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Abstract: Following recent advancements in medical laboratory technology, the analysis of high-
resolution renal pathological images has become increasingly important in the diagnosis and progno-
sis prediction of chronic nephritis. In particular, deep learning has been widely applied to computer-
aided diagnosis, with an increasing number of models being used for the analysis of renal pathological
images. The diversity of renal pathological images and the imbalance between data acquisition and
annotation have placed a significant burden on pathologists trying to perform reliable and timely
analysis. Transfer learning based on contrastive pretraining is emerging as a viable solution to this
dilemma. By incorporating unlabeled positive pretraining images and a small number of labeled
target images, a transfer learning model is proposed for high-accuracy renal pathological image
classification tasks. The pretraining dataset used in this study includes 5000 mouse kidney pathologi-
cal images from the Open TG-GATEs pathological image dataset (produced by the Toxicogenomics
Informatics Project of the National Institutes of Biomedical Innovation, Health, and Nutrition in
Japan). The transfer training dataset comprises 313 human immunoglobulin A (IgA) chronic nephritis
images collected at Fukushima Medical University Hospital. The self-supervised contrastive learning
algorithm “Bootstrap Your Own Latent” was adopted for pretraining a residual-network (ResNet)-50
backbone network to extract glomerulus feature expressions from the mouse kidney pathological
images. The self-supervised pretrained weights were then used for transfer training on the labeled
images of human IgA chronic nephritis pathology, culminating in a binary classification model for
supervised learning. In four cross-validation experiments, the proposed model achieved an average
classification accuracy of 92.2%, surpassing the 86.8% accuracy of the original RenNet-50 model. In
conclusion, this approach successfully applied transfer learning through mouse renal pathological
images to achieve high classification performance with human IgA renal pathological images.

Keywords: renal pathology; contrastive learning; transfer learning; chronic nephritis; classification

1. Introduction
1.1. Chronic Nephritis Diagnosis

Chronic nephritis is an inflammation of the glomerulus that can affect urinary function
and cause body swelling. It is often caused by infections and toxins but is most commonly
caused by autoimmune diseases. Human immunoglobulin A (IgA) nephritis is the most
common condition worldwide and is associated with human immune responses [1]. When
IgA is released and remains in kidneys, inflammation can occur [2]. Although IgA nephritis
does not cause significant symptoms in its early stages, the inflammation causes leakage
of blood and proteins. The kidney gradually loses its functionality, eventually leading to
kidney failure [3].

For patients with IgA nephritis, it is important to diagnose and identify the stage of the
nephritis. Pathologists often perform kidney biopsies to diagnose suspected kidney disease.
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This is performed by inserting a thin needle through the skin to obtain kidney tissue
under ultrasound or imaging-device localization [4]. The kidney tissue is finely sliced, and
histological changes are observed under an optical microscope [5]. This provides valuable
information for the diagnosis of kidney disease.

High-resolution optical microscopes manufactured by leading companies such as
Leica and Olympus [6] are capable of scanning sections of kidney tissue and digitally
storing them as whole-slide images (WSIs) [7]. This technological advancement has greatly
facilitated diagnostic and research processes associated with chronic nephritis. WSIs with
high resolution and large image sizes provide comprehensive and detailed views of tissue
samples [8]. However, IgA nephritis has a high prevalence in East Asia. The global
incidence of IgA nephritis is 2.5 per 100,000 adults per year, and the task of analyzing
these renal pathological images represents a significant workload for pathologists [9].
A typical analysis of a renal biopsy specimen can take several days [10]. Given these
challenges, implementing a computer-aided diagnostic system represents a major step
toward improved analysis efficiency and timely diagnosis.

1.2. Progress and Weaknesses of Supervised Learning in Renal Pathological Image Analysis

The key to renal pathological image analysis is the identification of glomerulus. In
recent years, supervised learning models have been applied to this task [11]. Various
studies have considered the application of deep learning to renal pathology, particularly
for the analysis of complex histological structures within the kidney.

For the detection and classification of glomerulus, Gallego et al. proposed a Convolu-
tional Neural Network (CNN) that utilizes a pretrained AlexNet model. They adapted this
model for the classification of glomerulus by training it to learn from the glomerulus and
non-glomerulus regions extracted from the training slides [12]. Uchino et al. implemented
a classification model by fine-tuning their InceptionV3 model for seven types of glomeru-
lus morphological changes [13]. Chagas et al. introduced a method that incorporates a
novel architecture of a CNN in conjunction with a Support Vector Machine. This method
achieved near-perfect average results on the FIOCRUZ dataset in the binary classification
of glomerulus [14].

For glomerulus segmentation tasks, Dimitri et al. utilized the DeepLab V2 model,
which was pretrained with a Residual Network (ResNet)-101 encoder. They applied this
model to 512 × 512 pixel patches that were extracted from the original WSIs for segmen-
tation, despite the variations in coloring and typology in the pathological images [15].
Gu et al. introduced a multistream framework built upon three prominent models (FCN,
Deeplabv3, and UNet) for glomerulus segmentation [16].

