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Abstract: Mobile phone backplanes are an important part of mobile phones, and are often affected
by a wide range of factors during the manufacturing process, resulting in defects of various scales
and similar backgrounds. Therefore, accurately identifying these defects is crucial for improving
mobile phone quality. To address this challenge, this paper proposes a multi-scale and dynamic
attention fusion UNet (MDAF-UNet) model. The model innovatively combines normal convolution
with dilated convolution. This allows the model to capture subtle features of defects and to perceive
a larger range of feature variations. Moreover, an improved attention mechanism is introduced in
this paper. It fuses channel attention and spatial attention, and dynamically adjusts the feature fusion
strategy with learnable weights. This allows the model to increase the attention of important features
and improve the effectiveness of feature representation. Experimental results on a publicly available
dataset show that the MDAF-UNet model achieves 66.9% Mean Intersection over Union (MIoU),
outperforming other state-of-the-art models. This result provides an effective solution to the mobile
phone backplane defect segmentation problem.

Keywords: mobile phone backplanes; MDAF-UNet; dilated convolution; attention mechanism

1. Introduction

Product quality assurance is a critical component of industrial quality control. Efficient
and accurate defect detection is essential for product quality control [1,2]. In mobile phone
manufacturing, the appearance and quality standards of mobile phone backplanes are
extremely high. Once a tiny defect is found, the product may be judged as substandard.
During quality control, in addition to identifying the defects, the shape and location of the
defects need to be accurately labeled. This can provide detailed data support for subsequent
quality control and assessment [3]. As a result, how to accurately detect defects in mobile
phone backplanes is a technical issue that must be addressed as soon as possible.

The field of industrial quality control relies heavily on traditional image processing
techniques for defect segmentation. These methods include the threshold method [4], edge
detection technique [5], and the watershed algorithm [6]. These methods are effective under
specific conditions. However, the defects of mobile phone backplanes have variable sizes
and similar backgrounds, which pose great challenges for defect segmentation. Traditional
segmentation methods are ineffective in dealing with these complex situations, and it is
difficult to meet the requirements of high-precision quality inspection.

With the development of deep learning technology, Convolutional Neural Networks
(CNNs) have shown great potential in the field of image processing [7,8]. UNet [9] is
designed based on CNNs, further enhancing the capability of CNNs in extracting features
from images. UNet effectively captures the contextual information of the image through
the unique symmetric structure and jump connections, which significantly improves the
accuracy of segmentation. However, considering the diversity and complexity of mobile
phone backplane defects, it is still challenging to use UNet directly for mobile phone

Electronics 2024, 13, 1385. https://doi.org/10.3390/electronics13071385 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071385
https://doi.org/10.3390/electronics13071385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13071385
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071385?type=check_update&version=1


Electronics 2024, 13, 1385 2 of 14

backplane defect segmentation. Many researchers have improved UNet to adapt to different
application scenarios. This includes the introduction of dilated convolution [10] and
attention mechanism [11,12]. In CNNs, smaller convolutional kernels excel at capturing
local details of an image, while larger convolutional kernels are adept at extracting global
features. Dilated convolution is a special type of convolution that effectively expands
the receptive field of the convolutional kernel to help the model capture a broader range
of feature information. By integrating various sizes and types of convolutional kernels,
CNNs can extract multi-scale features spanning from local to global, thereby achieving
a more comprehensive understanding of the image. Moreover, the attention mechanism
enables the model to prioritize critical regions in the image while disregarding irrelevant
areas during feature extraction. Therefore, by leveraging multi-scale information and
the attention mechanism, it provides an effective solution for detecting defects in mobile
phone backplanes.

In summary, considering the scale diversity of mobile phone backplane defects, the
model needs to flexibly cope with the feature information of different scales. Meanwhile,
in terms of the subtle differences and background similarity of mobile phone backplane
defects, the model also needs to have the ability to capture these subtle difference variations.
To address these challenges, this paper presents two key improvements based on UNet: the
first is to strengthen the multi-scale feature extraction capability to enhance the recognition
of defects at different scales; the second is to introduce the attention mechanism to enhance
the model’s differentiation of subtle differences. Therefore, this paper proposes a multi-
scale and dynamic attention fusion UNet (MDAF-UNet) model. The main contributions of
this paper are as follows:

(1) An innovative multi-scale fusion technique is proposed, which can effectively recog-
nize defects at different scales. The technique utilizes normal and dilated convolutions
to enable the model to capture not only the subtle features of defects, but also a wider
range of feature variations.

