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Abstract: As the adoption of renewable energy sources grows, ensuring a stable power balance
across various time frames has become a central challenge for modern power systems. In line with
the “dual carbon” objectives and the seamless integration of renewable energy sources, harnessing
the advantages of various energy storage resources and coordinating the operation of long-term
and short-term storage have become pivotal directions for future energy storage deployment. To
address the complexities arising from the coupling of different time scales in optimizing energy
storage capacity, this paper proposes a method for energy storage planning that accounts for power
imbalance risks across multiple time scales. Initially, the Seasonal and Trend decomposition using
the Loess (STL) decomposition method is utilized to temporally decouple actual operational data.
Subsequently, power balance computations are performed based on the obtained data at various
time scales to optimize the allocation of different types of energy storage capacities and assess the
associated imbalance risks. Finally, the effectiveness of the proposed approach is validated through
hourly applications using real-world data from a province in southern China over recent years.

Keywords: energy storage planning; renewable energy integration; STL decomposition method

1. Introduction

With the continuous advancement of electrification, energy has become the primary
battleground for mitigating global climate change [1]. Electricity serves as the vanguard in
driving the development of a low-carbon society. Promoting the construction of a new type
of power system, with wind and solar power as the main components, is a crucial pathway
for energy conservation and emission reduction. However, the output of renewable energy
sources such as wind and solar power is significantly influenced by weather changes,
posing considerable challenges due to their intermittency and volatility [2]. Furthermore,
mismatches between renewable energy generation and demand at different scales can also
affect electricity supply, leading to power imbalances [3]. This is manifested in various
aspects, such as fluctuations in electricity prices and power rationing [4]. In 2021, natural gas
prices in Europe experienced significant fluctuations, rising by over 600% due to extreme
weather conditions and uncertainty surrounding renewable energy output. Consequently,
the average electricity price in major European countries has surpassed €300 per megawatt-
hour, reaching historic highs [5]. In September 2021, power rationing was “forced” in the
three northeastern provinces of China due to significant supply–demand gaps, impacting
the lives of residents and societal production.

To address the challenges facing the construction of new power systems and the
seasonal imbalances between renewable energy and demand [6], and to mitigate the drastic
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fluctuations in electricity prices and occurrences of power rationing, several measures
need to be taken [7,8]. On the one hand, it is essential to strategically plan for flexible
resources like energy storage, which exhibit temporal and spatial transfer characteristics,
while also maintaining the adequate capacity of traditional energy generation [9,10]. On the
other hand, ensuring the economic viability of energy storage resource allocation is crucial
alongside ensuring the reliability of grid operations [11,12]. Efficient utilization of various
types of energy storage resources to address energy imbalances is vital [13,14]. This involves
swiftly adjusting and activating energy storage systems during fluctuations in renewable
energy output to ensure a stable electricity supply, thereby facilitating energy transition
and promoting the development of renewable energy [15,16]. Therefore, it is imperative
to strategically plan energy storage resources, leveraging the unique characteristics of
different types of storage to tackle the imbalance issues in power systems [17,18].

Current research by experts and scholars has extensively addressed the issue of sea-
sonal imbalance in electricity supply. Article [19] developed a coordinated optimization
model for generation–grid–storage systems, incorporating a comprehensive yearly, hourly
operational simulation and utilizing a compact panoramic time series to expedite model
solving. Article [20] proposed an energy storage planning model that considers the seasonal
imbalances resulting from the long-term uncertainty of renewable energy generation, yet it
did not account for the impacts of short-term electricity fluctuations. However, there is a
lack of research specifically addressing the imbalance risks arising from both the long-term
and short-term uncertainties in electricity supply. Articles [21–23] integrated renewable
energy with ammonia production, presenting a planning approach that considers renew-
able energy uncertainty, ammonia storage, and renewable energy generation. Article [24]
combined renewable energy generation with flexible resources like thermal power gener-
ation, establishing an optimization model for generating combinations to minimize load
loss. Article [25] optimized energy storage in regional energy internet based on user energy
demands and future load trends, facilitating multi-energy coordination. Nevertheless,
fewer studies have focused on the coordinated integration of multiple renewable energy
sources with energy storage and other flexible resources [26].