These algorithms have demonstrated their ability to process images with a high ac-
curacy, even approaching the accuracy of pathologists. This highlights the ability of deep
learning to improve the efficiency and accuracy of renal pathological image analysis. How-
ever, there remain limitations to these approaches. Whether it is image-level annotations
for classification, bounding boxes for detection, or pixel-level annotations for segmentation,
each task heavily relies on the expertise of pathologists. As the training set continues to
grow, pathologists will be overwhelmed by the sheer volume of data to annotate.

1.3. Motivation

The concepts of contrastive learning and transfer learning can provide potential
solutions to these challenges. Contrastive learning is a self-supervised learning strategy
that is based on the principle of bringing similar “positive” samples closer together in an
embedding space while distancing “negative” samples. This approach enables the effective
use of large amounts of unlabeled data and significantly reduces pathologists’ workload.
Transfer learning is a technique for reusing a model once it has been trained on a particular
task by taking the model weights as the starting point for another related task [17]. This
method promotes efficiency and accelerates the learning process.
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In recent years, applications of contrastive learning and transfer learning have been
implemented for classification tasks in various domains. Wang et al. developed a semi-
supervised learning framework for Mars imagery classification based on contrastive learn-
ing, demonstrating the applicability of contrastive methods in improving classification
accuracy in planetary exploration scenarios [18]. Kato et al. utilized contrastive learning
for COVID-19 pneumonia classification from CT images, highlighting the efficacy of con-
trastive learning methods in training new classifiers following initial steps [19]. Wu and
Lin investigated the impact of transfer learning on the performance of VGGNet-16 and
ResNet-50 for classifying organic and residual waste [20]. Their study highlighted the
benefits of deep learning with transfer learning in waste classification tasks, showcasing
its potential in environmental applications. Alzubaidi et al. introduced a novel transfer
learning approach for medical imaging tasks with limited labeled data [21]. By combining
transfer learning with contrastive pretraining, the performance of convolutional neural
networks was enhanced in medical image classification. Overall, the implementation of
contrastive learning and transfer learning techniques offers promising avenues for classifi-
cation tasks, enabling models to learn robust representations and generalize well across
different domains and datasets.

In this research, we propose a WSI classification model for human IgA nephritis that is
based on contrastive pretraining, with the aim of reducing the burden on pathologists. We
also aimed to improve the performance of the model using the transfer learning approach.
ResNet [22] was selected as the backbone of the classification model, and mouse glomerulus
images were used in the contrastive pretraining process. The “Bootstrap Your Own Latent”
(BYOL)-based contrastive learning algorithm [23] was used to extract feature represen-
tations of mouse glomerulus images. In the transfer learning phase, a small number of
labeled human nephritis WSIs were used to train a binary classification model. This model
could classify kidney pathology images from glomerulus images and other images, and it
outperformed a supervised learning model based on the same backbone.

2. Materials and Methods
2.1. Materials

The original mouse kidney images used in this study were provided freely by the
Toxicogenomics Informatics Project of the National Institutes of Biomedical Innovation,
Health, and Nutrition (NIBIOHN) in Japan [24]. The original human kidney images were
provided by Fukushima Medical University Hospital. This research was approved by the
Institutional Review Board of Fukushima Medical University and was performed based on
the Declaration of Helsinki.

2.1.1. Mouse Glomerulus Images for Contrastive Pretraining

The mouse glomerulus image dataset comprised high-resolution WSIs of pathological
kidney specimens stained with hematoxylin-eosin dyes [24]. The specimens were obtained
from animal experiments. The digitization of these images was performed with the virtual
sliding Leica Aperio Scan Scope, ID number SS1061, Leica Corp., Wetzlar, Germany [24].
The images were digitized at a maximum magnification of 20× and a spatial resolution
of 0.5 microns per pixel (mpp) [24]. The original pathological images were processed and
selected to give 5000 image patches with glomerulus at a size of 256 × 256. Figure 1 shows
the original WSI of a mouse kidney affected by 1% cholesterol and 0.25% sodium cholate.

To avoid the morphology of the glomerulus of mouse under different regimens af-
fecting the results, equal-sized sets of images for two different drug regimens affecting
inputs were selected. The dataset formed by images affected by 1% cholesterol and 0.25%
sodium cholate was called mouse dataset A. The dataset formed by images affected by
nitrofluorene was called mouse dataset B.



Electronics 2024, 13, 1403 4 of 21

Figure 1. An original WSI of a mouse kidney with an actual size of 75,695 × 22,500.

