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Abstract: Detecting and identifying small infrared targets has always been a crucial technology for
many applications. To address the low accuracy, high false-alarm rate, and poor environmental
adaptability that commonly exist in infrared target detection methods, this paper proposes a com-
posite infrared dim and small target detection model called USES-Net, which combines the target
prior knowledge and conventional data-driven deep learning networks to make use of both labeled
data and the domain knowledge. Based on the typical encoder–decoder structure, USES-Net firstly
introduces the self-attention mechanism of Swin Transformer to replace the universal convolution
kernel at the encoder end. This helps to extract potential features related to dim, small targets in a
larger receptive field. In addition, USES-Net includes an embedded patch-based contrast learning
module (EPCLM) to integrate the spatial distribution of the target as a knowledge prior in the training
network model. This guides the training process of the constrained network model with clear physical
interpretability. Finally, USES-Net also designs a bottom-up cross-layer feature fusion module (AFM)
as the decoder of the network, and a data-slicing-aided enhancement and inference method based on
Slicing Aided Hyper Inference (SAHI) is utilized to further improve the model’s detection accuracy.
An experimental comparative analysis shows that USES-Net achieves the best results on three typical
infrared weak-target datasets: NUAA-SIRST, NUDT-SIRST, and IRSTD-1K. The results of the target
segmentation are complete and sufficient, which demonstrates the validity and practicality of the
proposed method in comparison to others.

Keywords: target detection; knowledge prior; deep learning; Swin Transformer

1. Introduction

The identification and tracking of infrared targets is a crucial technology that relies
on the characteristic difference between a target and the background thermal radiation in
an infrared imaging system [1]. This technology has the advantages of all-weather and
passive operation, a strong anti-interference ability, a simple structure, and ease of carrying
and concealment [2]. Infrared target detection and recognition technology is widely used
in various fields of applications. A detection and recognition algorithm for infrared targets
must have a high detection rate, a low false-alarm rate, and a fast response time. This
is a crucial requirement for infrared target detection and has significant research and
application values. However, in the case of remote sensing infrared imaging systems, the
sensor is often located far from the target to be detected. Additionally, external factors, such
as scattering, diffraction, and atmospheric disturbance can affect the imaging process. As a
result, the target may appear to have a small scale and weak energy imaging characteristics
in the image plane [3], and the target may occupy only a small number of pixels in the
image and lack discernible texture, shape, color, and structural features. Furthermore,
detecting and recognizing weak and small infrared targets in complex scenarios, such
as sea surfaces, buildings, and continuous cloud scenes, can be challenging, due to low
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signal-to-noise ratios and significant structural noise interference in the background. The
imaging characteristics and complex backgrounds of infrared weak and small targets pose
significant challenges to infrared detection and recognition. Therefore, accurately, quickly,
and stably detecting dim, small infrared targets and matching them remains a crucial
technical problem in detection.

For the detection and recognition of dim and small infrared targets, the current
common methods can be divided into two categories: traditional image processing methods
based on physical models and data-driven methods based on deep learning. Among them,
traditional methods can only obtain the local spatial characteristics of the targets and lack
semantic identifiability between the targets and other interfering backgrounds, which leads
to the poor detection performance of such methods in the presence of complex backgrounds,
low signal-to-noise ratios, and other scenes [4]. At the same time, traditional methods often
rely on the manual selection and debugging of parameters, which also makes such methods
prone to failure in rapidly changing test environments [5]. In recent years, with the great
success of various deep learning network models represented by convolutional neural
networks (CNNs) in the fields of computer vision and pattern recognition, more and more
researchers have begun to apply the data-driven deep learning method to the detection
and recognition of small infrared targets [6]. Currently, methods based on deep learning
can also be divided into two categories. The first is based on target segmentation, such
as FCN [7], UNet [8], and so on. The segmentation results of the target and background
are obtained through network model training, and then target detection and matching
are realized. The second is to use some mature two-stage or single-stage target detection
general backbone networks, such as Fast RCNN [9], YOLO [10], SSD [11], and other deep
network models, to obtain the category information and boundary box position of the target
through a sample data training regression and complete the detection and recognition
process for specific targets. However, since dim, small infrared targets are smaller than
small targets in the general sense, it is often difficult to accurately extract the semantic
information of dim, small infrared targets when the above general deep learning network
model is directly used, and with the deepening of the number of network layers, the target
information is easily submerged in the background and noise [12]. In addition, training
samples for the detection and recognition of weak and small infrared targets are often
difficult to obtain, and the dataset size is limited, which also greatly limits the performance
and effect of various types of deep learning network models.

In this paper, we propose an infrared dim and small target detection model called
USES-Net, which combines target knowledge priors, the Swin Transformer self-attention
mechanism, and new data enhancement methods. First, the USES-Net network based on
an encoding and decoding architecture is used as the backbone of the model, and the local
contrast distribution of dim and small infrared targets is embedded into the deep neural
network structure as a physical prior called EPCLM, which is an intermediate module and
is used to constrain and guide the training process of the network model. Then, the moving
window attention module of Swin Transformer is introduced to replace the traditional
multilayer convolutional structure to fully obtain the semantic feature formation of the
input target at different scales and in larger receptive fields. Then, a bottom-up cross-layer
feature fusion module (AFM) combined with the attention mechanism is used to organically
combine the low-level local location information and high-level global semantic association
information of weak and small infrared targets. Finally, the significant features of the target
area are greatly enhanced using the slice-assisted enhancement and reasoning method
based on SAHI so as to achieve a more accurate detection and recognition effect for dim
and small infrared targets. The main contributions of this paper are summarized as follows:

(1) An infrared dim and small target detection and recognition method based on the
joint drives of knowledge and data is designed and implemented. By embedding
the local contrast distribution of the dim, small infrared target into the network
model as a physical prior, the original purely data-driven deep learning method is
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extended, which makes the network training process more targeted and improves the
generalization and interpretability of the network model.

(2) Innovatively introducing the Swin Transformer attention module into the UNet net-
work structure to replace traditional convolutional kernels for target feature extraction
can effectively overcome the receptive field limitation problem of convolutional ker-
nels. Supervised learning methods are used to extract richer global semantic features
of targets during training, fully exploiting the intrinsic information of dim, small
infrared targets.

(3) A bottom-up cross-layer feature fusion module (AFM) is designed as the decoder of
the proposed network, which can reconstruct the target feature information obtained
at different scales and can fully retain the low-level local spatial features and high-
level global semantic features of small infrared targets. In addition, the slice-assisted
enhancement and inference method based on SAHI can further enhance the feature
saliency of dim and small infrared targets and ultimately achieves a more accurate
detection and recognition effect.