Addressing the aforementioned shortcomings, this paper proposes an energy storage
planning method that considers power imbalance risks across multiple time scales. Based
on the collection of actual operational data from a specific province, a decomposition
method is employed to temporally decouple the output of renewable energy sources and
load profiles, thereby obtaining seasonal and periodic components of both renewable
energy output and load variations. Utilizing the obtained decomposition results and
considering the characteristics of different types of energy storage, hydrogen storage
suitable for long-term storage and electrochemical storage capable of rapid charge and
discharge are selected as different types of energy storage technologies in the planning
process to meet the energy system’s demands across different time scales. In the process of
energy storage planning, the marginal costs of energy storage construction are taken into
account to optimize energy storage planning decisions, maximizing resource utilization
efficiency and economic benefits. The main contributions of this paper are summarized
as follows:

• Considering the inclusion of marginal costs in energy storage cost calculations to
optimize the relationship between energy storage capacity and storage costs;

• Addressing the characteristics of changes in renewable energy and load profiles with
economic development and seasonal variations in the new power system, utilizing a
hybrid energy storage technology combining hydrogen storage and chemical energy
storage to achieve supply–demand balance;

• Employing Seasonal–Trend decomposition using LOESS (STL) decomposition tech-
nology to analyze and decompose data at long time scales, enabling the derivation of
regional energy storage deployment schemes.

The remaining sections of the article are organized as follows: Section 2 provides
an overview of the overall methodology and approach adopted in the study. Section 3
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elaborates on the mathematical model used for energy storage planning. Section 4 presents
the optimization configuration of energy storage resources for a specific region based
on recent operational data of wind power, solar power, and load profiles. This chapter
integrates the proposed model to offer an optimized allocation plan for energy storage
resources in the region.

2. Methodology
2.1. Energy Storage Type Selection

In the selection of energy storage types, this paper adopts hydrogen storage and
electrochemical storage as two energy storage technologies [27], which are, respectively,
used to balance the long-term uncertainty and short-term uncertainty in the renewable
energy system [28,29]. In addition, hydrogen can be obtained through clean energy power
electrolysis technology. The obtained hydrogen is stored in efficient hydrogen storage
devices, and then, using fuel cell technology, the stored energy is fed back to the grid. On the
other hand, hydrogen has high energy density, relatively low operation and maintenance
costs, can be stored for a long time without losing too much energy, and there is no self-
discharge phenomenon [30,31]. Therefore, it is suitable for large-scale long-term storage
to cope with the seasonal imbalance caused by fluctuations in new energy output or
the intermittency of solar and wind power generation, thereby alleviating the long-term
uncertainty of the system.

In contrast, electrochemical energy storage technologies such as lithium-ion batteries
and sodium-sulfur batteries offer advantages such as rapid response times and high energy
densities, enabling the quick release of stored energy over short durations. However, they
have a limited life cycle, higher safety risks, and are relatively expensive. As a result, they
are primarily deployed in scenarios requiring grid peak shaving and frequency regulation,
particularly suited to address short-term load fluctuations or unpredictable energy supply
variations in the system, thereby mitigating short-term uncertainty.

In conclusion, hydrogen storage and electrochemical energy storage offer distinct
solutions for addressing the long-term uncertainty and short-term uncertainty in renewable
energy systems, respectively. Together, they can provide support for the balance and
stability of energy systems.

2.2. Energy Storage Planning Methodology

The objective of this paper is to utilize the temporal and spatial transfer characteristics
of different types of energy storage to mitigate the risk of power imbalance in the new
power system, thereby achieving the core goal of clean and low-carbon electricity and
promoting the development of green power.