2.1.2. IgA Glomerulus Images for Contrastive Pretraining and Transfer Learning

The IgA glomerulus image dataset comprised periodic-acid-Schiff–stained human
pathological images from 313 chronic kidney disease cases treated at Fukushima Medical
University Hospital between 2002 and 2018. The digitization of these images was performed
with the virtual sliding Leica Aperio Scan Scope, ID number SS7572, Leica Corp., Wetzlar,
Germany. The images were digitized at a maximum magnification of 40× and a spatial
resolution of 0.25 mmp. The original pathological images were subsequently cropped
into patches of 256 × 256 pixels at a magnification of 8×, which corresponds to a spatial
resolution of 1.25 mpp. This process resulted in a dataset comprising image patches,
inclusive of 7000 glomerulus-containing and 7000 non-glomerulus-containing images. The
dataset was then partitioned into training, validation, and test sets in a 7:1:2 ratio. Each set
contained images from distinct cases. Figure 2 shows the original WSI from a patient with
IgA nephritis.

Figure 2. An original WSI of a patient with IgA nephritis with an actual size of 35,856 × 23,388.

Concerning the learning performance of the model, each image in the dataset was
carefully categorized by pathologists to ensure the accuracy of the training data. Figure 3
shows image patches containing human and mouse glomerulus processed from the original
WSIs. The left and right images are from a patient with IgA and a mouse, respectively.
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Figure 3. WSI patches containing human (left) and mouse (right) glomerulus.

2.2. Classification Backbone ResNet

ResNet (Residual Network), a deep learning architecture proposed in 2015, has be-
come a reliable choice for a wide range of classification tasks. ResNet has demonstrated
competitive performance and robustness in various tasks of medical image analysis, such
as glaucoma detection [25], bone lesion staging [26], and cervical cancer diagnosis [27]. Fur-
thermore, the structure of ResNet is relatively simple and intuitive, facilitating adjustment
and reproduction. The choice of the ResNet backbone helps to improve the interpretability
of the results.

The defining characteristic of ResNet is the use of residual blocks. As given in Equation (1),
the residual blocks allow the network to learn the residual mapping between inputs and
outputs, where x is the input, F(x) is the feature mapping processed by convolutional
layers, and G(x) is the output mapping. The problems of gradient vanishing and gradi-
ent explosion can be mitigated with this design, allowing the integration of additional
convolutional layers [22].

G(x) = F(x) + x (1)

The residual block consists of two main paths: the convolutional path and the shortcut
path. As shown in Figure 4, where the number of input and output channels is the same,
the structure of the residual block involves the convolutional path applying a series of
convolutional layers followed by batch normalization (BN) and activation functions, such
as ReLU. In this scenario, the shortcut path involves identity mapping, where the input is
directly added to the output of the convolutional path [28]. The residual block is called an
identity block in this situation.

Figure 4. The structure of the identity block.

As shown in Figure 5, when the number of input and output channels differs, the
shortcut path needs to adjust the dimensions of the input to match the output dimensions
before adding it to the output of the convolutional path. The adjustment is achieved by
introducing an additional convolutional layer in the shortcut path. This convolutional
layer changes the number of channels of the input tensor to align with the output tensor,
ensuring that they can be element-wise added together [28]. The residual block is called a
convolutional block in this situation.
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Figure 5. The structure of the convolutional block.

The final feature mapping extracted by the ResNet backbone serves as a high-level
abstract representation of the input data, capturing important features relevant to the
subsequent classification task. This feature representation is then processed in a fully
connected layer and Softmax for classification [29].

2.3. Contrastive Learning Method BYOL

BYOL is an innovative approach to self-supervised learning that aims to learn a
representation that applies to downstream tasks [23]. As shown in Figure 6, the core
concept of BYOL involves the use of two structurally similar neural networks, an online
network, and a target network. The two neural networks have the same backbone and are
trained to predict representations of the same image under different augmentations [23].
The online network also generates a prediction of the target network’s projection based on
the obtained projection. The online network’s prediction is compared to the target network
projection, and the difference is calculated as the training loss [23].

Figure 6. The ResNet backbone with BYOL algorithm.

In this study, BYOL was employed to obtain the feature representations for images with
glomerulus. BYOL has several advantages that fit with the medical image analysis model:

• Robustness to image augmentation: BYOL learns representations by comparing aug-
mented pairs of the input. The model is trained to learn augmented invariant features,
enhancing the ability to capture more representative features [30]. This helps to combat
variability in medical images, such as slice fading.

• No reliance on negative pairs: BYOL does not rely on negative pairs in its training
objective [23]. It establishes an invisible relationship between positive features through
image enhancement, facilitating the full use of positive data.

• Performance improvement: BYOL has demonstrated superior performance [31] and
robustness to batch size variations [32] on ImageNet compared to several contrastive
learning methods, including SimCLR and MoCo.

2.4. Experimental Design
2.4.1. Optimizer and Loss Functions

The optimization strategy used in this study was stochastic gradient descent (SGD),
which is an iterative method with an appropriate level of smoothness. SGD introduces
randomness into the optimization process using a random subset of the entire dataset
(a batch) to compute the gradient at each step, rather than the entire dataset [33]. This
randomness can help avoid shallow local minima, making SGD more suitable for the
non-convex error surfaces that are common in neural networks [34]. The SGD update
rule is given in Equation (2), where θt is the parameter vector at iteration t and γ is the
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learning rate. ∇ f (θt−1) is the gradient of the loss function f with respect to the parameters
at iteration t − 1.

