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Abstract: Nowadays, fine-tuning has emerged as a powerful technique in machine learning, enabling
models to adapt to a specific domain by leveraging pre-trained knowledge. One such application
domain is automatic speech recognition (ASR), where fine-tuning plays a crucial role in addressing
data scarcity, especially for languages with limited resources. In this study, we applied fine-tuning
in the context of atypical speech recognition, focusing on Italian speakers with speech impairments,
e.g., dysarthria. Our objective was to build a speaker-dependent voice user interface (VUI) tailored to
their unique needs. To achieve this, we harnessed a pre-trained OpenAI’s Whisper model, which has
been exposed to vast amounts of general speech data. However, to adapt it specifically for disordered
speech, we fine-tuned it using our private corpus including 65 K voice recordings contributed by
208 speech-impaired individuals globally. We exploited three variants of the Whisper model (small,
base, tiny), and by evaluating their relative performance, we aimed to identify the most accurate
configuration for handling disordered speech patterns. Furthermore, our study dealt with the local
deployment of the trained models on edge computing nodes, with the aim to realize custom VUIs for
persons with impaired speech.

Keywords: automatic speech recognition; whisper; dysarthria; atypical speech; transformer; edge;
assistive technology; AI

1. Introduction

Human speech serves as a fundamental channel for interpersonal communication and
expression of ideas. As technology advances, voice user interfaces (VUIs) have gained
prominence, offering an alternative to traditional input methods like keyboards and touch-
screens. These VUIs leverage automatic speech recognition (ASR) services to process
spoken commands, enabling natural interactions with machines across diverse application
scenarios, including smart home automation. However, despite their widespread adoption,
current speech recognition systems face a critical challenge: inclusivity. Millions of users
with speech impairments, such as dysarthria, encounter barriers when attempting to benefit
from voice-controlled devices. Dysarthria, a complex neuromotor voice disorder can be
either acquired or congenital. It manifests through abnormalities in the strength, speed,
range, steadiness, tone, or accuracy of movements required for speech production [1]. The
negative impact on speech intelligibility is profound, particularly when coupled with severe
movement disorders resulting from conditions like cerebral palsy or progressive diseases.
As a result, the speech is atypical and exhibits distinct features, including imprecise pitch
pauses during consonant and vowel production, leading to a lack of clarity in phonemes.
Unfortunately, conventional ASR systems rely on auditory cues that may be obscured by
these deviations. Furthermore, the effects of speech disability vary significantly among
individuals, making the speech variations observed in dysarthric persons considerably
greater than those found in typical speech. In light of these complexities, it is evident
that existing ASR models demonstrate poor performance when confronted with impaired
speech. Several authors have highlighted that virtual home assistants do not perform at a
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sufficient level for people with a speech impairment, in fact the more severe the case, the
worse the performance. Detailed investigations can be found in [2–4].

One of the major concerns in the development of speech recognition solutions for
pathological speech is the lack of available data [5], which accelerates the insufficient
generalization of ASR performance among speakers. Consequently, disordered speech
recognition ASR development can be rephrased as the challenge of building a model with a
limited amount of data nowadays. To this end, in prior studies, a transfer learning approach
was explored where an acoustic model was first trained with a large healthy speech
corpus and then fine-tuned with a dataset including pathological speech [6]. Although this
approach showed positive outcomes, it is still far away from being competitive with ASR
for speech without disorders.

The present study attempted to fill this gap by proposing, in the domain of atypical
ASR, a fine-tuning approach that exploits a state-of-the-art (SOTA) speech recognition
architecture, namely, OpenAI’s Whisper. It employs an encoder–decoder Transformer
structure leading to the creation of a supervised learning-based ASR system, which uses
large amounts of labeled audio data, specifically 680K hours. The model uses weakly
supervised pre-training beyond English-only speech recognition to be multilingual and for
multitasking, showing great performance on different multilingual speech datasets [7]. As
a sequence-to-sequence model, Whisper maps a sequence of audio spectrogram features
to a chain of characters, while it applies a speech vision approach helping to address the
limitations of variations in phonemes, their labeling, and the scarcity of impaired audio
data, as motivated by recent scientific contributions [8,9]. In this study, we propose to
fine-tune Whisper on our private corpus of Italian atypical speech encompassing 65 K
single speech recordings. These data have been authored by 208 anonymized individuals
with various conditions causing a speech disorder. We adopt a pure speaker dependent
methodology wherein three different Whisper variants—small, base, tiny—are trained
to spot precise and unique keywords belonging to our closed ASR dictionary, including
79 distinct elements, i.e., Italian words. Owing to the collaboration of 16 participants with
diverse grades of speech impediments, the effectiveness of our approach was evaluated in
terms of word recognition accuracy (WRA) to investigate the performance of Whisper across
various speech disorders. Additionally, we explored the feasibility of running inference
tasks on edge computing nodes, specifically single board computers. This investigation
contributes insights toward the development of a local Voice User Interface (VUI) tailored
for disordered speech, which is an area of high demand in assistive technology [10].