Figure 1 illustrates the flow of energy in the new power system. The primary sources
of energy mainly include solar power and wind power. Energy storage predominantly
occurs through hydrogen storage and electrochemical energy storage, while energy is
consumed across various types of electrical load demand systems.

Figure 2 depicts the overall flowchart of optimizing energy storage planning, divided
into four steps. Firstly, obtain the historical operational data of the system, including
wind power, solar power, and load data for all 8760 h of the year. Secondly, the collected
data from Step 1 are processed to calculate the net load of the system. Apply the STL
decomposition method to decompose the net load data into trend, seasonal, and residual
components. Compute and validate the trendiness and seasonality of the obtained data.
Next, an optimization model aimed at minimizing the overall operating cost of the sys-
tem is constructed, with constraints including power balance constraints and maximum
load shedding constraints. Finally, we use the Gurobi solver to optimize hydrogen and
electrochemical storage capacities, along with the power output for each time period.
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Figure 1. Energy flow in distribution systems.

Figure 2. Diagram of the article flow.

2.3. STL Decomposition Method

Seasonal–Trend decomposition using LOESS (STL) [32] is a robust method for de-
composing time series data based on the additive principle [33]. This decomposition
method was proposed by R. B. Cleveland, W. S. Cleveland, McRae, and Terpenning in 1990.
Its distinguishing feature is its ability to obtain stable trends and seasonal components,
with strong resistance to short-term anomalies in the data. Due to the strong seasonality and
regularity of renewable energy output such as photovoltaic and wind power, it is possible
to decompose the data of renewable energy output and load data based on historical data.
Assuming the net load data are a time series y(t), and assuming they follow an additive
model, they can be decomposed as follows:

y(t) = S(t) + T(t) + R(t) (1)

In this equation, T(t) represents the trend value at time t; it represents the part of the net
load component that exhibits long-term fluctuations and is predictable. S(t) denotes the
seasonal component at time t; it represents the part that exhibits short-term fluctuations
and is predictable. And R(t) stands for the residual component at time t; it represents the
part that exhibits short-term fluctuations but is not predictable.

The decomposition mainly consists of two parts: the inner loop and the outer loop.
The main function of the inner loop is to perform trend fitting and calculate the periodic
components, while the main function of the outer loop is to adjust the weights of robust
optimization. The process is illustrated in Table 1, as shown in the decomposition flowchart.
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Table 1. STL decomposition process.

Outer Loop
Calculate weights

Inner Loop
Step 1: detrend;
Step 2: smooth periodic subsequence;
Step 3: low-pass filtering of periodic subsequences;
Step 4: remove trend from smoothed periodic subsequences;
Step 5: detrending;
Step 6: trend smoothing.

To verify the validity of using STL decomposition, it is necessary to calculate the
trend and seasonality of the selected data. The trend reflects the long-term fluctuations
and predictability of the net load data, while the seasonality reflects the short-term fluc-
tuations and predictability. To compute the trend and seasonality, the variances of the
trend component, seasonality component, and residual component need to be calculated
separately. Subsequently, calculate the strength of the trend and seasonality based on
Equations (2) and (3).

The strength of the trend can be defined as:

FT = max(0, 1 − Var(R(t))
Var(T(t) + R(t))

) (2)

Hence, the strength of the trend lies between 0–1 and FT, where a value closer to 0 indicates
that the sequence has almost no trend, and a value closer to 1 indicates a stronger trend
intensity in the time series.

Similarly, the strength of seasonality can be defined as:

FS = max(0, 1 − Var(R(t))
Var(S(t) + R(t))

) (3)

The strength of seasonality lies between 0–1 and FS, where a larger FS value corresponds to
a stronger seasonality intensity.

3. Mathematical Model

The established model is based on the following assumptions:

• Only photovoltaic and other renewable energy devices, as well as flexible resources
such as energy storage, participate in the operation balance of the power system;

• Considering the insufficiency of renewable energy output to meet the system load
demand, the addition of hydrogen energy from alternative sources to compensate for
the imbalance in power is being considered;

• Only consider hydrogen obtained through clean energy sources and fed back to the
grid through fuel cell technology. The model does not consider the demand for
hydrogen energy by the hydrogen industry chain.