2. Related Work

According to the number of images available, the traditional infrared dim, small
target detection and recognition algorithms can be divided into two categories: single-
frame target detection and frame-sequence target detection. The former is mainly based
on the prior characteristics of the model, which can be roughly divided into three types:
filtering-based [13], human visual system-based [14], and image data structure-based
characteristics [15]. For example, Cai [16] proposed an infrared small-target detection
algorithm based on a visual contrast mechanism. The algorithm uses a local contrast
(LCM) operator to obtain the significant region and uses multi-scale contrast to further
improve the robustness and detection ability of the algorithm. Yang [17] proposed an
infrared dim, small target detection algorithm based on a local block contrast mechanism
(PCM). The algorithm only needs to calculate multiple contrasts in the local neighborhood
of the target and takes the maximum value as the discrimination basis to realize the
detection of small targets, resulting in better robustness. Zhang [18] proposed a nonconvex
rank approximation minimization joint algorithm (NRAM) to separate small infrared
targets from the background. Zhou [19] applied the effective integration of Schatten-
1/2 quasi-norm regularization and reweighted sparse enhancement to further improve
target detection performance. Generally, the methods based on a single frame have low
design complexity and are easy to deploy on hardware. However, these algorithms are
typically only suitable for detecting targets in a single scene. Since they do not use temporal
information about the target, it is difficult to improve the detection accuracy and recall rate
simultaneously. This limitation can have a significant impact on subsequent recognition
and matching.

The algorithm for detecting and recognizing dim and small infrared targets based
on multi-frame images can be divided into two specific methods: the detect before track
(DBT) algorithm [20] and the track before detect (TBD) algorithm [21]. Both methods assist
detection through the recognition and association of images at different times to obtain
the historical trajectory information of the target. The DBT algorithm utilizes the gray
gradient and optical flow characteristics of the target in a single-frame infrared image to
suppress image background clutter. This improves the local signal-to-clutter ratio of the
target and reduces the false-alarm probability. Then, an appropriate threshold is selected to
segment the target and background. The real target position in the image is determined
by eliminating the false target based on the continuity of the target motion. For the TBD
algorithm, the primary objective is to assess the potential targets’ degree of suspicion based
on the energy accumulation process of the infrared targets in the sequence of images [22].
This detection experience knowledge is then used to carry out target recognition. During
the recognition process, false target trajectories are gradually eliminated while the real
target trajectory is retained until it meets the preset conditions and is confirmed as the
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target. Although the algorithm’s detection accuracy and recall rate will improve, this often
requires a large amount of calculation and high continuity in the image scene, making it
difficult to widely apply in practical fields.

Due to the limitations of traditional infrared dim, small target detection and recog-
nition methods, an increasing number of researchers have turned to pure data-driven
methods, such as deep learning, in recent years. These methods have resulted in many
innovative approaches being proposed. Lee [23] proposed an infrared feature learning al-
gorithm based on the LSTM neural network. The algorithm combines the LSTM prediction
network with the DuCNN classification network to accurately classify targets from clutter.
Yang [24] proposed an algorithm for detecting the trajectories of dim, small infrared targets
based on the attention mechanism convolution of the long and short memory neural net-
work. The algorithm uses the convolution of the long and short memory network to extract
the long-term space–time information of the infrared sequence. Additionally, the attention
mechanism is used to focus on the trajectory of the dim, small target, enabling the network
to achieve an end-to-end prediction output. Zhao [25] proposed a lightweight network
called TBC-Net for detecting infrared small targets. The model’s feature extraction ability
is improved by adding high-level semantic constraint information to the training network.
Wang [26] incorporated the generative countermeasure network (GAN) into the process
of detecting dim, small infrared targets. By designing two different generator modes, it
is possible to better balance the problems of missed detection and false alarms in infrared
dim and small target detection. Huang [27] proposed a multi-scale infrared dim, small
target segmentation method that uses a local similarity pyramid module and an attention
mechanism to fuse depth gradient features. These methods achieved good results on an
open training dataset. However, the infrared dim- and small-target detection methods
based on deep learning mentioned above are often sensitive to hyperparameters due to the
lack of physical priors for the target energy distribution. In this respect, Dai [28] proposed
an attentional local contrast network (ALC-Net) for infrared small-target detection which
combines the data-driven networks and conventional model-driven methods to make use
of both labeled data and the domain knowledge. Zhang [29] proposed a novel infrared
shape network named ISNet, where Taylor finite difference (TFD)-inspired edge blocks and
two-orientation attention aggregation (TOAA) blocks are devised to precisely detect the
shape of infrared targets. Li [30] proposed a dense nested attention network named DNA-
Net to achieve progressive interaction among high-level and low-level features. Moreover,
Sun [31], Hou [32], and Wu [33] also proposed their respective improved deep learning
algorithms aimed at further extracting the intrinsic feature of infrared small targets. How-
ever, these improved models above mainly extract the feature information of the target
through conventional convolution kernels, resulting in limited target receptive fields at
different scales and making it difficult to deeply mine the deep semantic information of the
target. Therefore, it is necessary to further improve the accuracy and generalization ability
of infrared dim- and small-target detection and recognition methods.

According to the above analysis, the USES-Net designed in this paper tries to further
improve the existing advanced methods in some aspects. Firstly, USES-Net introduces the
self-attention mechanism of Swin Transformer to replace the convolution kernel commonly
used in the literature [29–33], which helps to extract infrared small and dim targets in
a larger receptive field. In addition, based on the end-to-end structure of ALC-Net [28],
USES-Net introduces an embedded patch-based contrast learning module (EPCLM) as
an improved knowledge prior to guide the model’s training process. Finally, USES-Net
also uses a data-slicing-aided enhancement and inference method based on Slicing Aided
Hyper Inference (SAHI) [34], which can effectively increase the sample data and improve
the model’s detection accuracy. This article will then introduce the details of the proposed
method in detail.
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3. Proposed Method
3.1. Overview