To the best of our knowledge, the utilization of fine-tuning techniques for automat-
ically recognizing disordered Italian speech has not been thoroughly explored to date.
Consequently, the main contributions of the present study are summarized below:

• Fine-tuning three distinct variants of OpenAI’s Whisper using our proprietary collec-
tion of Italian atypical speech;

• Evaluating their relative accuracy in keyword spotting, with the valuable input of
selected individuals who have speech disabilities;

• Harnessing these fine-tuned models to create a voice user interface tailored for Italian
individuals who experience dysarthria and other speech disorders.

The rest of this article is structured as follows. Section 2 presents related works. Details
about our methodology are provided in Section 3. Section 4 discusses our experimental
outcomes, and Section 5 summarizes the conclusion of the study.

2. Related Works

The numerous challenges of automated speech recognition in the presence of atypical
patterns have gained the attention of both industry and research communities [11–16]. To
overcome these issues, the collaboration between diverse researchers and actors plays a
crucial role. In this regard, the “Speech Accessibility Project” is a collaborative initiative
led by the University of Illinois Urbana-Champaign (UIUC) in partnership with major
technology companies, including Amazon, Apple, Google, Meta, and Microsoft. Its main
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objectives is to enhance current voice recognition technology to be more inclusive and
useful for individuals with diverse speech patterns and disabilities. In this context, the
adoption of fine-tuning-based approaches is of paramount importance. Generally, within
the framework of deep learning, fine-tuning refers to the process of adjusting a pre-trained
model on a specific task or dataset. In ASR, such a technique helps adapt the model to
specific accents, languages, or speakers’ characteristics, while the model’s parameters are
adjusted using a smaller, task-specific dataset (fine-tuning data).

Nowadays, fine-tuning on accents or atypical populations significantly improves
performance and, at the same time, allows ASR systems to handle variations in speech
patterns more effectively [17]. Positive results in the Whisper model’s fine-tuning have been
documented in the domain of child speech recognition [18], as well as in dysarthric speech
recognition, where Rathod et al. highlighted a WRA of 59% using a block of 155 keywords
belonging to the English UA-Speech corpus [19]. Furthermore, a Whisper application in a
rehabilitation scenario involving patients with post-stroke aphasia is proposed in [20].

Different studies have focused on the possible utilization of self-supervised learn-
ing [21] (SSL) approaches in the presence of atypical speech to address the main challenge
of speech data scarcity [22–25]. For example, Wang et al. [26] explored the advantages of
pre-trained mono and cross-lingual speech representations for the spoken language under-
standing of Dutch dysarthric speech, and Hu et al. [27] investigated a series of approaches
to integrate domain-adapted SSL pre-trained models into time delay neural networks and
conformer ASR systems for elderly and impaired speech recognition by working on the
UA-Speech and the Dementia Pitt corpora.

As shown in Table 1, the application of fine-tuning methods in the automated recogni-
tion of Italian disordered speech remains unexplored. To fill this gap, this study performed
the following:

• Fine-tuned three different OpenAI’s Whisper variants on our private corpus of Italian
atypical speech;

• Measured the relative performance in terms of accuracy in keyword spotting, owing
to the collaborative effort of selected individuals with a speech disability;

• Leveraged the fine-tuned models toward the development of a voice user interface for
users with atypical voices who speak Italian.

Table 1. Recent studies on the utilization of fine-tuning approaches in impaired speech recognition.