θt = θt−1 − γ∇ f (θt−1) (2)

In the contrastive learning phase, layer-wise adaptive rate scaling (LARS) based on
SGD was applied. LARS is an optimization algorithm used in deep learning to adjust the
learning rate of each parameter based on its recent gradients [35]. In LARS, a different
learning rate is introduced for each layer to ensure stable updates regardless of the dif-
ference in the ratio of the norm of the parameter to the norm of the gradient [36]. The
learning rate for the parameter of each layer is determined at the time of parameter update,
as given in Equation (3), where λl is the learning rate for the parameter of layer l, η is the
confidence hyperparameter, wl is the parameter of layer l, and ∇L(wl) is the gradient of
the loss function with respect to the parameter of layer l.

λl = η × ∥wl∥
∥∇L(wl)∥

(3)

In the contrastive pretraining phase, the loss function is determined by BYOL. BYOL
employs a loss function that approximates cosine similarity, encouraging the online and
target networks to generate similar image representations. The cosine similarity, SC(A, B),
is defined by Equation (4) [37]. The parameters of the target network are gradually adjusted
according to the updates of the parameters of the online network during training. The
original definition of the BYOL loss functions is illustrated by Equation (5). As shown in
Figure 6 and Equation (6), v and v′ are images augmented from the same input x. yθ and y′ξ
are the feature representations of v and v′ generated by the online network fθ and the target
network fξ , respectively. zθ and z′ξ correspond to the projections of yθ and y′ξ , respectively.

zθ is used to output the projection qθ(zθ) in the online network. The L̃θ,ξ is generated by
processing v′ with the online network and v with the target network reversely [23]. The
value range of the BYOL loss function is often adjusted to be similar to that of the cosine
function for better evaluation [38]. In our study, the value range of LBYOL

θ,ξ was adjusted
to [−4,4]. The closer the loss value approaches −4, the smaller the difference between the
feature vectors.

cos < A, B >=
A · B

∥A∥∥B∥ =
∑n

i=1 AiBi√
∑n

i=1 A2
i · ∑n

i=1 B2
i

(4)

LBYOL
θ,ξ = Lθ,ξ + L̃θ,ξ (5)

Lθ,ξ ≜
∥∥∥qθ(zθ)− z̄′ξ

∥∥∥2

2
= 2 − 2 ·

〈
qθ(zθ), z′ξ

〉
∥qθ(zθ)∥2 ·

∥∥∥z′ξ
∥∥∥

2

(6)

The loss function used in transfer learning is the cross-entropy loss. This is a loss
function commonly used in classification tasks [39]. It measures the dissimilarity between
the predicted probability distribution and the actual distribution by calculating the negative
log-likelihood of the predicted probabilities with respect to the actual labels [40]. In this
study, the cross-entropy loss function can be described as in Equation (7), where N is
the number of samples, yi is the actual label of the i-th sample, and pi is the predicted
probability of the i-th sample being in the positive class.

L = − 1
N

N

∑
i=1

yilog(pi) + (1 − yi)log(1 − pi) (7)

2.4.2. Learning Rate Reduction Strategy

Two different learning rate reduction strategies were used for the contrastive learning
phase and the transfer learning phase. As shown in Figure 7, a linear learning rate and
cosine annealing were combined in the contrastive learning phase. The linear learning rate
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is used for “warm-up”, and the cosine annealing adjusts the learning rate according to a
cosine function [41]. The learning rate starts at a higher value and decreases along a cosine
curve toward zero.

Figure 7. Learning rate reduction strategy for contrastive learning.

As shown in Figure 8, a multi-step learning rate was used for transfer learning. The
initial learning rate was 0.01, and the learning rate decayed to one-tenth of the preceding
value at the 30th, 100th, 200th, and 400th epochs.

Figure 8. Learning rate reduction strategy for transfer learning.

2.4.3. Experimental Flow

This study was designed with two main targets as follows:

• Demonstrating that feature representations pretrained based on contrastive learning
are effective for semi-supervised learning models.

• Demonstrating that the feature representation of mouse glomerulus images contributes
to transfer learning training for human IgA glomeruli.

The following experiments were performed for these purposes:
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• Comparing a semi-supervised classification model based on contrastive learning with
a supervised classification model.
Unlabeled images of human glomeruli were first used for self-supervised contrastive
learning training. Next, 30% of the glomerulus images and other labeled kidney tissue
images were used for semi-supervised training. Finally, models were trained using all
labeled data for supervised learning. The performance of both models was evaluated.

