 93.2
YOLOv8s 88.9 80.1 84.8 11.1 28.4 78.6

SOD-YOLO 92.7 84.2 90.1 3.4 21.9 88.7

It is evident that the SOD-YOLO model demonstrates excellent performance. As far as
the target detection metric mAP is concerned, our SOD-YOLO model has a large improve-
ment. Compared with the YOLOv3 model, which has a model parameter count of 103.7 M,
the mAP of SOD-YOLO increases by 1.9%. Compared to YOLOv3-tiny and YOLOv5n,
SOD-YOLO has a 15.9% and 9.8% increase in mAP, respectively. In addition, SOD-YOLO
achieves a 7.5% and 5.3% improvement compared to the baseline models YOLOv8n and
YOLOv8s, respectively.

In addition, the inference speed is also an important index to evaluate the model perfor-
mance. Among them, although YOLOv3 has a high detection precision, the large number
of complex parameters in its model results in a detection speed of only 24.4 frames/s,
which cannot reach the real-time detection requirements. YOLOv3-tiny FPS reaches 120.1,
the fastest inference speed, but its detection accuracy cannot reach the detection require-
ments. SOD-YOLO’s detection speed reaches 88.7 frames/s, compared with YOLOv5n,
YOLOv6n, and YOLOv8s, which are improved by 17, 7.6, and 10.1, respectively. The base-
line model YOLOv8n achieves an inference speed of 93.2 frames/s, but it has a large
disadvantage in detection accuracy compared to SOD-YOLO.

Combining the two evaluation metrics, the results demonstrate the superior perfor-
mance of our SOD-YOLO model.

(2) To verify the validity of SODL, RCSOSA, and Wise-CIoU in the SOD-YOLO model,
we conducted ablation experiments utilizing the dataset presented in this paper. Where
S-YOLO denotes the model with only the SODL module, SR-YOLO denotes the model
with the SODL and RCSOSA modules, and SOD-YOLO denotes the model with SODL,
RCSOSA, and Wise-CIoU. The experimental results are presented in Table 3.
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Table 3. Comparison of performance of various models.

Model SODL RCSOSA Wise-CIoU mAP@0.5
(%)

Parameters
(M) GFLOPs FPS

YOLO
v8n ✕ ✕ ✕ 82.6 3.0 8.1 93.2

S-YOLO ✓ ✕ ✕ 87.9 2.9 12.2 77.0
SR-YOLO ✓ ✓ ✕ 89.0 3.4 21.9 88.6

SOD-YOLO ✓ ✓ ✓ 90.1 3.4 21.8 88.7
In Table 3, “✓” indicates that the module is used and “✕” indicates that the module is not used.

The results show that the mAPs of S-YOLO, SR-YOLO, and SOD-YOLO are higher
than that of the baseline model YOLOv8n, reaching 87.9, 89.0, and 90.1, respectively.
Among the experiments, the S-YOLO model exhibited an improvement in mAP by 5.3%,
which indicates that the addition of the SODL module increases the sensitivity to small
targets in the dataset, which is favorable to the improvement of the precision of the small
object detection. However, the inference speed of the S-YOLO module is 77.0 frames/s,
marking a decrease of 16.2 compared to YOLOv8n. This substantial reduction in inference
speed leads to a notable impairment in model efficiency. SR-YOLO adds the RCSOSA
module based on S-YOLO, and the RCSOSA module can significantly reduce the memory
occupation and computation in the inference stage, and its inference speed is reduced
compared with that of YOLOv8n by only 4.6. Meanwhile, compared with S-YOLO, its
average accuracy is improved by 1.1%. SOD-YOLO improves the loss function on the SR-
YOLO model by using Wise-CIoU loss instead of the original CIoU loss, which improves
the accuracy of the model detection without changing the quantity of model parameters,
computation, and detection speed. Wise-CIoU can determine the loss function of the model
in real time. CIoU can judge the quality of the sample bounding box in real time, to assign
gradients. It can prevent the model from over-emphasizing low-quality samples, thereby
enhancing the model’s accuracy. Although the detection speed of the enhanced SOD-YOLO
algorithm is slightly reduced, it demonstrates a notable improvement in the detection of
small targets.

The training progress of various models is depicted through bounding box regression
loss curves, which are presented in Figure 7. The figure reveals a consistent downward
trend in all the losses. When SOD-YOLO is iterated 125 times, the loss is stable and the
network converges. Compared with YOLOv8s, S-YOLO, and SR-YOLO, our SOD-YOLO
model converges faster and has lower loss values.

Figure 8 shows the original image and the result map after YOLOv8 and SOD-YOLO
model detection, where suspension_clamp, strain_clamp, and shockproof_hammer denote
suspension clamp, strain clamp, and shockproof hammer, respectively. From Figure 8a,b,
it can be seen that there are 12 and 11 targets in the original image, respectively, and the
target distribution is concentrated, which makes detection difficult. There is one missed
target shockproof hammer in YOLOv8n, while all targets are detected in SOD-YOLO. In the
original image of Figure 8c, there are six targets, and two shockproof hammers are far away
from the shooting position, with little pixel information and blurred targets. Five targets are
detected in YOLOv8n, with two missed targets and one false detection target shockproof
hammer, while the targets are all detected in SOD-YOLO. In addition, the bounding box of
the detected targets in SOD-YOLO is more complete to include the whole target and the
confidence level of the targets is also improved greatly.
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Figure 7. Boundary box regression loss for different model training.