Reference Language Method

[19] English (UaSpeech corpus) Whisper and Bi-LSTM
classifier model

[20] English (SONIVA corpus) Whisper large model

[23] English (UaSpeech)
German (private corpus)

Fne-tuning Wav2Vec2
using fMLLR features

[24] English (UaSpeech)
Japanese (ELSpeech corpus)

Wav2Vec2 + Wav2LM

[27] English (UaSpeech and
DementiaBank corpus)

SSL pre-trained Wav2Vec2
with hybrid TDNN and Conformer

[26] Dutch (private database) Various Wav2Vec2
and Whisper variants

[28] English and Spanish
(AphasiaBank database)

Wav2Vec2 XLSR-53 model

3. Methodology

This section presents our speaker-dependent methodology designed for the automated
recognition of unique and precise words spoken by individuals with speech disorders,
e.g., dysarthria, who are Italian speakers. In the context of atypical speech recognition,
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our proposed approach focuses on keyword spotting tasks rather than spoken language
understanding. Indeed, for many individuals living with speech disorders, single words
serve as a convenient natural voice production method, helping to mitigate difficulties in
breath control and speech coordination. Consequently, isolated word recognizers play a
crucial role in minimizing dysarthric ASR errors [29].

Given the lack of adequate corpora containing Italian disordered speech samples,
one of our primary objectives was to create such a database. We leveraged findings
from previous scientific contributions and successfully utilized our CapisciAMe software
(1.3.76 version) [30] to construct and empower the first Italian dysarthric corpus aimed at
AI research that exclusively comprises atypical speech utterances. Unlike other databases
in the literature [31], our private speech collection, named CapisciAMe database, contains
no audio data from individuals with typical (also known as normal) voices. Furthermore,
we refrained from conducting any data augmentation operations on the collected data,
distinguishing our approach from recent studies that create synthetic dysarthric data [9,32].
In recent years, the content of our database has been enriched both in terms of repetitions
per keyword and in terms of the ASR dictionary size; nowadays, its total size and its
inner organization outperform other Italian initiatives [33]. At the time of this writing,
the CapisciAMe database was built owing to the collaboration of 208 Italian speakers
with speech disabilities resulting from various neurological conditions including infant
cerebral palsy (CP), stroke, and physical and traumatic brain injuries (TBIs), as well as
neurodegenerative diseases, like Huntington’s chorea. In total, our speech collection
contains 65,282 unique speech samples, amounting to an overall recording time of 46.4 h.
Each element within our labeled database represents a single atypical pronunciation of a
keyword from our closed dictionary, produced by an anonymized individual with speech
impairments. The corresponding waveform is sampled at 16 KHz and stored in a single-
channel 16-bit PCM WAV file. The dataset content is not balanced due to variations in the
number of samples collected by each speaker for the 79 distinct classes (or categories) within
our ASR dictionary. These classes encompass a wide range of content, including numbers
from zero to ten and voice commands for controlling smart home devices such as plugs,
lamps, and televisions, as well as commands for music playback and vocal interaction with
smartphones and computers. Furthermore, we meticulously reviewed the speech content
to filter out background noise and unwanted audio components, ensuring the integrity of
the atypical speech information for training deep learning architectures [34].

In this study, we used the CapisciAMe database to explore its synergy with a state-of-
the-art (SOTA) ASR architecture, which is OpenAI’s Whisper, and we specifically investi-
gated the fine-tuning of three configurations of the same model with our corpus of Italian
atypical speech. Whisper is currently trained in a fully supervised manner by exploiting
a total amount of 680K hours of labeled speech data from multiple sources, including
a block of multilingual data. The model is based on an encoder–decoder Transformer,
which is fed by 80-channel log-Mel spectrograms obtained by the input speech waveform.
Notably, the encoder is formed by two convolution layers with a kernel size of 3, followed
by a sinusoidal positional encoding and a stacked set of Transformer blocks, whereas the
decoder uses the learned positional embeddings and the same number of Transformer
blocks from the encoder [7]. It is depicted in Figure 1. In this way, Whisper can map
sequences of speech frames into sequences of characters. Diverse Whisper variants are
available today with variations in the number of layers and attention heads. Specifically, in
the present study, we employed the following configurations:

• Small, having approximately 244 million of parameters;
• Base, having approximately 74 million of parameters;
• Tiny, having approximately 39 million of parameters.

The proposed experimental evaluation conducted on such Whisper variants is detailed
in the next section.
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Figure 1. Structure of the Whisper model.