(2) An improved attention mechanism is proposed. A fusion module is introduced after
channel attention and spatial attention to generate the final attention feature map.
Additionally, by introducing learnable weights, the model combines the original
features with the fused attention features dynamically, further enhancing the feature
representation.

(3) The proposed model has been validated on a public dataset, and the results show
that the improved module enhances UNet’s segmentation effect. Compared with
the existing algorithms, the MDAF-UNet model demonstrates significant advantages
in performance.

The rest of the paper is organized as follows: Section 2 describes related work; Section 3
describes the structure and improved modules of MDAF-UNet; the experimental setup
and evaluation indicators are described in Section 4; Section 5 concludes with a detailed
description of the experiments and results; Section 6 provides a summary.

2. Related Work

Due to the complexity and variability of object surfaces, defect segmentation poses
significant challenges. In the realm of industrial quality inspection, traditional image
processing techniques are frequently employed for such tasks. Cao et al. [13] employed a
gradient threshold segmentation method, which effectively mitigates segmentation errors
caused by uneven illumination and substantially enhances segmentation accuracy on com-
plex object surfaces. Yang et al. [14] combined a supervised multi-threshold segmentation
model with the Canny edge detector to effectively recognize similar features on the surface
of the target object that are otherwise difficult to differentiate. Meiju et al. [15] proposed a
two-dimensional Otsu segmentation algorithm for small defects in mobile phone screens,
which achieves accurate segmentation of target and background. While these methods
have achieved significant results in specific scenarios, more refined detection strategies
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are still required to address the complex situation of mobile phone backplane defects with
varying scales and similar backgrounds.

In recent years, researchers have begun to explore the use of CNN-based network
models for defect segmentation to improve segmentation accuracy [16–18]. Song et al. [19]
developed a U-Net-based surface defect detection technique for identifying surface flaws
commonly found in industrial production products, offering robust support for enhancing
the quality of industrial production. Jiang et al. [20] further applied UNet to mobile phone
backplane defect detection and achieved better results. The primary function of dilated
convolution is to expand the receptive field in order to better capture contextual information
in the image. This is important when dealing with mobile phone backplane defects, which
often contain different scales. Mao et al. [21] introduced dilated convolution and jump
connection to effectively extract the feature information of mobile phone screen defects,
thus realizing efficient classification. Pan et al. [22] introduced dilated convolution in
UNet and verified its superiority in a real mobile phone surface defects task. Considering
the subtle differences in the defects of the mobile phone’s backplane and their similarity
to the background, the model must have the ability to accurately capture these nuances.
In this regard, the attention mechanism plays a key role, enabling the model to focus
on both local and global information, automatically highlighting critical regions where
defects exist [23,24]. Guo et al. [25] introduced the spatial attention mechanism into U-Net,
significantly improving the accuracy of the segmentation task. Lu et al. [26] effectively
addressed the challenge of diverse surface defects across various products by integrating
multiscale features and an attention mechanism. Zhu et al. [27] designed an attention
mechanism that combines multi-frequency information and local cross-channel interaction
to better represent and emphasize defect features. Therefore, the comprehensive utilization
of multi-scale information features and attention mechanisms can effectively enhance the
defect segmentation accuracy of mobile phone backplanes.

In summary, the challenges of scale diversity and background similarity exist in the defect
detection task of mobile phone backplanes. By improving the model’s multi-scale feature
extraction capability and ability to differentiate subtle differences, this paper provides an
effective solution to the defect detection problem in mobile phone backplane manufacturing.

3. Methodology
3.1. Model Structure

UNet is a widely used image segmentation model consisting primarily of an encoder
and a decoder. The encoder gathers contextual information from the image, while the
decoder focuses on accurate localization. To effectively enhance the segmentation accuracy
of UNet for defects on mobile phone backplanes, this paper introduces a multi-scale fusion
module and an attention mechanism module based on UNet. The multi-scale fusion
module enhances the network’s ability to capture features at different scales, while the
improved attention mechanism module, incorporating dynamic weights for the dynamic
adjustment of attention features, enhances the focus on defective regions.