According to the International Institute of Optical Engineering’s definition of dim and
small infrared targets [35], targets with a size of 9 × 9 or less in an image are classified as
small targets or micro targets. Figure 1 shows infrared targets that are dispersed and difficult
to identify with the naked eye. The energy distribution can be approximated as a two-
dimensional Gaussian distribution. For the small-target detection task in computer vision,
due to the smaller size and weaker energy intensity, the general target-detection network
model based on deep learning cannot be directly applied. Relevant research [36] indicates
that when the depth of the target-detection network is too deep, dim and small targets
often lose high-level semantic information, resulting in missed detections. Conversely, if
the depth of the target-detection network is too shallow, it is difficult to fully extract high-
level semantic features of dim and small targets, leading to an increase in false detections.
Therefore, we believe that selecting the appropriate depth for the target-detection network
is crucial to achieving better results of dim and small infrared targets. By maximizing the
high-level semantic information of targets within the limited number of network layers, we
can fully extract the potential features of dim and small infrared targets.
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In addition, we also found that the existing deep learning training network for infrared
dim- and small-target detection, as described in the literature [37], basically achieves the
target feature extraction, fusion, and final detection process through a full convolution
operation. Considering the efficiency of model training optimization, the convolution
kernel size designed in the model is usually very limited [38]. Therefore, the above model
often leads to a smaller receptive field for a target at the same scale, which is not conducive
to the extraction of the global semantic information of the target, and reduces the accuracy
of target detection. To expand the receptive field of a target within the constraints of
limited network depth, we propose incorporating the transformer attention mechanism,
which is widely used in NLP and CV, into the network structure. Additionally, we suggest
replacing the traditional depth convolution module with the improved Swin Transformer
module [39], which utilizes a variable moving window to extract and fuse multi-scale
features of the input image while enabling information interaction between image blocks.
This approach allows us to obtain target feature information within a larger receptive field.
The specific structure of the Swin Transformer is shown in Figure 2.
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As previously stated, a challenge in the application of infrared small target detection
is that the number of infrared target samples that can be used for network model training
is often limited due to the high cost of experimental testing, which leads to the problem of
over-fitting in the training of conventional deep learning networks and poor generalization
ability. To address this issue, this paper proposes two technical solutions: (1) To enhance
the generalization ability of the model and reduce its dependence on sample data, we
embed the spatial distribution characteristics of dim and small infrared targets into the
depth network structure as prior knowledge for guidance and constraint. (2) During the
training stage, we enhance the original sample data using the slicing-aided enhancement
and inference method, based on SAHI, to increase the training sample size, and the final
detection result is obtained after filtering in the inference stage. The next section will
provide a detailed introduction to the two technical methods mentioned above.

3.2. The Proposed Network Structure

As described in the previous section, this paper uses the Swin Transformer module
to replace the traditional convolution kernel feature extraction operation and integrates
it as the backbone structure of infrared dim and small target feature extraction into an
encoder–decoder network architecture while embedding the spatial distribution of dim,
small infrared targets into the network structure as a guidance and constraint module.
Finally, a multi-scale infrared dim- and small-target feature extraction network using knowl-
edge and a data-driven network is designed and implemented. USES-Net can effectively
extract intrinsic features of small infrared targets at various scales within a limited depth.
Additionally, to address the lack of strong semantic context-related information for dim,
small infrared targets, this paper proposes a bottom-up cross-layer feature fusion module
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called AFM. This module can integrate features of dim, small infrared targets at different
scales more effectively, thereby improving the target prediction accuracy. Figure 3 and
Table 1 below illustrate the USES-Net model’s framework and data flow, respectively, and
the default image size is 256 × 256.
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Table 1. Data flow of USES-Net.

Structure Input Shape Output Shape

Enhancement (256, 256, 3) (256, 256, 1)
Encode1 (256, 256, 1) (128, 128, 32)
Encode2 (128, 128, 32) (64, 64, 64)

Swin Transfomer Module1 (64, 64, 64) (32, 32, 128)
Swin Transfomer Module2 (32, 32, 128) (16, 16, 256)
Swin Transfomer Module3 (16, 16, 256) (8, 8, 512)

Decode1 (8, 8, 512) (16, 16, 256)
Decode2 (16, 16, 256) (32, 32, 128)
Decode3 (32, 32, 128) (64, 64, 64)
Decode4 (64, 64, 64) (128, 128, 32)
Decode5 (128, 128, 32) (256, 256, 1)

Figure 3 above illustrates that USES-Net comprises three main components: a feature
extraction module, an embedded image block local contrast learning module, and a multi-
scale feature fusion module. In the feature extraction module, the target of the input
training sample data is first enhanced through slice-assisted enhancement technology.
Then, the feature information of the input image is extracted layer by layer using the
Swin Transformer module. Similar to the CNN model, the resolution of the feature map
continuously decreases with the increase in network depth, and the number of feature
channels increases layer by layer to obtain the multi-scale feature information of the target.
Compared to convolution kernels, Swin Transformer has better feature extraction abilities
for small infrared targets. It can fully extract the potential feature information of targets
in a larger receptive field. A deeper network can provide better semantic features and an
understanding of scene context, which helps to solve the ambiguity caused by target and
background interference. Based on this approach, the initial target feature information for
each scale is fed into an embedded local contrast learning module, known as EPCLM. This
module incorporates the prior knowledge of the local spatial contrast of the target into the
deep learning network structure, which can then refine and restrict the extracted target
features, thereby enhancing the robustness and interpretability of the detection network.
However, as the network deepens, there is an increasing risk of losing spatial details of the
target. To address this issue, we designed and implemented a cross-layer feature fusion
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module called AFM in the multi-scale feature fusion module. This module serves as the
decoder structure of the entire U-shaped network structure. It re-fuses the target feature
information obtained at each scale and predicts the output of the fused feature map after
passing through the final classifier. Finally, we utilize slice-assisted inference technology
to continuously update and optimize the model parameters through the error reverse
transmission process of the network model based on the sample label and model output
results. This process continues until the final trained target detection model converges.

3.2.1. Feature Extraction Module

The feature extraction module begins by using the data enhancement method based
on SAHI technology [34] to select original sample images from the dataset. Next, image
blocks are extracted from the original sample images, and the local details in the image
blocks are enlarged to generate new sample images. These new sample images are then
added to the dataset, effectively expanding the number of images of dim, small infrared
targets. The specific process is shown in Figure 4 below.
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In Figure 4 above, each data sample (LF
1 , LF

2 , . . . , LF
j ) in the original dataset is divided

into overlapping image blocks (PF
1 , PF

2 , . . . , PF
k ), and the size of each image block is cho-

sen from the range [Mmin; Mmax] and [Nmin; Nmax], where M and N are adjustable
hyperparameters. During model training, the size of each segmented image block is ad-
justed by fixing the length–width ratio of block P. This ensures that the block is scaled
back to the same size as the original sample data, resulting in new enhanced sample data
(L′

1, L′
2, . . . , L′

m). The model’s parameter optimization process involves both the enhanced
and original sample data to increase the sample size and improve performance.