4. Experimental Evaluation

The following experiments had distinct objectives. First, with the collaborative effort
of sixteen individuals having speech and motor disabilities, we studied the performance
of the aforementioned variants of OpenAI’s Whisper ASR architecture by considering the
Word Recognition Accuracy (WRA) as the main performance indicator. This is a common
metric for isolated word recognition tasks, and it expresses the percentage of the number
of words the ASR models correctly identify to the number of words attempted, i.e., the
size of our testing dataset. We employed this metric because we treated the problem of
recognizing single speech commands as a multi-class classification task.

Next, we investigated the possibility of running the inference tasks (of the three mod-
els) on edge computing nodes, in particular single board computers, to the end of providing
insights toward the development of a local Voice User Interface (VUI) for disordered speech,
which is currently of great demand in the assistive technology field.

4.1. Speech Database Organization and Participants

The entire content of the Italian CapisciAMe database was exploited in the experi-
ments. Our collection encompasses a total of 65,282 single speech recordings, correspond-
ing to an overall duration time of 46.4 h. These speech contributions were created by
208 anonymized Italian speakers who had a condition causing a speech disorder. Among
the total population, a subgroup of sixteen participants, whose details are reported in
Table 2, was selected. These individuals were affected by motor disorders and varying
severity levels of dysarthria, ranging from mild to severe. The considered speakers ac-
counted for a large number of samples within our database, so, for each of them, 10 percent
of the voice recordings was randomly selected to compose a testing dataset used to mea-
sure the performance of the proposed speech recognition solution. Moreover, the testing
dataset was enriched with waveforms containing background noise and no human voice
signal. As a result, the built datasets did not share any common elements: specifically,
the training dataset included a total of 60,756 samples (recording time: 43.2 h) authored
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by 208 distinct speakers, whereas the testing dataset comprised a total of 4526 samples
(recording time: 3.2 h) created by the above selected participants.

Table 2. Sixteen Italian speakers engaged in the experiments.

Speaker Gender Age Speech Disorder Cause Speech Disorder Degree

IT01 M 39 CP Moderate

IT02 M 53 CP Severe

IT03 M 65 Neurodegenerative illnes Mild

IT04 F 47 CP Severe

IT05 M 41 CP Moderate

IT06 M 72 Cerebropathy Moderate

IT07 F 66 CP Severe

IT08 F 34 CP Mild

IT09 M 55 TBI Mild

IT10 M 29 CP Moderate

IT11 F 43 Cerebropathy Mild

IT12 M 46 TBI Severe

IT13 M 36 TBI Moderate

IT14 M 40 CP Severe

IT15 M 26 CP Moderate

IT16 F 35 Aphasia Moderate

4.2. Speech Models’ Fine-Tuning

With the training dataset content, we fine-tuned three variants of OpenAI’s Whisper
model, i.e., small, base, and tiny. The fine-tuning process was resource-intensive and carried
out on a single computation node within the Artemis High-Performance Computing (HPC)
cluster at the University of Sydney. Our hardware setup included a machine equipped
with 32GB of RAM and a single NVIDIA V100 GPU. We leveraged Python 3.7 as the pro-
gramming language and PyTorch 1.3 as the deep learning framework, alongside NVIDIA
CUDA 10.2 libraries. The Transformers library (version 4.26.1) from the HuggingFace
platform facilitated the fine-tuning operations. Specifically, all the Whisper variants were
trained for three epochs by using the same hyperparameters configuration reported in
Table 3. Following fine-tuning, the relative ASR model checkpoints were generated and
transferred on our local workstation to conduct inference experiments by considering the
same testing dataset.

Table 3. Hyperparameters configuration.

Hyperparameter Setup

Batch size 16

Warm up steps 500

Learning rate 0.00001

Number of epochs 3

Optimizer AdamW

16-bit precision training True
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4.3. Word Recognition Accuracy Results

Table 4 contains the experimental results in terms of the percentage of Word Recogni-
tion Accuracy (WRA). It is defined by the following formula:

WRA =
Correct predictions

All predictions
× 100 (1)

By considering three variants of OpenAI’s Whisper and three grades of speech imped-
iment (mild, moderate, severe), we obtained the following results:

• A WRA of 95.9% by using the small variant;
• A WRA of 92.6% by using the base variant;
• A WRA of 90.1% by using the tiny variant.

Table 4. Performance of the three ASR models in terms of WRA (%) across the selected speakers.