• Demonstrating that feature representation for mouse glomerulus images contributes
to transfer learning training for human IgA glomeruli.
Mouse glomerulus images were used for contrastive learning training. Subsequently,
transfer learning was performed on the same dataset as the semi-supervised learning
model described above. The performance of the two models was evaluated. To
avoid possible random conclusions from drug differences in animal experiments, two
batches of mouse glomerulus images from animal experiments with different drug
regimens were used to train two different transfer learning models.

Figure 9 shows the complete data flow for this study.

Figure 9. Data and experimental flow in this study. The blue stream represents semi-supervised
learning training. The red and green streams represent transfer learning training with pretraining
by mouse kidney images from different animal drug experiments. The orange stream represents
supervised learning training used for comparison and evaluation.

2.5. Evaluation

For convenience, images containing glomeruli are referred to as positive images, and
images without glomeruli are referred to as negative images. Correctly predicted positive
images are denoted as TP and incorrectly predicted positive images are denoted as FN .
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Correctly predicted negative images are denoted as TN , and incorrectly predicted negative
images are denoted as FP.

• Accuracy: Top-1 accuracy is a common metric for classification tasks [42]. As given in
Equation (8), it is calculated as the number of correct predictions divided by the total
number of predictions in binary classification.

Accuracy =
TP + TN

TP + FN + TN + FP
(8)

• Sensitivity: Sensitivity, also known as recall, quantifies the number of positive class
predictions made from all positive examples in the dataset [43]. It is defined as the
number of true positives divided by the total number of elements that actually belong
to the positive class, as given in Equation (9).

Sensitivity =
TP

TP + FN
(9)

• Specificity: Specificity quantifies the number of negative class predictions made from
all positive examples in the dataset [44]. It is defined as the number of true negatives
divided by the total number of negative calls, as given in Equation (10).

Specificity =
TN

TN + FP
(10)

• Confusion matrices: A confusion matrix is a special visualized table layout that shows
the performance of an algorithm. It can provide a useful understanding of a model’s
recall, accuracy, precision, and overall effectiveness when distinguishing between
classes [45].

• Receiver Operating Characteristic Curve (ROC), Area Under the Receiver Operating
Characteristic Curve (AUROC): The ROC curve is a graphical plot that reflects the
performance of a binary classification model [46]. It is based on the true-positive and
false-positive rates at different classification thresholds [47]. AUROC represents the
area of the graph below the ROC curve. The closer the value of AUROC is to 0.5, the
worse the model’s classification ability. The closer the value of AUROC is to 1, the
better the model’s classification performance [47].

• Delong test: The Delong test is a statistical method for AUROC comparison proposed
in 1988 by Delong et al. [48]. It is usually used to compare the AUROC obtained by
different models on the same data distribution and to test the significance of their
differences. In this study, the Delong test was implemented in the 3 models for
difference evaluation.

3. Results
3.1. Experimental Environment and Classification Backbone

The experimental environment is summarized in Table 1.
For an input (C, W, C1, S), the structure of the Convolution Block is shown in Table 2,

where C is the number of input channels, W is the input size, C1 is the number of channels
in the convolution layer, and S is the stride.

For an input (C, W), the structure of the Identity Block is shown in Table 3, where C is
the number of input channels and W is the input size.
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Table 1. Experimental environment.

Device/Software Version

CUDA NVIDIA cudatoolkit 11.3
CUDNN NVIDIA cudnn 8.2.0.53
PyTorch 1.10.1

CPU Intel i9-11900F
GPU NVIDIA GeForce RTX 3090

Operating System Windows 11

Table 2. Structure of the Convolution Block in ResNet.

Stage Layer Type Kernel Size Stride Output Channels Output Size

Convolution

Conv2d 1 × 1 S C1 (W/S, W/S)
BN, ReLU
Conv2d 3 × 3 1 C1 (W/S, W/S)

BN, ReLU
Conv2d 1 × 1 1 C1 × 4 (W/S, W/S)

BN

Shortcut Conv2d 1 × 1 S C1 × 4 (W/S, W/S)

Connection +, ReLU C1 × 4 (W/S, W/S)

Table 3. Structure of the Identity Block in ResNet.

Stage Layer Type Kernel Size Stride Output Channels Output Size

Convolution

Conv2d 1 × 1 1 C/4 (W, W)
BN, ReLU
Conv2d 3 × 3 1 C/4 (W, W)

BN, ReLU
Conv2d 1 × 1 1 C (W, W)

BN

Connection +, ReLU C (W, W)

Tables 4 and 5 show the structures of the ResNet-50 and ResNet-101 backbones used
in this study, respectively.

Table 4. ResNet-50 backbone.