After improving the sample data, the next step is to extract information on dim and
small infrared targets at different scales. This can be achieved using the two encoding mod-
ules and the three Swin Transformer modules. The encoding modules utilize a conventional
3 × 3 convolution kernel to rapidly decompose the input image at a small scale and increase
the number of channels in the feature image. Additionally, the convolution calculation can
smooth the noise in the input image to some extent, reducing the risk of small infrared
targets being submerged in the background when input to the Swin Transformers. On
the other hand, the Swin Transformer modules perform in-depth feature extraction on
the input image to extract semantic features of dim and small infrared targets at large
scales. This paper outlines the main steps of feature extraction using a Swin Transformer
for feature map I with an input size of M × N and C channels as follows:

(1) First, a layer norm (LN) operation is performed on input feature map I, and the data are
standardized in the channel dimension. The output result is ILN. The corresponding
formula is

ILN = LN(I) (1)
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(2) For feature map ILN, after layer regularization, the feature weight based on the multi-
head self-attention (MSA) mechanism is calculated to obtain IAttention. The correspond-
ing formula is

IAttention = MSA(ILN) (2)

The MSA calculation involves three weight matrices: Q, K, and V. These matrices are
consistent with the size of input feature map ILN . The calculation methods for each matrix
are as follows:

Q = ILN PQ K = ILN PK V = ILN PV (3)

The formulas above use the shared weight matrices PQ, PK, and PV , which are param-
eters that can be learned and vary under different local windows. After calculating the
weight matrices for Q, K, and V, IAttention can be determined using the attention mechanism
of the transformer as follows:

IAttention = So f tMax
(

QKT
√

d
+ b

)
· V (4)

The formula above uses d to represent the size of the input feature and b as a position
coding parameter that can be learned.

(3) To obtain the intermediate feature (F), the original input feature map (I) is connected
with the IAttention value calculated via MSA in its residual form, and the corresponding
formula is

F = I + IAttention (5)

(4) To obtain the output (S), the intermediate feature (F) is regularized using a layer norm
(LN) operation and adjusted with a multilayer perceptron (MLP). The adjusted result
is then connected with F through the residual network. The corresponding formula is

S = MLP(LN(F)) + F (6)

(5) Finally, the output result (S) is subjected to image block merging operations, which
reduce its size by half and double its number of channels. This is achieved through
image block stitching, layer regularization, and channel linear mapping operations.
The final output feature map (Z) has a size of M×N

2 and a number of channels of 2C.

Based on the calculation process described above, the output feature map (Z) will
have a reduced size and an increased number of channels after passing through three Swin
Transformer modules. Table 1 shows the specific shape changes. Thus, the extraction of
infrared dim- and small-target feature maps on a large scale is complete. This is helpful for
the further exploration of global semantic information related to targets.

3.2.2. Local Contrast Learning Module

To introduce the concept of traditional local contrast feature extraction into the training
network model and guide the training optimization direction of the constraint model more
pertinently, this paper implements an embedded patch-based contrast learning module
(EPCLM) based on the PCM method [17] and other related research [28,40]. The EPCLM can
further choose the extracted target features based on the idea of PCM, which combines the
spatial distribution prior of the target with the deep learning model architecture, forming a
composite infrared dim- and small-target detection network based on both knowledge and
data-driven approaches. This approach is more targeted, which can further extract the deep
semantic information from infrared dim and small targets, and has good interpretability.
Figure 5 below shows a structural relationship diagram for the PCM and EPCLM.
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convolution with rate d to calculate the local contrast of image patch.

As shown in Figure 5, the traditional PCM method compares the contrast difference
between the central target point and the surrounding neighborhood pixels. It traverses
the entire image using a local sliding window to find the area with the largest contrast
difference between the central target and the surrounding pixels. Finally, it locks the
position of the target point to be detected. The spatial calculation process described above
can be replaced by dilated convolution. By setting different dilation coefficients, the PCM
method’s local contrast calculation process can be embedded into the end-to-end training
network structure. This integration achieves the effect of incorporating the prior knowledge
distribution of the target in the deep learning network model. For any feature map (Z)
extracted in Section 3.2.1, its channel number and size are C, H, and W, respectively. Given
the position (c, i, j) of any point and the dilation coefficient (d), the local contrast difference
in each direction of the PCM can be written as follows:

Dx,y(c, i, j) = (Z(c, i, j)− Z(c, i − x, j − y)) · (Z(c, i, j)− Z(c, i + x, j + y)) (7)

where Dx,y is the local contrast change in each direction and (x, y) is the index in four
directions. That is, (x, y) ∈ Ω = {(−d,−d), (−d, 0), (−d, d), (0, d)}. According to the
PCM theory, a smaller value of Dx,y(c, i, j) results in a greater contrast between the pixels
representing the center point and a certain direction in the neighborhood, thereby increasing
the probability of the center point being the target. Therefore, the PCM characteristics of
any center point (c, i, j) can be expressed as follows:

Pd(c, i, j) = minDx,y(c, i, j), (x, y) ∈ Ω (8)

When calculating Pd(c, i, j), the dilation coefficient (d) is typically taken as a fixed value
to simplify the calculation process and reduce the number of calculations. It is generally
set as d = 3. The calculation process for Equations (7) and (8) can be achieved through
two separate convolution operations. The first step involves using a conventional 3 × 3
convolution kernel with a stride of 1 to perform a convolution operation on the feature
map. This operation approximates the smoothing process of the PCM for each region
block, eliminating some of the noise in the image. In the second step, a dilated convolution
with a size of 3 × 3 and a dilation coefficient of 3 is used to further process the smoothed
feature map. This process can approximate the metric method in the PCM by calculating
the grayscale difference value between the target region and the neighboring region, and it
plays a further role in extracting target features.
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3.2.3. Multi-Scale Feature Fusion Module

After passing through the feature extraction and local contrast learning modules, the
training network has acquired the target feature information of the input small and dim
infrared target at different scales. At the decoder of the network model, a cross-layer feature
fusion module (AFM) is designed and implemented to integrate feature information at
various scales and prevent the loss of target feature information as the number of network
layers increases. The AFM module can organically integrate target feature information at
various scales and can predict the output of the final classifier. The specific structure of the
AFM module is shown in Figure 6 below.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 24 
 

 

the probability of the center point being the target. Therefore, the PCM characteristics of 
any center point ( , , )c i j  can be expressed as follows: 

,( , , ) min ( , , ), ( , )d x yP c i j D c i j x y= ∈ Ω  (8)

When calculating ( , , )dP c i j , the dilation coefficient (d) is typically taken as a fixed 
value to simplify the calculation process and reduce the number of calculations. It is gen-
erally set as d = 3. The calculation process for Equations (7) and (8) can be achieved through 
two separate convolution operations. The first step involves using a conventional 3 × 3 
convolution kernel with a stride of 1 to perform a convolution operation on the feature 
map. This operation approximates the smoothing process of the PCM for each region 
block, eliminating some of the noise in the image. In the second step, a dilated convolution 
with a size of 3 × 3 and a dilation coefficient of 3 is used to further process the smoothed 
feature map. This process can approximate the metric method in the PCM by calculating 
the grayscale difference value between the target region and the neighboring region, and 
it plays a further role in extracting target features. 