Figure 1 depicts the structure of the MDAF-UNet proposed in this paper. Blue arrows
represent the use of 3 × 3 convolutions followed by Rectified Linear Unit (ReLU) activation
function to extract image features. Yellow arrows denote the process of multi-scale feature
fusion, which combines feature maps from different scales for comprehensive information
capture. Red arrows signify 2 × 2 max pooling, utilized to reduce the spatial dimensions of
feature maps. Grey arrows illustrate the copy and crop operation, utilized to achieve fusion
of the corresponding feature layers. Green arrows indicate 2 × 2 deconvolutions, employed
to enlarge the feature maps’ dimensions. Orange arrows indicate that an attentional
mechanism is employed, allowing the model to focus on key regions of the image. Light
blue arrows indicate linear interpolation up-sampling. On this basis, firstly, five initial
effective feature layers are obtained using VGG16 as the backbone feature extraction
network. After each effective feature layer, a multi-scale fusion module is introduced.
Subsequently, feature fusion is performed on the five feature layers. The feature fusion is
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performed by up-sampling and stacking the feature layers. In this process, an improved
attention mechanism is introduced after each feature fusion. Finally, the prediction results
are derived based on the input image features.
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3.2. Multi-Scale Fusion Module

Features at different scales are essential for accurate segmentation of defects in mobile
phone backplanes. Small scale features provide detailed information about the image, while
large scale features offer global information. The size and shape of mobile phone backplane
defects vary greatly at various scales. The introduction of a multi-scale fusion module
can capture and adapt to defects at different scales and enhance the feature representation
capability of the model. Normal convolution primarily captures localized features, while
dilated convolution enlarges the receptive field without increasing parameters, capturing a
broader range of contextual information. By combining normal and dilated convolution, the
model can perceive a wider range of feature changes while preserving detailed information.

In this paper, the multi-scale feature fusion module is added after the UNet backbone
feature extraction network. This approach further enhances the feature representation.
Additionally, the backbone feature extraction network helps to extract high-level features by
gradually reducing the spatial size of the feature map. The introduction of the multi-scale
fusion module enables the fusion of features at different scales without significant loss of
spatial information.

Figure 2 illustrates the multi-scale fusion structure. Suppose the input feature map is
defined as Fin ∈ RC×W×H, where C denotes the number of channels, W denotes the width
of the feature map, and H denotes the height of the feature map. The output after normal
and dilated convolution [10] can be expressed as follows:

F′ = Conv(Fin, ω, 3), (1)

F′′ = Conv(Fin, ω, 5), (2)

F′′′ = Conv(Fin, ω, 3, d), (3)

where F′ denotes the output feature map after convolution kernel (size 3 × 3), F′′ denotes
the output feature map after convolution kernel (size 5 × 5), F′′′ denotes the output feature
map after dilated convolution, ω denotes the weight of the convolution kernel, and d
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denotes the coefficient of the dilated convolution, and here d is equal to 2. The fused
features of the three feature maps can be represented as follows:

Fm = Concat(F′, F′′ , F′′′ , dim = 1), (4)
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Next, each channel of Fm is normalized using batch normalization, and then the feature
map is scaled and offset. Finally, the multi-scale fused feature map is obtained after ReLU
activation function. The feature map can be represented as follows:

Fout = Relu(αc(
Fs − µc√

εc2 + σ
) + βc), (5)

where µc and εc
2 represent the mean and variance of the channel in the current batch,

respectively. αc and βc are learnable parameters, independent for each channel, and σ is a
smaller constant that prevents the denominator from being zero.

3.3. Attention Mechanism Module

The introduction of the attention mechanism enables the model to automatically focus
on the critical areas where the defects are located. This means that the introduction of the
attention mechanism can more accurately recognize the defective regions, thus improving
the recognition accuracy. However, in mobile phone backplane defect detection, since
different defects are difficult to distinguish and have similar backgrounds, it requires finer
attention tuning to capture these nuances. The attention to features can be effectively tuned
by combining the outputs of channel attention and spatial attention. More detailed feature
enhancement is then achieved through additional convolutional processing. As a result,
after channel and spatial attention, a fusion module is introduced, which combines the
outputs of the two types of attention to produce the final attention feature map. At the
decoder stage, an improved attention mechanism is introduced in this paper. Up-sampling
is required in the decoder stage to recover the image’s detailed information. The attention
mechanism helps the model to process the detailed information meticulously, which is
essential for accurate segmentation of similar defects. Additionally, the improved attention
mechanism helps the model to better determine which features are useful and which should
be suppressed when fusing different levels of features during the up-sampling process.
This helps generate more accurate segmentation results.