Stage Layer Type Stride Output Channels Output Size

0
Conv2d (7 × 7) 2 64 (112, 112)

BN, ReLU 64
MaxPool (3 × 3) 2 64 (56, 56)

1 Conv Block (64, 56, 64, 1) 1 256 (56, 56)
2 × Identity Block (256, 56) 256 (56, 56)

2 Conv Block (256, 56, 128, 2) 2 512 (28, 28)
3 × Identity Block (512, 28) 512 (28, 28)

3 Conv Block (512, 28, 256, 2) 2 1024 (14, 14)
5 × Identity Block (1024, 14) 1024 (14, 14)

4 Conv Block (1024, 14, 512, 2) 2 2048 (7, 7)
2 × Identity Block (2048, 7) 2048 (7, 7)
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Table 5. ResNet-101 backbone.

Stage Layer Type Stride Output Channels Output Size

0
Conv2d (7 × 7) 2 64 (112, 112)

BN, ReLU 64
MaxPool (3 × 3) 2 64 (56, 56)

1 Conv Block (64, 56, 64, 1) 1 256 (56, 56)
2 × Identity Block (256, 56) 256 (56, 56)

2 Conv Block (256, 56, 128, 2) 2 512 (28, 28)
3 × Identity Block (512, 28) 512 (28, 28)

3 Conv Block (512, 28, 256, 2) 2 1024 (14, 14)
22 × Identity Block (1024, 14) 1024 (14, 14)

4 Conv Block (1024, 14, 512, 2) 2 2048 (7, 7)
2 × Identity Block (2048, 7) 2048 (7, 7)

The transfer learning model based on ResNet-101 achieved an average classification
accuracy of 92.73% and an AUC of 0.978. The AUROCs of the models based on the two
ResNet backbones with the same dataset were not significantly different using the Delong
test (p = 0.4559). Considering the storage and computational cost, the ResNet-50 backbone
was determined to be more practical for the following experiments.

3.2. Curve of Training Loss

Figure 10 shows the training curves that compare the pretraining performance of
mouse dataset A (1% cholesterol and 0.25% sodium cholate) and the human IgA nephritis
glomerulus dataset used in this study, respectively.

Figure 10. The training loss curves for contrastive pretraining. The red curve represents the training
process using mouse glomerulus images, and the black curve represents the training process using
human IgA nephritis glomerulus images.

Figure 11 illustrates the training loss curves in red, black, and blue for the semi-
supervised learning model based on human IgA nephritis glomerulus image features, the
supervised learning model based on human IgA nephritis glomerulus images, and the
transfer learning model based on mouse glomerulus image features, respectively.
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Figure 11. Training loss curves for semi-supervised learning (red), supervised learning (black), and
transfer learning with mouse dataset A (blue).

3.3. Classification Results

Figure 12 shows the classification results and two gradient-weighted class activation
mapping (Grad-CAM) of a positive image using the semi-supervised learning and transfer
learning models, respectively. Figures 13–16 show the classification results and class
activation mappings of true positive, false negative, true negative, and false positive
prediction, respectively.

Grad-CAM is a technique that reflects which regions of an input image are important
for predicting a particular class [49]. The regions that contribute more to the prediction
result are colored closer to red, and the regions that contribute less appear in blue.

Figure 12. Accurate predictions of a positive image containing glomeruli. (a) is the original image
patch. (b) is the Grad-CAM of the semi-supervised learning model. The model prediction is at the
top, which comprises a binary group representing the positive and negative prediction scores, as is
the prediction label. The first and second terms of the binary group represent the probability of a
positive prediction (containing glomeruli) and a negative prediction (without glomeruli), respectively.
(c) is the Grad-CAM of the transfer learning model. The model prediction scores and labels are also
listed at the top.

The transfer learning model with mouse dataset A demonstrated the best performance
for the classification task in this study.
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Figure 13. A correct prediction of a positive image containing glomeruli (true positive). (a) is the
original image patch and labeled as a positive image. (b) has a positive prediction score of 1.00. (c) is
the Grad-CAM of the prediction.

Figure 14. An incorrect prediction of a positive image containing glomeruli. (a) is the original image
patch and labeled as a positive image. (b) has a positive prediction score of 0.26. (c) is the Grad-CAM
of the positive prediction.

Figure 15. A correct prediction of a negative image without glomeruli. (a) is the original image patch
and labeled as a negative image. (b) has a negative prediction score of 0.99. (c) is the Grad-CAM of
the prediction.
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Figure 16. An incorrect prediction of a negative image containing glomeruli. (a) is the original image
patch and labeled as a positive image. (b) has a negative prediction score of 0.05. (c) is the Grad-CAM
of the prediction.

3.4. Evaluation

Table 6 shows the average performance metrics evaluated for the various models.

Table 6. Evaluation Metrics.

Metrics Transfer Learning Transfer Learning Semi-Supervised Supervised
(1% Cholesterol + 0.25% Sodium Cholate) (Nitrofluorene) Learning Learning

Accuracy (Top-1) % 92.22 91.97 82.25 86.85
Sensitivity % 92.74 92.56 80.78 87.48
Specificity % 91.58 91.21 83.46 85.99

3.5. Confusion Matrix

Figure 17 shows the details of confusion matrices with different models on the same
test set.