3.1. Objective Function

The model aims to minimize the total cost and establishes the objective function as
shown in Formula (4). The total cost of the power system includes two parts: the investment
cost of energy storage construction and the operational cost of the system. The unit for
costs is in RMB (Chinese Yuan), and the unit for capacity is in kWh (kilowatt-hours).

min C = CINV + COPE (4)

where C represents the total cost of the grid, CINV represents the investment cost of the
grid, and COPE represents the operational cost of the grid.
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Formulas (5)–(10) demonstrate the investment cost of energy storage and related equations.

CINV = (CINV_che + CINV_hyd)× CRF (5)

where CINV_che represents the upfront cost of electrochemical energy storage, CINV_hyd

represents the upfront cost of hydrogen energy storage. CRF represents the capital
recovery factor.

CRF =
γ(1 + γ)n

((1 + γ)n − 1)
(6)

In the formula, γ represents the annual interest rate of investment cost and n represents the
total lifespan of energy storage.

Considering the capacity constraints of electrochemical energy storage and hydrogen
storage, Formulas (7) and (8) incorporate the calculation of marginal costs when calculating
the construction cost of energy storage, aiming to optimize the capacity allocation of
energy storage.

CINV_che = cmc,checappre,che + cunit,cheNunit,che (7)

where cmc,che represents the marginal cost of electrochemical energy storage. cappre,che
represents the capacity of pre-installed electrochemical energy storage. cunit,che represents
the cost per unit of electrochemical energy storage. Nunit,che represents the number of
pre-installed electrochemical energy storage units.

CINV_hyd = cmc,hydcappre,hyd + cunit,hydNunit,hyd (8)

where cmc,hyd represents the marginal cost of hydrogen energy storage, cappre,hyd represents
the capacity of pre-installed hydrogen energy storage, cunit,hyd represents the cost per unit
of hydrogen energy storage, Nunit,hyd represents the number of pre-installed hydrogen
energy storage units.

Discrete variables are transformed into continuous variables to facilitate subsequent
optimization calculations.

Nunit,che =

⌈ cappre,che

capN,che

⌉
(9)

Nunit,hyd =

⌈
cappre,hyd

capN,hyd

⌉
(10)

where capN,che represents the capacity per unit of electrochemical energy storage, and capN,hyd
represents the capacity per unit of hydrogen.

The operational cost of the power system and its specific expressions are shown
in Equations (11)–(14). The operational cost of the power system consists of four parts:
shedding load penalty cost, wind and solar spillage cost, profit from supplying load,
and energy storage operation cost.

COPE = CCUT_LOAD + CCUT_NE + CGET_NE − CSUP_LOAD (11)

In the equations, CCUT_LOAD represents the total cost of shedding the load, CCUT_NE repre-
sents the total cost of wind and solar spillage, CSUP_LOAD represents the total revenue from
the power supply, CGET_NE represents the total consumption of renewable energy.

CCUT_LOAD = cload,cut

D

∑
d=1

T

∑
t=1

Eload,cut (12)

where cload,cut represents the unit cost of shedding the load, Eload,cut represents the total
amount of shed load,

CCUT_NE = cne,cut

D

∑
d=1

T

∑
t=1

Ene,cut (13)
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where cne,cut represents the unit cost of wind and solar spillage, Ene,cut represents the total
amount of renewable energy,

CSUP_LOAD = cload,get(
D

∑
d=1

T

∑
t=1

capload −
D

∑
d=1

T

∑
t=1

capload,cut +
D

∑
d=1

T

∑
t=1

capne,cut) (14)

where cload,get represents the unit revenue from the power supply, and capload represents
the total load. capload,cut represents the total cutting load. capload,ne represents the total
cutting renewable energy. D represents the total number of days in a year, which is 365,
and d represents a specific day within that year. T represents the total number of hours in a
day, which is 24, and t represents a specific hour within that day.