3.2.3. Multi-Scale Feature Fusion Module 
After passing through the feature extraction and local contrast learning modules, the 

training network has acquired the target feature information of the input small and dim 
infrared target at different scales. At the decoder of the network model, a cross-layer fea-
ture fusion module (AFM) is designed and implemented to integrate feature information 
at various scales and prevent the loss of target feature information as the number of net-
work layers increases. The AFM module can organically integrate target feature infor-
mation at various scales and can predict the output of the final classifier. The specific 
structure of the AFM module is shown in Figure 6 below. 

 
Figure 6. The structure of AFM. 

Figure 6 above shows the local contrast features obtained at different scales during 
the encoding process. The high-level feature is denoted as H

dP , the low-level feature is 
denoted as L

dP , and the feature fusion result is denoted as T. The decoding calculation 
process based on the AFM module can be expressed as follows: 

( )( )( ) ( )( )Sig PWConv PWConv UpL L H
d d dT P P P= ⊕ ⊗  (9)

where PWConv is a pointwise convolution operation, Up is an upsampling operation, Sig 
is a sigmoid activation function, ⊕ represents a pointwise addition operation for feature 
maps with the same channel, and ⊗ represents a pointwise multiplication operation for 
feature maps with the same channel. 

It can be seen that, when the AFM module performs multi-scale feature fusion, it first 
upsamples H

dP  and then adjusts its feature channel count through pointwise convolution 
operations. On the other hand, L

dP  is divided into two paths, one of which also performs 

Figure 6. The structure of AFM.

Figure 6 above shows the local contrast features obtained at different scales during the
encoding process. The high-level feature is denoted as PH

d , the low-level feature is denoted
as PL

d , and the feature fusion result is denoted as T. The decoding calculation process based
on the AFM module can be expressed as follows:

T = PL
d ⊕

(
Sig

(
PWConv

(
PL

d

)))
⊗ PWConv

(
Up

(
PH

d

))
(9)

where PWConv is a pointwise convolution operation, Up is an upsampling operation, Sig
is a sigmoid activation function, ⊕ represents a pointwise addition operation for feature
maps with the same channel, and ⊗ represents a pointwise multiplication operation for
feature maps with the same channel.

It can be seen that, when the AFM module performs multi-scale feature fusion, it first
upsamples PH

d and then adjusts its feature channel count through pointwise convolution
operations. On the other hand, PL

d is divided into two paths, one of which also performs a
pointwise convolutional operation to adjust the channel number to be consistent with PH

d
and then uses the sigmoid activation function for normalization. After that, it is multiplied
by PH

d after upsampling and pointwise convolution as a weight coefficient, and finally,
the result is added to the original PL

d to obtain the feature fusion result (T). The AFM
module serves as the decoder structure for the infrared dim- and small-target detection
network. It can repeatedly embed the low-level local spatial information of the target
into the high-level global semantic information during network decoding. This allows for
the embedding of smaller-scale detailed features into the high-level coarse feature map,
allowing the detection network to dynamically perceive the subtle details of dim, small
infrared targets.

3.2.4. Loss Function and Slicing-Aided Inference

In the task of infrared dim and small target detection, there is a significant imbalance
between positive and negative samples. Therefore, simply using the loss function of
traditional target detection algorithms, such as cross entropy (CE) and MSE, often results
in a small value for the loss function, making it difficult to update the weight coefficients
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of the network model. In order to better handle the class imbalance between dim, small
infrared targets and the background, this paper constructs a loss function based on the
Soft-IoU metric to handle this highly imbalanced segmentation task. The corresponding
formula for Soft-IoU is the following:

LSoft-IoU(p, m) =
∑i,j pi,jmi,j

∑i,j
(

pi,j + mi,j − pi,jmi,j
) (10)

where (i, j) represents any coordinate position in the corresponding image, p represents
the final prediction result of the trained network model, and m represents the label of the
corresponding sample image. During training, it is desirable to have a larger Soft-IoU value.
To ensure a unified optimization form, the loss function expression is defined as follows:

f = min∥1 − LSoft-IoU(p, m)∥ = min∥1 −
∑i,j pi,jmi,j

∑i,j
(

pi,j + mi,j − pi,jmi,j
)∥ (11)

where f is the target loss function, whose value will be continuously optimized during
the training process and will eventually converge to 0. The parameters of the network
model will also be updated throughout the training process to ensure better detection and
segmentation results.

Additionally, to further enhance the accuracy of the detection and recognition abilities
of the trained model, this paper also introduces slicing-aided inference during the model
inference stage [34]. When testing the trained model, the infrared image is first segmented
into multiple image blocks. These blocks are then predicted separately to obtain multiple
target prediction results. Finally, the non-maximum suppression (NMS) strategy is used to
uniformly screen the multiple target prediction results and retain the most likely one. The
specific process is shown in Figure 7 below.
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According to Figure 7, first, the image to be detected is segmented into several image
blocks (PI

1 , PI
2 , . . . , PI

n). Then, the size of each block is adjusted to maintain a fixed aspect
ratio and scaling proportional to the original image. Next, the trained network model is
used to detect targets in each block, resulting in predictions for targets at multiple locations.
Finally, the NMS strategy is used to post-process the results and filter target predictions at
overlapping locations. This retains only the most likely prediction result at a given location,
improving the final effect of target detection.

To summarize this process, Algorithm 1 below shows the algorithm flow of the USES-
Net model during both training and testing.
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Algorithm 1. The work process of USES-Net

USES-Net Training and Testing (One Image as a Batch)

The Training Process:
1. Initialize: Input the infrared image I, label m, set the learning rate λ, model detection function
ϕ (Including encode convolution ϕ1, decode convolution ϕ2, Swin-Transformer fitting function ϕs
and EPCLM fitting function ϕe).
2. Step 1: Perform slicing-aided enhancement on training set to enhance the images and extract
different hierarchical feature maps from Z1 to Z5 on I.
3. Z1, Z2 = ϕ1(I); Z3, Z4, Z5 = ϕs(I)
4. Step 2: Perform EPCLM operation on features maps to calculate embedded patch-based local
contrast feature maps from Ze

1 to Ze
5.