Figure 17. Confusion matrices of two transfer learning models (a,b), the supervised learning model
(c), and the semi-supervised learning model (d), respectively.
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3.6. ROC Curves and AUROC Scores

Figure 18 illustrates the ROC curves and AUROC scores for the three different models.
The AUROC of the transfer learning model is significantly higher than that of the supervised
learning model (p = 0.0218) and semi-supervised learning model (p << 0.001) under the
Delong test. The AUROC of the supervised learning model is also significantly higher than
that of the semi-supervised model (p << 0.01) under the Delong test.

Figure 18. The ROC and AUROC of the 3 different models. The orange curve represents the
transfer learning model of mouse dataset A with an AUROC of 0.973. The black curve represents the
supervised learning model with an AUROC of 0.958. The red curve represents the semi-supervised
learning model with an AUROC of 0.925. The dotted line represents a random classifier.

4. Discussion

Deep learning methods for nephritis WSI analysis have become a hot topic in recent
years. Supported by a huge amount of pathological image data, several mature supervised
learning analysis models have emerged. The performance of supervised learning models is
highly dependent on the efforts of pathologists in data annotation. However, individual
differences, staining differences, and even differences in light microscopy equipment
contribute to the inter-difference in the analysis results of glomerulus morphology using
WSIs. Pathologists often feel overwhelmed with diagnosing the vast amount of appropriate,
high-quality training images. On the other hand, pathologists and physicians are always
interested in positive images with characteristic tissue structures or lesions. Positive data
and annotations are usually easier to obtain, leading to an imbalance in sample diversity
for deep learning model training. Resolving these considerations places a heavy burden
on pathologists and data scientists, affects the efficiency of data utilization, and creates
constraints and challenges for supervised learning model training.

Semi-supervised learning can solve the above problems with a relatively low anno-
tation cost. The classification performance of semi-supervised learning has been demon-
strated in cases where the number of available annotated images is limited [50]. To achieve
our goals, a large amount of unlabeled data were used for self-supervised pretraining,
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and then a small amount of labeled data were used for semi-supervised training. In total,
313 human IgA nephritis WSIs were processed into a human kidney image dataset, inclu-
sive of 7000 glomerulus-containing (positive) images and 7000 non-glomerulus-containing
(negative) images; 4900 patches containing human glomeruli were selected randomly for
pretraining; the remaining 2100 patches containing glomeruli and 2100 randomly selected
non-glomerulus patches were partitioned into training, validation, and test sets in a 7:1:2
ratio with classification labels for the fine-tuning phase. To minimize the dependence
on negative images and capture stable glomerulus characteristics, contrastive pretraining
was conducted with the BYOL algorithm. The feature representation of images contain-
ing glomeruli was obtained by enhancing the positive input with BYOL. The weights of
the contrastive learning model were then fine-tuned to form a semi-supervised model.
The proposed semi-supervised learning model achieved an average accuracy of 82.25%,
a sensitivity of 80.78%, a specificity of 83.46%, and an AUROC of 0.925 in four parallel
trials. The Grad-CAMs generated by this model showed that pretraining with contrastive
learning based on positive images helps with the glomerulus image feature representation,
and the areas associated with the glomeruli can provide a basis for correct predictions.
In contrast, the supervised learning models based on the same dataset training and the
same backbone were trained simultaneously. The supervised learning models achieved an
average accuracy of 86.85%, a sensitivity of 87.48%, a specificity of 85.99%, and an AUROC
of 0.958 in four parallel trials. The above results show that for IgA nephritis glomeruli, the
semi-supervised classification model based on BYOL can achieve similar performance to
that of the supervised learning classification model.

However, the supervised learning models still demonstrated obvious advantages
through the Delong test analysis. This indicates that there is still room for improvement of
classification models based on contrastive learning. In human kidney images, the morphol-
ogy of other tissues that are not glomerulus might be similar to that of glomerulus. This
implies that human kidney images may be more complex and may reduce the expressive
effect of contrastive learning training. In mouse kidney images, the difference between
glomerulus and other renal tissues is more significant, so the images are relatively simple.
Given that the similarity between mouse glomeruli and human glomeruli is high, the same
number of mouse glomerulus images could be introduced into contrastive learning to
replace the human glomerulus images mentioned above. The same number of labeled
human kidney images was then introduced for transfer training.

To train the transfer learning model, mouse dataset A was constructed with 5000 image
patches containing mouse glomeruli affected by 1% cholesterol and 0.25% sodium cholate.
To avoid drug-regimen differences in animal experiments, 5000 image patches containing
mouse glomeruli affected by nitrofluorene comprised mouse dataset B for contrastive
learning. Similar to the semi-supervised model training process described above, mouse
datasets A and B were used for the contrastive learning phases, respectively. Then, 2100
patches containing human glomeruli and 2100 human non-glomerulus patches, both ran-
domly selected, were partitioned into training, validation, and test sets in a 7:1:2 ratio
with classification labels for the fine-tuning phase. The proposed transfer learning model
with mouse dataset A achieved an average accuracy of 92.22%, a sensitivity of 92.74%,
and a specificity of 91.58% in four parallel trials. The proposed transfer learning model
with mouse dataset B achieved an average accuracy of 91.97%, a sensitivity of 92.56%,
and a specificity of 91.21% in four parallel trials. The proposed transfer learning models
achieved significant performance advantages under the Delong test, with an AUROC of
0.973, compared to the semi-supervised models and supervised models.