The structure of the improved attention mechanism is shown in Figure 3, where
Maxpool denotes max pooling, and Avgpool denotes average pooling. Assuming the
input feature is defined as fin, after the Channel Attention Mechanism (CAM) [24] can be
represented as follows:

fc = fin · σ(Cavg(fin) + Cmax(fin)), (6)

where σ denotes the sigmoid function, Cavg represents the result of the feature map after
average pooling processed by the fully connected layer, while Cmax represents the result of
the feature map after max pooling processed by the fully connected layer. The feature map
obtained after Spatial Attention Mechanism (SAM) can be represented as follows:

fs = fin · σ(Conv(Cat(Mean(fin), Max(fin)))), (7)
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where Cat denotes the splicing along the channel direction, Mean denotes the average value
of the input feature map, and Max denotes the maximum value of the input feature map.
Following attention fusion, the feature map can be represented as follows:

f′cs = σ(Conv(Relu(Conv(Cat(fc + fs))))), (8)
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The final enhanced feature map obtained by adaptive feature fusion computation is
represented as follows:

fout = α · fin + β · (fin · f′cs), (9)

where α and β denote the learnable weights after Softmax function. The learnable weights
allow us to dynamically adjust the method of combining the original features with the
fused attention features.

4. Experimental Setup and Evaluation Indicators
4.1. Dataset

This paper selects a defective segmentation dataset for industrial quality control of
mobile phone backplanes. Blemish, corner wear, and crack are the three types of defective
targets covered in the dataset, in addition to backgrounds. The dataset contains 864 high-
definition images, which provides rich data resources for the quality inspection of mobile
phone backplanes. The dataset is scientifically divided in the experiment. The training set
for model training is made up of 777 images, while the validation set for model validation
and evaluation is made up of 87 images. The dataset’s partial samples are shown in
Figure 4. Additionally, this paper adopts the method of 10-fold cross-validation [28] to
further enhance the reliability of the model’s results.
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4.2. Experiment Details

Experiment hardware environment: CPU is Intel Core i7 (Intel Corporation, Santa
Clara, CA, USA); GPU is NVIDIA GeForce RTX 3050 Ti (with 12 GB of video memory)
(NVIDIA Corporation, Santa Clara, CA, USA). Experiment software environment: the oper-
ating system is Windows 10 (Microsoft, Redmond, WA, USA); deep learning framework is
PyTorch; the programming language is Python 3.8; CUDA version is 11.6.

This paper’s parameters are as follows: the image input size is 512 × 512; the optimizer
is Adam; the momentum is 0.9; the initial learning rate is 0.0001; the learning rate decreasing
mode is Cosine Annealing; the epoch is 400; the batch size is 8.

4.3. Evaluation Indicators

In this paper, the following three key metrics are chosen to comprehensively evaluate
the model’s performance in the mobile phone backplane defect segmentation task: precision,
recall, and Mean Intersection Over Union (MIoU). These metrics help understand the
model’s ability to recognize defects from various perspectives and ensure the model’s
validity and reliability in practical applications. It is assumed that True Positives (TP)
denotes the number of correctly predicted positive samples; True Negatives (TN) denotes
the number of correctly predicted negative samples; False Positives (FP) denotes the number
of negative samples incorrectly predicted as positive samples; and False Negatives (FN)
denotes the positive samples incorrectly predicted as negative samples number of positive
samples that are incorrectly predicted as negative samples. The formula for calculating
precision is as follows:

precision =
TP

TP + FP
, (10)

Recall is a measure of the model’s ability to identify all positive samples, and it focuses
on how well the model covers the positive samples. The formula for calculating recall is
as follows:

recall =
TP

TP + FN
, (11)

Intersection Over Union (IoU) is a key metric for evaluating model performance in
segmentation tasks, measuring how much the predicted segmentation region overlaps with
the actual segmentation region. The formula for calculating Intersection Over Union (IoU)
is as follows:

IoU =
TP

TP + FP + FN
, (12)

MIoU is averaged over all IoU categories to assess the model’s overall performance in
a multi-category segmentation task. The formula for calculating MIoU is as follows:

MIoU =
1
N

N

∑
i=1

IoUi, (13)

where N represents the number of categories. MDAF-UNet’s performance on the task of
mobile phone backplane defect segmentation can be comprehensively evaluated using
these metrics.