5. Ze
1, Ze

2, Ze
3, Ze

4, Ze
5 = ϕe(Z1, Z2, Z3, Z4, Z5)

6. Step 3: Perform AFM operation on (Ze
1, Ze

2, Ze
3, Ze

4, Ze
5) sequentially from top to bottom

according to Equation (9), and output a multi-scale contrast feature fusion map T.
7. Step 4: Perform ϕ2 on T and output the predicted mask p through sigmoid activation function.
8. p = Sigmoid(ϕ2(T))
9. Step 5: Calculate the loss value f with p and m according to Equation (11)
10. Step 6: Iteratively update the model detection function ϕ according to the gradient descent.
11. ϕ = ϕ − λ

∂ f
∂ϕ

12. Return the final parameters of ϕ.
The Testing Process:
1. Step 1: Input the test infrared image set It, perform slicing-aided hyper inference on It to divide
it into some overlapping patches PI

1 , PI
2 , . . . , PI

n.
2. Step 2: Resize each patch while preserving the aspect ratio, and then apply the detection model
from the training process independently to each overlapping patch.
3. Step 3: Merge the overlapping predictions and full hyper inference results into original size
using NMS. According to Equation (10), pixels having a higher Soft-IoU ratio than a predefined
matching threshold are matched, and for each match, while detections with a detection
probability lower than the threshold are removed.
4. Step 4: Finally, output the infrared small target results.

4. Experimental Analysis
4.1. Dataset Description

To assess the performance of the USES-Net model for infrared small-target detection,
we used the NUAA-SIRST, NUDT-SIRST, and IRSTD-1K [29] datasets for training and
testing. Each dataset is described below.

NUAA-SIRST: This dataset is designed for detecting small targets in single-frame in-
frared images. It includes 427 representative images from various real-world scenarios and
480 instances of different scenarios selected from hundreds of different infrared sequences
in remote sensing scenarios. This dataset is particularly useful for detecting dim, small
infrared targets that are often buried within complex backgrounds with severe clutter. It
is worth noting that only 35% of the targets in this dataset contain the brightest pixels in
the images.

NUDT-SIRST: This is a synthetic infrared dataset containing 1327 images with a
resolution of 256 × 256. Compared to an actual dataset, synthetic datasets have three
outstanding advantages: accurate labeling, low cost, and rich target-scene types.

IRSTD-1K: This dataset comprises 1001 manually labeled real-world infrared scene
images with various target shapes, sizes, and cluttered backgrounds from different scenes.
It is the largest real-world infrared small-target detection dataset, and it provides a compre-
hensive evaluation for infrared small-target detection algorithms.

4.2. Experimental Setup

In this paper, the overall experimental setup is shown in Table 2 below. The experi-
mental environment for the algorithm was Ubuntu 20.04. The PyTorch framework was
used, and the GPU was an NVIDIA GeForce GTX 3080 Ti 12G. The Adam optimizer was
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used to train the model, with an initial learning rate of 1 × 10−3, a batch size of 16, and a
training epoch of 400. For ease of comparison, the training image size was uniformly fixed
at a resolution of 256 × 256. For data augmentation, this paper utilized the SAHI technique,
as well as flip transformation, contrast adjustment, aspect ratio distortion, and Gaussian
noise addition, to improve the generalization of the training samples.

Table 2. Configuration of the experimental environment.

Types and Hyperparameters Details and Values

CPU 12th Gen Intel(R) Core (TM) i5-12600K

GPU NVIDIA GeForce RTX 3080 Ti

Memory Size 12 GB

PyTorch Version 1.10.0

Acceleration Environment Cuda11.3

Learning Rate 1 × 10−3

Batch Size 16

Epoch 400

Optimizer Adam

Because this paper employed a target-segmentation-based approach to predict the
locations of dim and small infrared targets, to ensure an objective evaluation of the network
model’s performance, four commonly used metrics for target segmentation evaluation were
selected: pixel accuracy (PA), mean intersection over union (mIOU), detection rate (Pd), and
false-alarm rate (Fa). The expressions used to calculate these metrics are provided below:

PA =

k
∑

i=0
pii

k
∑

i=0

k
∑

j=0
pij

(12)

mIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(13)

Pd = #number of true detections
#number of actual targets = TP

TP + FP
Fa =

#number of false detections
#number of images = FP

FP + TN
(14)

where Equations (12) and (13) define k as the number of pixels in each category, i as the true
value, and j as the predicted value; pii represents the correctly predicted pixels, while pij
and pji represent the incorrectly predicted pixels. Equation (14) defines TP as the number
of correctly detected targets, FP as the number of undetected targets, and TN as the number
of correctly detected non-targets. To enable quantitative evaluation and comparison using
the same parameters, the threshold values of the four metrics were set to 0.5.

4.3. Comparison with Some State-of-the-Art Methods on the NUAA-SIRST Dataset

When training and testing using the NUAA-SIRST dataset, the dataset was first
divided into two equal parts, where 213 groups of images were used for training and
214 images were used for testing. Then, this paper’s algorithm and seven other comparative
algorithms were evaluated using the PA, mIOU, Pd, and Fa indexes. The seven selected
comparative algorithms were the typical and latest infrared dim target detection methods,
including ACM [6], ALCNet [28], ISNet [29], RDIAN [31], DNA-Net [30], ISTDU-Net [32],
and UIU-Net [33]. The target detection and segmentation results are shown below.
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Figure 8 above displays six sets of test images selected for algorithm testing. It is
evident that some conventional convolutional neural network models, such as ACM, IS-
Net, RDIAN, and UIU-Net, produced significant false positives or false negatives in the
detection results. This could decrease the detection accuracy and increase the false-alarm
rate. For deep learning training networks such as ALC-Net and DNA-Net, the final de-
tection results showed few false positives or false negatives. However, the detection and
segmentation results of the targets were not precise enough due to interference from image
noise or background highlights. This could cause some local parts of the targets on the
segmentation map to be fragmented or incomplete. In comparison, the results of USES-Net
demonstrate that the proposed method accurately reflected the overall dispersion charac-
teristics of the dim, small infrared targets. The detection and segmentation targets were
more comprehensive and continuous. Further, the performance indicators for each type of
detection in the figure above were calculated using Equations (12)–(14), and the average
of the results for all test sets was obtained. The evaluation results for the performance
indicators are presented in Table 3 below, where the red boxes are the region of the dim
small targets.
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ALC-Net 0.755 0.610 0.871 5.600 × 10−5
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Table 3 above shows that, compared to the other methods, the proposed USES-Net
model achieved better results for the various performance indicators, especially the three
indicators of PA, Pd, and Fa. Specifically, the PA index improved by 19.5% (from 0.755 to
0.902), the Pd index improved by 10.8% (from 0.871 to 0.965), and the Fa index improved
by 87.2% (from 6.798 × 10−5 to 8.724 × 10−6). Although USES-Net was not the best in
terms of mIOU, its results were still superior to most other methods, which illustrates the
superior performance of this method on the NUAA-SIRST dataset.

4.4. Comparison with Some State-of-the-Art Methods on the NUDT-SIRST Dataset

Similarly, when training and testing using the NUDT-SIRST dataset, the entire dataset
was divided equally into a training set and a test set. The training set contained 663 images,
and the test set contained 664 images. The proposed method and the seven previously
compared methods were evaluated using the PA, mIOU, Pd, and Fa metrics. The resulting
target detection and segmentation results are shown below.