3.2. Constraint Conditions

The constraints established in this paper include power balance constraints, maximum
shedding load constraints, maximum wind and solar spillage constraints, battery operation
constraints, etc.

3.2.1. Power Balance Constraint

Formulas (15)−(17) represent the constraints on the power balance of the system,
including the balance between long-term energy storage and trend components, the balance
between short-term energy storage and seasonal components, and the real-time balance of
power during grid operation.

Pche,long
d,t + Phyd,long

d,t = ∆Pne,trend
d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (15)

where Pche,long
d,t /Phyd,long

d,t represents the charging and discharging power of long-term

energy storage, and ∆Pne,trend
d,t represents the trend component.

Pche,short
d,t + Phyd,short

d,t = ∆Pne,seasonal
d,t + ∆Pne,resid

d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (16)

Pche
d,t + Phyd

d,t − Pload,cut
d,t ⩾ ∆Pne

d,t − Pne,cut
d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (17)

In the equations, Pche,short
d,t /Phyd,short

d,t represents the charging and discharging power of

short-term energy storage, and ∆Pne,seasonal
d,t represents the seasonal component of the net

load. ∆Pne,resid
d,t represents the residual component of the net load. ∆Pne

d,t represents the
power output of renewable energy.

3.2.2. Load Cut Constraint

Formula (18) represents that the maximum shedding load cannot exceed the specified
maximum value Pload,cut, max

d,t .

0 ⩽ Pload,cut
d,t ⩽ Pload,cut, max

d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (18)

In the equation, Pload,cut
d,t represents the total amount of load shedding. Pload,cut, max

d,t repre-
sents the maximum load shedding amount.

3.2.3. Wind and Solar Spillage Constraint

Formula (19) represents that the maximum wind and solar spillage at different times
must not exceed the given maximum value Pne,cut, max

d,t .

0 ⩽ Pne,cut
d,t ⩽ Pne,cut, max

d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (19)
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In the equation, Pne,cut
d,t represents the total amount of wind and solar spillage, and Pne,cut, max

d,t
represents the maximum removal amount of renewable energy.

3.2.4. Battery Operation Constraint

Formulas (20) and (21) calculate the capacity of energy storage at different times,
including self-discharge, charging, and discharging of energy storage.

Eche
d,t+∆t = Eche

d,t (1 − ηche
loss)

∆t + (Pche,cha
d,t ηche

cha − Pche,dis
d,t /ηche

dis )∆t, 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (20)

Ehyd
d,t+∆t = Ehyd

d,t (1 − η
hyd
loss )

∆t + (Phyd,cha
d,t η

hyd
cha − Phyd,dis

d,t /η
hyd
dis )∆t, 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (21)

where Pche,cha
d,t /Pche,dis

d,t represents the charging and discharging power of electrochemical

energy storage, Phyd,cha
d,t /Phyd,dis

d,t represents the charging and discharging power of hydro-

gen energy storage, and ηche
loss/η

hyd
loss represents the efficiency of energy storage charging

and discharging.
Formulas (22) and (23) constrain the maximum charging and discharging rates of

energy storage.

0 ⩽ Pche,cha
d,t , Pche,dis

d,t ⩽ Pche, max
d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (22)

0 ⩽ Phyd,cha
d,t , Phyd,dis

d,t ⩽ Phyd, max
d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (23)

where Pche, max
d,t /Phyd, max

d,t represents the maximum charging and discharging power of
energy storage.

Formulas (24) and (25) restrict the upper and lower bounds of energy storage charging
and discharging.