5. Experiments and Results
5.1. Backbone Network Comparison Experiments

Table 1 illustrates the experimental results of VGG16 and ResNet50 as UNet backbone
networks, respectively. When used as the backbone network, it has been discovered that
VGG16 produces better overall results. Specifically, the MIoU of VGG16 as the backbone
network is 4.8% higher than that of ResNet50, indicating that it has a higher degree of
overlap between recognized defective regions and real defective regions. Its precision
is higher by 8.8%, indicating that VGG16 incorrectly labels fewer regions recognized as
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defective. In terms of recall, VGG16 is higher by 4.6% compared to ResNet50, indicating its
ability to identify all real defective regions more comprehensively.

Table 1. Backbone network comparison results.

Model
Module

MIoU (%) Precision (%) Recall (%)
VGG16 ResNet50

UNet ✓ 63.7 78.2 70.0
✓ 58.9 69.4 65.4

Figure 5 displays the IoU of the three targets in different backbone networks. The
results show that the choice of backbone network has a significant impact on the IoU
performance in the segmentation task. When VGG16 is selected as the backbone network,
the IoU of all three targets are higher than the corresponding IoU when ResNet50 is used
as the backbone network.
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Figure 6 depicts the segmentation results of the two backbone networks, VGG16 and
ResNet50, in real-world applications. However, ResNet50 exhibits limitations when dealing
with two types of complex defects: cracks, and corner wear. Specifically, it incorrectly
segments some cracked regions into corner wear, leading to misclassification of defect types.
Furthermore, there are instances where cracks are not detected, significantly reducing the
segmentation’s completeness and accuracy. In comparison, VGG16 not only accurately
recognizes and segments the crack region, but also avoids misclassification and missed
detection. It is worth mentioning that both VGG16 and ResNet50 perform relatively well in
blemish segmentation. This is due to the more obvious features of blemish, which allow
both models to handle it better.

5.2. Ablation Experiments

Ablation experiments are carried out in this paper to investigate the effect of adding
multi-scale fusion and attention mechanisms to UNet on image segmentation performance.
Table 2 summarizes the results of the ablation experiments. After either multi-scale fusion or
the attention mechanism is introduced, the model’s performance improves to some extent.
Specifically, the MIoU of the model is improved by 2.4% after the introduction of multi-scale
fusion, and by 1.8% after the introduction of the attention mechanism. Furthermore, when
multi-scale fusion and the attention mechanism are introduced, the model’s MIoU increases
by 3.2%. Additionally, precision and recall have significantly improved. These results
suggest that combining multi-scale fusion and the attention mechanism in UNet can further
improve the image segmentation effect.
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Table 2. Results of ablation experiments.

Model
Module

MIoU (%) Precision (%) Recall (%)
Multi-Scale Attention

UNet 63.7 78.2 70.0
✓ 66.1 77.9 73.4

✓ 65.5 76.8 74.0
✓ ✓ 66.9 78.6 74.3

Figure 7 demonstrates the IoU of different targets in the ablation experiments. The
results show that the IoU of each type of target has slightly improved since the introduction
of multi-scale fusion or attention mechanism.
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This paper employs UNet and MDAF-UNet for the segmentation of actual mobile
phone backplane defects. Figure 8 illustrates the actual segmentation results. Particularly,
both models exhibit similar accuracy in segmentation of blemish defects. However, MDAF-
UNet performs more accurately in the segmentation task of crack defects. This suggests
that MDAF-UNet effectively captures the detailed information of crack defects, and thus
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the introduction of the attention mechanism and the multi-scale fusion module enhances
the model’s ability to perceive defects and segmentation accuracy.
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5.3. Comparison Experiments

In this paper, PSPNet [29] and UNet-CBAM are selected for experimental comparison
with MDAF-UNet. The comparison experiments’ results are shown in Table 3, indicating
that MDAF-UNet achieves the best segmentation performance. The MIoU is improved by
7.5% relative to PSPNet and 2.2% relative to UNet-CBAM. Figure 9 illustrates the segmen-
tation results for various targets including blemish, corner wear, and crack. Specifically,
MDAF-UNet shows the best performance in the segmentation tasks of blemish defects
and crack defects, with IoU of 75% and 73%, respectively, surpassing those of PSPNet and
UNet-CBAM. These results indicate that MDAF-UNet achieves better performance in the
defect segmentation task of the mobile phone backplane.

Table 3. Comparison of ablation experiments.