Figure 9 shows six different sets of scene images selected for algorithm testing. The
segmentation results show the false positives and false negatives in the detection results
for ACM, RDIAN, and UIU-Net, which could reduce detection accuracy and increase the
false-alarm rate. For network structures such as ALC-Net, DNA-Net, and ISTDU-Net, the
detection results were relatively complete, but careful observation revealed that parts of
the results were still fragmented and incomplete. However, the USES-Net model proposed
in this paper could fully capture the overall distribution characteristics of the small and
dim infrared targets in different scenes, and the segmentation results were more complete
and continuous.
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In the same way, the performance indicators for each type of detection in Figure 9
could be calculated using Equations (12)–(14), and the average of the results for all test
sets was obtained. The evaluation results for the performance indicators are presented in
Table 4 below.
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Table 4. Comparison of different methods in the NUDT-SIRST dataset.

Methods PA mIOU Pd Fa

ACM 0.864 0.649 0.967 2.859 × 10−5

ALC-Net 0.926 0.611 0.972 2.909 × 10−5

DNA-Net 0.963 0.942 0.993 2.390 × 10−6

ISNet 0.922 0.812 0.978 6.343 × 10−6

ISTDU-Net 0.945 0.918 0.985 3.769 × 10−6

RDIAN 0.908 0.824 0.988 1.360 × 10−5

UIU-Net 0.948 0.905 0.988 8.342 × 10−6

Proposed method 0.971 0.948 0.991 2.146 × 10−6

In Table 4, it can be seen that, compared with the other methods, the USES-Net model
designed in this paper also achieved good results for the various performance indicators,
especially the three indicators of PA, mIOU, and Fa. Specifically, it achieved a maximum
improvement of 12.4% (from 0.864 to 0.971) for the PA indicator, a maximum improvement
of 55.2% (from 0.611 to 0.948) for the mIOU indicator, and an increase of more than one
order of magnitude (from 2.859 × 10−5 to 2.146 × 10−6) for the Fa indicator. Although
USES-Net did not achieve the highest value for the Pd indicator, it still performed well,
with a score above 0.99. This was better than most of the other methods, indicating its
superior performance on the NUDT-SIRST dataset.

4.5. Comparison with Some State-of-the-Art Methods on the IRSTD-1K Dataset

The IRSTD-1K dataset has a larger data capacity, consisting of 1001 images. To enhance
the effectiveness of model training, the dataset was divided into a training set and a testing
set in an 8:2 ratio, with 800 training images and 201 testing images. The proposed method
and the seven other comparative methods were evaluated using four indicators: PA, mIOU,
Pd, and Fa. The results of target detection and segmentation can be seen in Figure 10 below.
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Figure 10 shows six sets of infrared dim- and small-target images with different scenes
that were selected for testing. The segmentation results suggest that some methods, such as
ACM, ALC-Net, ISTDU-Net, and RDIAN, had obvious false detection phenomena in the
detection results. These algorithms mistakenly identified light signs and streetlamps in the
images as targets, which reduced the detection accuracy and increased the false-alarm rate.
Other methods, such as DNA-Net, IS-Net, and UIU-Net, had no obvious false detection or
missing detection phenomena in their detection results, but careful observation revealed
that the target detection and segmentation results were still not precise enough. Some
small target segmentation results were incomplete and failed to accurately represent the
original shape characteristics. The USES-Net model proposed in this paper could more
accurately and completely distinguish the shape characteristics of dim, small infrared
targets in different scenes from the comparison results, and the detection and segmentation
content was more complete and continuous.

Additionally, the performance indicators for each type of detection could be calculated
using Equations (12)–(14), and the average of the results for all test sets was obtained. The
evaluation results for the performance indicators are presented in Table 5 below.

Table 5. Comparison of different methods in the IRSTD-1K dataset.

Methods PA mIOU Pd Fa

ACM 0.852 0.603 0.933 6.802 × 10−5

ALC-Net 0.796 0.581 0.929 7.411 × 10−5

DNA-Net 0.766 0.657 0.896 1.234 × 10−5

ISNet 0.776 0.619 0.902 3.156 × 10−5

ISTDU-Net 0.802 0.650 0.939 2.644 × 10−5

RDIAN 0.735 0.599 0.872 3.321 × 10−5

UIU-Net 0.779 0.657 0.912 1.342 × 10−5

Proposed method 0.873 0.692 0.951 1.148 × 10−5

Table 5 above shows that the USES-Net model designed in this paper achieved the best
results for the various performance indicators compared to the other methods. Specifically,
it improved the PA indicator by up to 18.8% (from 0.735 to 0.873), it improved the mIOU
indicator by up to 19.1% (from 0.581 to 0.692), it improved the Pd indicator by up to 9.1%
(from 0.872 to 0.951), and it improved the Fa indicator by up to 84.5% (from 7.411 × 10−5 to
1.148 × 10−5). Therefore, this method demonstrated better accuracy and performance on
the IRSTD-1K dataset.

4.6. Ablation Study

To further verify the effectiveness of the USES-Net model proposed in this paper,
ablation experiments were designed, as shown in Tables 6–8. The experiments and compar-
isons were conducted on the respective effects of the Swin Transformer, the local contrast
learning module (EPCLM), and the slice-assisted data augmentation and hyper inference
(SAHI) in the USES-Net model. In addition, the same three datasets, NUAA-SIRST, NUDT-
SIRST, and IRSTD-1K, were selected for testing. Tables 6–8 display the experimental results.
‘Y’ indicates that the current model includes the aforementioned modules or improved
techniques, while ‘N’ indicates that the current model does not include them.
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Table 6. Ablation experiment of the NUAA-SIRST dataset.

Experiment Swin-Transformer EPCLM SAHI PA mIOU Pd Fa

Exp1 N N N 0.723 0.516 0.862 8.963 × 10−5

Exp2 Y N N 0.808 0.663 0.903 5.288 × 10−5

Exp3 Y Y N 0.864 0.712 0.951 2.075 × 10−5

Exp4 Y Y Y 0.902 0.763 0.965 8.724 × 10−6

Table 7. Ablation experiment of the NUDT-SIRST dataset.

Experiment Swin-Transformer EPCLM SAHI PA mIOU Pd Fa

Exp1 N N N 0.851 0.624 0.942 1.323 × 10−5

Exp2 Y N N 0.903 0.787 0.975 8.753 × 10−6

Exp3 Y Y N 0.946 0.859 0.988 6.582 × 10−6

Exp4 Y Y Y 0.971 0.948 0.991 2.146 × 10−6

Table 8. Ablation experiment of the IRSTD-1K dataset.