Figure 8. (a–c) represents three sets of 500 KV high-voltage transmission line inspection images.
The first column is the three original images, the second column is the YOLOv8n model detection
result image, and the third column is the SOD-YOLO model detection result image.

(3) To demonstrate the generalization ability and superior performance of the SOD-
YOLO algorithm, the algorithm of this paper is compared with the current advanced
algorithm on the VisDrone2019 dataset using the same training hyperparameters as above.
The obtained experimental results of the target category and validation set are shown in
Table 4. VisDrone2019 is a dataset of aerial drone photography collected by the AISKYEYE
team [35]. The dataset contains 8629 images, of which 6471 are in the training set, 548 in
the validation set, and 1610 in the test set. The dataset covers a wide range, and the back-
ground is complex and varied. The presence of numerous small targets and overlapping
phenomena among them poses a challenge for detection, resulting in a lower mAP, thereby
highlighting its significance for further research.
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Table 4. Experimental results of different models on the VisDrone2019 validation set.

Model
Target Class (AP/%) mAP

@0.5(%)Pedestrian Person Bicycle Car Van Truck Tricycle A-t Bus Motor

Faster R-CNN [8] 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7 21.7

Cascade R-CNN [36] 22.2 14.8 7.6 54.6 31.5 21.6 14.8 8.6 34.9 21.4 23.2

YOLO v3 [14] 18.1 9.9 2.0 56.6 17.5 17.6 6.7 2.9 32.4 17.0 17.6

YOLO v5s [33] 40.8 32.6 13.6 74.6 37.6 32.8 21.9 12.5 44.9 40.0 35.1

MSA- YOLO [37] 33.4 17.3 11.2 76.8 41.5 41.4 14.8 18.4 60.9 31.0 34.7

YOLO v7-tiny 39.6 36.2 9.6 77.5 38.3 30.3 19.4 10.2 49.6 44.5 35.5

YOLO v8n 34.4 27.3 7.2 75.8 38.8 28.1 21.2 11.1 46.6 35.6 32.6

SOD -YOLO 44.1 27.4 11.8 80.5 41.1 31.0 23.9 14.7 49.5 45.0 37.9

In Table 4, ”A-t” represents awning tricycle.

Table 4 clearly shows that our SOD-YOLO model’s mAP on the VisDrone validation
set outperforms the other good models in all categories, reaching 37.9%. Compared to the
baseline model YOLOv8n, it improves by 5.3%. The small target categories Pedestrian,
Person, Bicycle, Tricycle, Awning tricycle, and Motor improved by 9.7%, 0.1%, 4.6%, 2.7%,
3.6%, and 9.4% compared to YOLOv8n, and the medium and large target categories Car,
Van, Truck, and Bus improved by 4.7%, 2.3%, 2.9%, and 2.9% compared to YOLOv8n.
The results illustrate that SOD-YOLO can significantly enhance the detection accuracy
of small objects while improving the detection precision of medium and large models to
some extent.

Based on the aforementioned experimental findings, it is evident that SOD-YOLO has
superior detection performance in tiny target detection compared to other models. On the
dataset of this paper, the mAP is 90.1% and the FPS reaches 88.7, which meets the demands
of real-time detection of small objects.

5. Conclusions

In this paper, aiming for the safe operation of transmission lines, a dataset of aerial
photography of UAV inspection under high-voltage towers was constructed, with a total
of 3376 RGB images. A SOD-YOLO model for small target detection applicable to trans-
mission lines is proposed. To enhance the model’s ability to extract features from small
targets, we initially introduced a dedicated small object detection layer into the YOLOv8n
model, which, by combining shallow and deep network features, improved the detection
precision of the model. Then, the RCSOSA module was incorporated to replace the C2f
module in the shallow networks of the backbone and neck. This module uses a simple
single-branch structure in the inference phase, which decreased the computational effort
of the model and significantly improved the model recognition speed. Finally, to further
improve the model detection precision, the CIoU loss was replaced with the Wise-CIoU loss.
The loss function effectively addresses the issue of low-quality samples in the dataset by
assigning appropriate gradient gains to different samples. This enhancement improved the
model’s capability in regressing bounding boxes. The experimental findings demonstrate
the excellent performance of the SOD-YOLO model. Specifically, the mAP of SOD-YOLO
attained a value of 90.1%, the inference speed was 88.7 frame/s, and the parameter count
of the model was only 3.4 M, fulfilling the need for real-time detection during UAV in-
spections. In addition, the model’s performance on the VisDrone2019 dataset significantly
outperformed other superior models.

Only a relatively small number of targets in the high-voltage transmission line dataset
constructed in this paper were defective, and it is not possible to construct a transmission
line defect dataset. In future research, we will further take into account the loosening bolts
and aging of wire clamps, as well as the missing or damaged vibration-proof hammers. Ef-
ficient feature extraction methods will also be further investigated to enhance the detection
precision and speed of small objects.
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