Eche, min
d,t ⩽ Eche

d,t ⩽ Eche, max
d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (24)

Ehyd, min
d,t ⩽ Ehyd

d,t ⩽ Ehyd, max
d,t , 1 ⩽ d ⩽ D, 1 ⩽ t ⩽ T (25)

where Eche
d,t /Ehyd

d,t represents the capacity of energy storage, Eche, min
d,t /Ehyd, min

d,t represents the

minimum capacity allowed for energy storage, Eche, max
d,t /Ehyd, max

d,t represents the maximum
capacity allowed for energy storage.

Formulas (26) and (27) ensure that the energy storage capacity remains constant within
a day.

Eche
d+1,0 = Eche

d,0 , 1 ⩽ d ⩽ D (26)

Ehyd
d+1,0 = Ehyd

d,0 , 1 ⩽ d ⩽ D (27)

where Eche
d,0 /Ehyd

d,0 represents the initial capacity of energy storage.

4. Case Study

Based on the PV, wind power, and load data of a region in southern China for more than
one year, the above model is applied for verification. Firstly, the obtained data are organized
and analyzed to obtain net load data, and a net load curve is plotted. Secondly, the net
load data are decomposed using the decomposition method to obtain trend components,
seasonal components, and residual components, and the trend strength and seasonality
strength are calculated to verify trend and seasonality. Then, based on the multi-type
energy storage planning model in Section 3 and the costs in Table 2, the configuration of
hydrogen storage and electrochemical energy storage, as well as the output during each
period throughout the year, are obtained. Finally, we validate the effectiveness of the model.

Firstly, based on the operational data of wind power, photovoltaic power, and load
for 8760 h in the region, the net load curve is plotted as shown in Figure 3. From the
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graph, it can be observed that the load exhibits significant variations throughout the day,
characterized by “two peaks and one trough”. The “two peaks” occur around 6–9 a.m. and
6–10 p.m., primarily driven by residential, commercial, and industrial electricity consump-
tion. The “trough” occurs around 11 a.m.–4 p.m., mainly due to the substantial generation
of wind and solar power. Over the year, the net load shows significant seasonal variations.
In winter and spring, the net load is negative, indicating that the generation of renewable
energy exceeds electricity consumption. In summer and autumn, the net load is positive,
indicating that the generation of renewable energy is lower than electricity consumption.

Figure 3. Net load curve for 8760 h.

The trend component, seasonal component, and residual component obtained through
STL decomposition are shown in Figures 4 and 5. By using Formulas (2) and (3) to
calculate the strength of trend and seasonality after decomposition, we obtain FT = 0.87154
and FS = 0.96619, both of which are close to 1. This indicates that the net load data
for this location exhibit both trend and seasonality, hence validating the use of the STL
decomposition method for calculation.

Figure 4. Three-dimensional decomposition plot of the net load.

After obtaining the trend component, seasonal component, and residual component of
the net load for 8760 h, the multi-type energy storage planning model described in Section 3
and the initial value settings in Table 2 are utilized [34]. Hydrogen energy storage is used
to balance the long-term imbalance component of the power system, while electrochemical
energy storage, with its rapid charging and discharging properties, is utilized to balance the
short-term power imbalance of the power system. This process results in the configuration
of hydrogen energy storage and electrochemical energy storage, along with the power
output throughout the year at different times.
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Figure 5. Two-dimensional decomposition plot of the net load.

Table 2. Reference value settings.

Name Numerical Values

The installation cost of electrochemical energy storage 1.66 RMB/kWh
The installation cost of hydrogen energy storage 8 RMB/kWh
The marginal cost of electrochemical energy storage 1 RMB/kWh
The marginal cost of hydrogen energy storage 4 RMB/kWh
The operating cost of electrochemical energy storage 0.5 RMB/kWh
The operating cost of hydrogen energy storage 0.1 RMB/kWh
The cost of wind and solar spillage 10 RMB/kWh
The cost of load shedding 15 RMB/kWh
The maximum load shedding amount per unit time 100 kWh/h
The maximum wind and solar spillage amount per unit time 100 kWh/h

The configured capacity of electrochemical energy storage is 51 GWh, and the config-
ured capacity of hydrogen energy storage is 47 GWh.