Experiment Swin-Transformer EPCLM SAHI PA mIOU Pd Fa

Exp1 N N N 0.757 0.527 0.861 8.352 × 10−5

Exp2 Y N N 0.823 0.604 0.913 6.096 × 10−5

Exp3 Y Y N 0.844 0.657 0.929 4.358 × 10−5

Exp4 Y Y Y 0.873 0.692 0.951 1.148 × 10−5

As shown in Tables 6–8, initially, USES-Net was comparable to a traditional UNet
model in the absence of the Swin Transformer module, local contrast learning module
(EPCLM), and slice-assisted data augmentation and hyper inference (SAHI). As a result,
its performance indicators were limited. After introducing the Swin Transformer module,
the self-attention mechanism enabled the generation of richer feature maps that contained
dim, small target information in higher-level semantic features. This resulted in significant
improvements in the PA and mIOU indicators, with average increases of 8.6% and 22.4%,
respectively. Furthermore, after introducing the EPCLM module, the model used the prior
knowledge as a constraint to more accurately extract the spatial distribution of the targets,
resulting in further improvements in the model’s overall accuracy (Pd and Fa indicators).
The average Pd value increased from 0.931 to 0.956, and the average Fa value decreased
from 4.086 × 10−5 to 2.368 × 10−5. Finally, this method could be further enhanced with
data augmentation and target selection through SAHI technology to improve the target
detection capability of the entire model. As demonstrated in Exp 4, all indicators could
achieve optimal results, proving that USES-Net could better detect and extract dim, small
targets in infrared images.

4.7. Computational Efficiency Analysis

In addition to comparing the detection accuracy of the algorithm proposed in this
paper, this section further analyzes the practical application potential of USET-Net using
model parameter amount (unit million), algorithm complexity FLOPs (unit giga), and
frame rate of model inference FPS as main indices. The computing efficiency of these
algorithms on the same server platform equipped with GTX 3080TI is analyzed, and
the results are presented in Table 9. As shown in the table, among these algorithms, it
is observed that the ACM and ALC-Net models have smaller scales and complexities,
which results in faster frame rates. In contrast, UIU-Net has a large parameter size and
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complexity, which led to the slowest inference speeds that could not meet real-time data
processing requirements. However, the USET-Net proposed in this paper introduces a new
Swin Transformer structure and an embedded patch-contrast learning module (EPCLM),
while improving upon the ALC-Net network structure optimization. While the model’s
parameters are more complex than those of ALC-Net, resulting in slower inference speeds
compared to ACM and ALC-Net, it still achieves a frame rate of 60–70 FPS. This result
is sufficient for real-time detection of infrared small targets, and it is faster than other
reference methods. Therefore, it demonstrates its value by balancing algorithm accuracy
with computing speed.

Table 9. Computational efficiency comparison of different methods.

Methods Parameters(M) FLOPs(G) FPS Platform

ACM 0.398 0.402 113 GTX 3080TI

ALC-Net 0.427 0.378 85 GTX 3080TI

DNA-Net 4.697 14.261 32 GTX 3080TI

ISNet 0.966 30.618 49 GTX 3080TI

ISTDU-Net 2.752 7.944 37 GTX 3080TI

RDIAN 0.217 3.718 56 GTX 3080TI

UIU-Net 50.540 54.425 21 GTX 3080TI

Proposed method 0.872 1.155 67 GTX 3080TI

4.8. Error Diagnosis and Limitations

Although the USET-Net proposed in this paper achieves good results overall on
various datasets, it may encounter issues, such as missed detection, virtual detection, and
incomplete segmentation of infrared dim and small targets in specific scenarios. The images
on which the proposed USET-Net cannot perform very well are shown in Figure 11 below.
For Figure 11a,d, the USET-Net fails to detect the target due to a low signal-to-clutter ratio
caused by minimal gray differences between the target and its surroundings. Additionally,
smaller targets are assigned less weight in the loss function, which implies that boundary
errors during training can have a greater impact on them. For Figure 11b,c, although USET-
Net can detect the target, its segmentation results are noticeably impaired or absent when
compared to the label masks. This is attributed to the incorrect classification of individual
pixel positions along boundaries and the interference from background clutter, which in
turn reduces IOU/nIOU indexes. For Figure 11e, the false detection results of USET-Net can
be attributed to the target being positioned at the boundary with a highlighted background.
This caused the USET-Net to mistake the highlighted background for other targets, resulting
in a decrease in model accuracy. Finally, both Figure 11c,e exhibit diffuse energy distribution
of the target and blurry imaging results, which further restricts USET-Net’s ability to detect
targets accurately and precisely.

Furthermore, it is worth noting that the USET-Net model in this paper, similar to
other reference methods, treats infrared dim- and small-target detection as a segmentation
task. However, it should be acknowledged that detecting infrared dim and small targets
through target segmentation often encounters inherent limitations. Due to the tiny size
of the objects, the IoU threshold is frequently set much lower than the default value for
conventional segmentation tasks. This can pose significant challenges in terms of duplicate
object detection and introduce an alternative form of localization error. Therefore, the
accurate description of the infrared small target is still an ongoing challenge, as it requires
evaluation metrics that can effectively capture the real performance of target detection
without being influenced by any boundary and background errors.
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5. Conclusions

To enhance the accuracy of detecting and recognizing dim and small infrared targets,
this paper proposes a new network model called USES-Net. Firstly, the traditional encoder–
decoder network structure is improved, and a feature extraction module based on Swin
Transformer is introduced to replace the ordinary convolution kernel, which can extract
target features at different scales in a larger receptive field, and effectively retain the
high-level semantic information of dim and small targets. Simultaneously, to fully utilize
the inherent prior of infrared dim and small targets, a local contrastive learning module
(EPCLM) is introduced, which embeds the spatial distribution of the target into the network
as knowledge prior, forming a composite infrared dim- and small-target detection network
driven by joint knowledge and data. The algorithm’s detection accuracy can be enhanced,
making the model more pertinent and interpretable. Finally, this paper also utilizes a
slice-assisted data augmentation and inference technique based on SAHI, which can further
optimize and adjust the model in the training and testing process, respectively, ensuring
that the method can obtain effective information about the target. Through ablation
experiments and comparison with other state-of-the-art methods on different datasets, it
can be concluded that USET-Net achieves superior target segmentation effects under the
same conditions, which can prove that the combination of Swin Transformer and deep
network with embedded knowledge prior has great potential for infrared dim and small
target detection.

However, the speed of USET-Net is not fast enough, and the real-time performance at
present is worse than that of ACM and ALC-Net. In the future, we will further study and
optimize a more stable and efficient algorithmic model structure, design a more lightweight
infrared dim-target-oriented fast detection and identification method, and deploy and test
it on relevant edge-computing devices.
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