ASR Models Testing Dataset

Speech Disorder Severity Speaker Small Base Tiny Total
Examples

Distinct
Classes

IT02 94.6 91.1 87.7 193 53

IT04 91.4 74.2 81.7 83 13

IT07 88.1 89.3 85.7 74 13

IT12 87.2 83.7 84.9 76 13
Severe

IT14 90.4 87.8 74.7 219 55

Average WRA 90.3 85.2 82.9

IT01 97.8 93.0 92.5 1343 79

IT05 92.0 87.0 89.0 90 19

IT06 91.5 91.5 83.1 108 38

IT10 94.4 91.0 88.8 168 42

IT13 82.3 92.4 84.8 69 13

IT15 96.2 92.4 89.2 278 66

Moderate

IT16 97.4 95.0 93.0 332 43

Average WRA 93.1 91.8 88.6

IT03 91.0 92.3 88.5 68 13

IT08 99.0 96.3 94.4 1123 76

IT09 95.4 92.4 87.8 227 46
Mild

IT11 89.4 88.2 80.0 75 13

Average WRA 93.7 92.3 87.7

To delve deeper, we analyzed individual testing datasets for each trial participant.
These datasets contained varying numbers of keywords and diverse amounts of speech
recordings per keyword from our dictionary. Notably, across all sixteen participants, the
utilization of Whisper’s small variant consistently led to improved WRA compared to
the other configurations. The impact was most pronounced in cases of severe speech
impediment, where the small variant exhibited approximately a 5% WRA improvement
over the base variant. Comparing the base and tiny Whisper configurations, we observed a
more modest increase. Similar trends were evident for moderate and mild speech disorders,
as depicted in the bar graph shown in Figure 2. However, it is worth noting that the base
model faced challenges when dealing with severe dysarthria impairment, particularly
in instances like those of speakers IT04 and IT12. The reasons behind this abnormal
performance remain elusive. We speculate that the extremely acute dysarthria exhibited by
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these speakers, coupled with the scarcity of their speech samples (less than 100 examples
across 13 distinct classes), led to significant divergence from the speech features present
in our CapisciAMe corpus of atypical voice samples. At the same time, we note that
a relationship between the number of the collected utterances and the WRA levels was
difficult to establish.

Figure 2. Performance of the three ASR models in terms of WRA (%) across diverse speech disorder
severity levels.

As shown in this Section, the Whisper models, especially those incorporating the small
variant, demonstrated promising results in handling speech impediments, but further
investigation is needed to understand the nuances of the atypical speech and improve the
models’ robustness.

In the framework of disordered speech recognition, the quantitative results obtained in
the current experiments outperformed previous investigations, particularly those that did
not employ fine-tuning techniques [35]. In [36], a Word Error Rate (WER) of approximately
15% was measured using a multi-layer perceptron model trained (from scratch, i.e, no
fine-tuning) using only a subset of the CapisciAMe speech collection.

Different results can be found in [37], where the conducted experiments focused on a
limited number of speakers with speech impairments due to infant cerebral palsy. Further
details are summarized in Table 5. However, we caution against relying solely on numerical
accuracy values for direct comparisons. Researchers have employed diverse corpora and
methodologies to evaluate ASR solutions, leading to variations in results. Factors such as
the structure of the speech database, the chosen language, input modality, and varying
levels of speech disability all significantly influence outcomes.

Table 5. Comparison between our study and previous articles in the literature.

Reference Trial Participants Classes in ASR
Dictionary

Best Accuracy
Result Comments

[30] 3 13 94.4% WRA Two-layer CNN
model

[35] 6 13 95.6% WRA Two-layer CNN
model
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Table 5. Cont.

Reference Trial Participants Classes in ASR
Dictionary

Best Accuracy
Result Comments

[36] 16 13 84.4% WRA Four-layer CNN
model

[37] 2 11 92.9% WRA Two-layer CNN
model

This study 16 79 95.9% WRA Fine-tuning
Whisper

4.4. Design of a Voice User Interface on the Edge

With the expression “Voice User Interface” (VUI), we refer to a type of human–
computer interaction that enables spoken communication with electronic devices. VUIs
utilize ASR services to understand spoken commands and typically employs text-to-speech
interfaces to deliver responses. A voice command device is one controlled through a VUI.
Notable examples include smart speakers, which leverage virtual assistants to facilitate
hands-free interactions in intelligent environments like smart homes.