Table 3 presents a comparison between existing research schemes and scenarios where
marginal costs are not considered, as well as scenarios considering only a single type
of energy storage, including hydrogen storage capacity, electrochemical storage capacity,
and the profits obtained from system operations. It should be noted that profits are
comprehensively considered based on the marginal costs of energy storage construction
mentioned in this paper, with negative values indicating a decrease in profits compared
to the scheme proposed in this paper. From the numerical values in the table, it can be
inferred that considering marginal costs and the combination of different types of energy
storage can improve the overall economic viability of the system while ensuring normal
system operation.

As shown in Figure 6, the total shedding load throughout the year is 0, and the total
wind and solar spillage throughout the year is 0.

Additionally, the long-term and short-term charging and discharging situations of
electrochemical energy storage are shown in Figure 7, and the long-term and short-term
charging and discharging situations of hydrogen energy storage are shown in Figure 8.
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Table 3. Description of the cases.

Case Hydrogen Storage Capacity Electrochemical Storage Capacity Profit

Not considering marginal costs 47 GWh 52 GWh −0.00126%

Only hydrogen storage 70 GWh 0 −0.49282%

Only electrochemical storage 0 75 GWh −1.6436%

The case of this article 46 GWh 51 GWh \

Figure 6. Wind and solar spillage and load shedding situation.

Figure 7. Hydrogen energy storage power output situation.

Figure 8. Electrochemical energy storage power output situation.

Comparing Figures 4 and 7, it can be observed that the long-term charging and
discharging curve of hydrogen energy storage coincides with the long-term imbalance
component of power. Comparing Figures 4 and 8, it can be observed that the short-term
charging and discharging curve of electrochemical energy storage coincides with the
seasonal imbalance component of power, which meets the expected situation.

As the existing renewable energy generation capacity cannot meet the requirements
of the load operation, additional hydrogen energy is considered to achieve the balance of
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power quantity in the system. The situation with additional hydrogen energy storage is
illustrated in Figure 9.

Figure 9. Externally provided hydrogen energy.

Selecting a day from the year and plotting the net load and energy storage output
situation as shown in Figure 10, it can be observed from the graph that the power sources
and loads achieve a balance of power throughout the day, with hydrogen energy mainly
used to balance long-term power output and electrochemical energy storage used to balance
short-term fluctuations in net load.

Figure 10. Overall power balance situation in the system.

5. Conclusions

To address the power system’s electricity imbalance caused by the large-scale integra-
tion of new and fluctuating renewable energy sources, this paper proposes an energy stor-
age planning method considering multi-time-scale electricity imbalance risks. The model
captures the annual variations in renewable energy and load using decomposition methods
to decouple the components of electricity imbalance over time. The decomposition results
are then used as the basis for planning hydrogen and electrochemical energy storage capaci-
ties. By establishing an energy storage planning model to minimize overall costs, validated
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with actual data, this paper makes the following contributions: Case studies based on
operational data from a province in southern China demonstrate the effectiveness of the
proposed model. This method achieves the multi-time-scale configuration of mixed energy
sources, ensuring low-carbon, secure, and economically efficient operation of the power
grid. By considering the marginal costs of energy storage construction and minimizing
overall costs, the planning model increases the total benefits compared to not considering
marginal costs. To enhance the energy utilization efficiency and leverage the advantages
of different types of energy storage, this paper utilizes hydrogen storage, which does not
experience self-discharge, to address trend-based fluctuations. Additionally, electrochemi-
cal energy storage, with rapid charge and discharge rates, is applied to handle short-term
fluctuations in electricity. Compared to using a single type of energy storage, the overall
benefits increase.

In the future, we will further consider the safety of hydrogen storage and incorporate
considerations of the grid structure to determine the optimal locations and capacities for
energy storage installations at various nodes, thus mitigating the impacts of large-scale
renewable energy integration on the power system.
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