Model MIoU (%) Precision (%) Recall (%)

PSPNet [29] 59.4 76.9 72.2
UNet-CBAM 64.7 75.0 72.7
MDAF-UNet 66.9 78.6 74.3
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The actual segmentation results of the compared models are shown in Figure 10.
For the defect detection task, MDAF-UNet performs the best in terms of segmentation.
MDAF-UNet is able to effectively fuse multi-scale features, which enables the model
to more comprehensively perceive the characteristics of defects at different scales. This
enables MDAF-UNet to segment the blemish region more accurately and avoids mis-
segmentation. In contrast, PSPNet made some errors in blemish segmentation and was
unable to effectively capture the subtle features of blemish, resulting in some blemish being
incorrectly categorized as corner wear. Although the UNet-CBAM model performed well
in general, there were some instances where it was unable to handle crack segmentation
completely correctly. This is because, while CBAM can improve the model’s focus on
important features, it is still insufficient for capturing subtle.
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5.4. Discussion

VGG16 increases network depth by stacking multiple smaller convolutional kernels to
capture more detailed information. This design allows VGG16 to extract image features in
much greater detail, especially when dealing with images with multi-scale defects, such as
mobile phone backplanes. Secondly, ResNet50 addresses the issue of gradient vanishing by
introducing residual connections. However, in some cases, an excessive number of residual
connections may cause the network to become overly complex, hindering the learning of
effective feature representations. In the mobile phone backplane defect segmentation task,
ResNet50 fails to adequately learn the features specific to defects such as cracks and corner
abrasion, leading to mis-classification and missed detection.

UNet is a classical semantic segmentation network widely used in the medical and
industrial sectors. However, when dealing with complex scenes or fine features, UNet
may not perform well. The results of the ablation experiments demonstrate that the
introduction of multi-scale fusion and attention mechanisms has a positive impact on
model performance. Firstly, the introduction of the multi-scale fusion module helps the
model to capture image features more comprehensively at different scales. Defects on the
backplane of a mobile phone often have different scales and shapes, so the multi-scale
fusion module can help the model better segment these defects. Secondly, the introduction
of the attention mechanism allows the model to focus on critical regions. In the mobile
phone backplane defect segmentation task, the attention mechanism helps the model
concentrate its attention on regions where defects may exist, reducing the processing of
irrelevant information and improving the segmentation accuracy.



Electronics 2024, 13, 1385 12 of 14

PSPNet adopts a global pooling strategy to capture global contextual information,
but it may not efficiently handle fine blemish features, resulting in some blemishes being
incorrectly segmented as corner wear. UNet-CBAM introduces CBAM to improve the
critical target region attention when segmenting mobile phone backplane defects. Its
performance is superior to that of UNet. However, due to the model’s inability to perceive
subtle features, some corner wear and cracks are not properly segmented. The enhancement
of the attention mechanism in MDAF-UNet further optimizes the model’s attention to
critical regions compared to CBAM. Through the fusion of channel attention and spatial
attention, the model can locate the defective regions more accurately. Furthermore, using
learnable weights to dynamically adjust the way original features are combined with
fused attention features improves feature representation. Moreover, the multi-scale fusion
module enables the model to comprehensively utilize feature information at different scales,
capturing the detailed features more effectively.

In summary, MDAF-UNet can segment defects on mobile phone backplanes more
accurately by integrating multi-scale information and optimizing the attention mechanism.
However, although MDAF-UNet shows significant advantages in segmenting defects on
mobile phone backplanes, it still has some limitations. The model’s validation is limited to a
single dataset and lacks validation on multiple datasets, which may result in an insufficient
assessment of its generalization ability.

6. Conclusions

Aiming to address the challenges of scale variation and background similarity in mo-
bile phone backplane defect segmentation, an MDAF-UNet model is proposed in this paper.
The model utilizes a combination of multi-scale fusion and attention mechanism, demon-
strating significant advantages in dealing with defect scale variations and background
interference. By integrating normal convolution and dilated convolution, defects at differ-
ent scales can be effectively captured. Meanwhile, channel attention and spatial attention
are introduced, and the fusion of attention features is dynamically adjusted by learnable
weights. The experimental results validate the superiority of the MDAF-UNet model on
the mobile phone backplane defect dataset, achieving a segmentation effectiveness of 66.9%
in terms of MIoU.

In the future, this paper aims to further enhance and validate the MDAF-UNet model
to ensure its effectiveness in practical applications through a wider range of datasets and a
more rigorous experimental design.
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