As described below, we extended this mode of interaction to users with speech disor-
ders by exploiting the ASR solutions previously analyzed. Specifically, in order to achieve
local ASR inference without internet dependency, we deployed the Whisper variants (small,
based, tiny) on edge computing nodes—specifically, single-board computers. Our chosen
platform for this investigation was one single Raspberry Pi 5 board. The key steps in our
approach involved porting the fine-tuned ASR models to the edge environment using
the “Whisper.cpp” package (https://github.com/ggerganov/whisper.cpp, accessed on 27
January 2024), which provides a solution for executing inference tasks in the C++ language.
As recommended by the creator, we converted the speech models into the ggml format.
Subsequently, we evaluated the performance of our models on the Raspberry Pi, focusing
on overall inference times as the primary metric of interest. For each of the three fine-tuned
ASR models, the proposed investigation involved a testing dataset comprising 50 randomly
selected atypical speech samples previously used in word recognition accuracy experiments.
We analyzed both the total inference time required for the atypical speech transcription
and the associated hardware resources, specifically RAM and disk usage. Our findings are
summarized in Table 6. We observe the following:

• The small variant, which has more parameters in its architecture compared to the
other models, demanded substantial resources of our embedded system. According to
the overall WRA results, it can work well in ASR, but its utilization resulted in a mean
inference time of approximately 8.5 s, which is impractical for real-time applications.

• The tiny model exhibited an interesting behavior. It achieved an average inference time
of 1.2 s (acceptable for several application scenarios) and utilized around 400MB of
RAM. However, its recognition accuracy currently suffers in cases of severe dysarthria.

• The base variant fell in between the small and tiny architectures. It yielded a mean
inference time of 2.6 s and utilized more embedded system resources in comparison
to the tiny variant.

As a consequence, identifying the more appropriate Whisper configuration for han-
dling atypical speech patterns remains a challenging task to accomplish. Despite this, we
believe that the creation of a specific VUI running on edge computing nodes may act as an
enabler for the development of customized applications for users with disordered voices.
For instance, the embedded computer can work as a voice-input voice-output commu-
nication aid, helping its user to convert personal utterances in more complex sentences
spoken aloud by a computer-generated voice. In this way, the speaker with dysarthria can
rely on a set of keywords to express more clearly their or her personal needs, in order to
facilitate the spoken interaction with caregivers and collaborators. A different scenario may

https://github.com/ggerganov/whisper.cpp
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be concerned with the domain of the smart home automation, wherein the creation of alter-
native ways to have an interaction with virtual assistants’ services is of great importance
nowadays [38].

Table 6. Performance of the three ASR models on a Raspberry Pi 5 device.

Inference Times [ms] Hardware Resources [MB]

ASR Models Mean Std Dev Disk Usage RAM Usage

Small 8575 93 476 1024

Base 2604 94 144 500

Tiny 1171 30 76 390

5. Conclusions

This study investigated the potential impact of a state-of-the-art ASR model on im-
paired speech recognition, and, specifically, we focused our attention on OpenAI’s Whisper.
The conducted experimental evaluation highlighted the effectiveness of our proposed
methodology, wherein we fine-tuned three distinct model variants (small, base, and tiny)
by using our private database of Italian atypical speech. This corpus comprises over 65 K
voice samples contributed by 208 individuals with speech impairments, including condi-
tions like dysarthria. Overall, we obtained positive results in terms of word recognition
accuracy, particularly in the small configuration, achieving a score of 95.9% (resulting
in a word error rate of approximately 4%) when evaluated against our closed ASR dic-
tionary containing 79 unique keywords. Furthermore, we explored the deployment of
these trained models on edge computing nodes, envisioning the creation of customized
voice user interfaces capable of interpreting disordered speech commands across diverse
application contexts. In this context, it is evident that the tiny configuration model exhibits
superior performance in terms of overall computation times in comparison to the other
examined configurations.

The present work holds significant implications for assistive technologies; however,
we acknowledge important limitations. The number of trial participants with speech
impediments restricts the generalizability of our approach to various forms of speech
disabilities. Additionally, our methodology is specific to the Italian language, rendering it
unsuitable for direct application to other languages. To address these challenges, our future
studies will extend investigations to different languages, including English, and explore
additional variants of the Whisper model to enhance voice user interfaces for individuals
with impaired speech across various application scenarios.
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