By comparing the loss curves of the above semi-supervised, supervised, and proposed
transfer learning models, it was clear that when mouse glomerulus images were used for
contrastive pretraining, the convergence speed was faster and the value of the loss function
at convergence was lower. Observing the evaluation metrics and the confusion matrices
of the two transfer learning models, the performance of the two transfer learning models
was better than that of the semi-supervised learning model and the supervised learning
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model, and there was no significant difference in performance between the two transfer
learning models. Comparing the previous results and Grad-CAMs, it was demonstrated
that glomerulus images helped form better feature representations and improved the classi-
fication accuracy of human kidney images via transfer learning, surpassing the supervised
learning methods. It can be demonstrated that the key to improving model performance
lies in training the feature representations during the pretraining phase. The results of
this study also show that semi-supervised learning and transfer learning models can be
built using contrastive learning pretraining to improve the training results with small
training datasets.

This study also examined the difference in the classification performance of the pro-
posed transfer learning model with two ResNet backbones of different depths. This study
confirmed the difference in the classification performance of the proposed transfer learning
model with two ResNet backbones of different depths. With the same datasets, the transfer
learning models based on ResNet-101 were trained and achieved an average classification
accuracy of 92.73% in four parallel trials. Under the Delong test, the ResNet-101 backbone
with an AUROC of 0.978 did not achieve a significant difference compared to that of the
ResNet-50 backbone. This may be attributed to the simplicity of the mouse kidney images.
Therefore, the ResNet-50 backbone has sufficient capability for feature learning and rep-
resentation. Considering the storage and computational cost, the ResNet-50 backbone is
more practical.

In this study, we proposed a classification model for analyzing human IgA nephritis
WSIs by combining contrastive learning pretrained with mouse glomerulus images and
transfer learning with human glomerulus images. The method achieved a high classifica-
tion accuracy and facilitated the diagnosis using pathological WSI images. Additionally,
the proposed method greatly reduced the requirement and burden of data annotation
for training renal WSI analysis models. This study also provided a solid foundation for
subsequent segmentation and classification tasks. There are some limitations of this study.
First, this study only performed the classification of glomerulus and non-glomerulus tissue
images and did not consider the classification for glomeruli and other tissues in different
types of nephritis. The establishment of a comprehensive renal WSI-wide classification
system is essential for a CAD system for chronic nephritis. Second, due to limitations in
data collection, only mouse and human glomerulus images were used for pretraining by
contrastive learning. The complexity and relationship between mouse and human glomeru-
lus images have yet to be analyzed. In addition, the visualizations on the representation
of features generated by mouse and human glomerulus images should be further studied.
This may help to explain the role of contrastive learning in this study. Finally, the number
of images in the dataset is insufficient to fully evaluate the performance of the models on
large datasets. The evaluation of the model could be improved by incorporating a wider
range of contrastive learning algorithms. BYOL is a generic contrastive learning algorithm,
and its advantages over other algorithms have been extensively proved [23,31,51]. Future
studies should be performed to develop a specific contrastive learning algorithm in renal
pathological image analysis.

In future work, we will aim to address the above issues. The downstream tasks
of the transfer learning classification model proposed in this study are also expected to
progress, including multiclassification problems, detection, and semantic segmentation.
In addition, we are approaching the application of transfer learning to downstream tasks
in IgA nephritis, such as segmentation of internal sclerotic tissue, quantitative analysis of
specific stained spots, and area statistics. WSIs with higher resolution and magnification
can support this further study. Moreover, we would like to explore the feasibility of transfer
learning with renal pathological images from appropriate animal experiments for the
analysis of some rare glomerulus lesions, such as crescents. Additional data and models
are expected to be available to address the problems identified above.
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5. Conclusions

In this paper, the feasibility of a semi-supervised classification model was investigated
based on contrastive learning for the detection of renal WSIs containing glomerulus, and a
transfer learning model was also proposed based on the pretraining of mouse glomerulus
images with high classification accuracy. A set of 313 IgA nephritis WSIs and two groups
of mouse drug-experiment renal WSIs were used in this study. The proposed transfer
learning model was compared with a semi-supervised learning model and a supervised
learning model, both of which used the same classification backbone and dataset. The
result shows that, with only mouse glomerulus images and a small number of IgA nephritis
glomerulus images, the transfer learning method achieved 92.22% classification accuracy,
outperforming the 86.85% classification accuracy of the supervised learning model.
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