
Citation: Müller, L.; Schumacher, N.;

Steffen, L.; Haubelt, C. Generative

Design of the Architecture Platform in

Multiprocessor System Design.

Electronics 2024, 13, 1404. https://

doi.org/10.3390/electronics13071404

Academic Editor: Alexander Barkalov

Received: 15 February 2024

Revised: 4 April 2024

Accepted: 5 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Generative Design of the Architecture Platform in
Multiprocessor System Design
Luise Müller * , Nico Schumacher , Lukas Steffen and Christian Haubelt *

Applied Microelectronics and Computer Engineering, University of Rostock, 18059 Rostock, Germany;
nico.schumacher@uni-rostock.de (N.S.); lukas.steffen@uni-rostock.de (L.S.)
* Correspondence: luise.mueller@uni-rostock.de (L.M.); christian.haubelt@uni-rostock.de (C.H.)

Abstract: When designing a system at the Electronic System Level (ESL), designers are confronted
with a very large number of design decisions, each affecting the characteristics of the resulting system.
Simultaneously, the demands for the system’s performance, reliability, and energy consumption
have increased drastically. Design Space Exploration (DSE) aims to facilitate this complex task by
automating the system synthesis and traversing the design space autonomously. Previous studies
on DSE have mainly considered fixed architectures with a fixed set of hardware components only.
In the paper at hand, we overcome this limitation to allow for a higher degree of freedom in the
design of a multiprocessor system. Instead of a fixed architecture as input, we are using a resource
library containing resource types whose instances can then be arbitrarily placed and connected.
More specifically, we enable the exploration of the types, the number, and the positions of required
processing-type instances in a grid-based topology template in addition to deciding on the remaining
system synthesis tasks, namely, resource allocation, task binding, routing, and scheduling. We
provide an extensible framework, based on Answer Set Programming (ASP) modulo Theories
(ASPmT), for generating system architectures fulfilling predefined constraints. Our studies show that
this higher degree of freedom, originating from fewer restrictions regarding the architecture, leads to
an increased complexity of the problem. In extensive experiments, we show scalability trends for a
set of parameters, demonstrating the capabilities and limits of our approach.

Keywords: generative design approach; hardware–software co-design; high-level synthesis; design
space exploration; answer set programming

1. Introduction

Given the rising demands for functionality, performance, and cost, the system synthe-
sis of embedded systems is a critical task. Simultaneously, the complexity of such systems,
regarding the number of included components or their heterogeneity, is increasing and
thus challenging. In reality, such systems are first designed at a high level of abstraction,
i.e., at the Electronic System Level (ESL). Potentially good solutions for the system under
consideration will be refined at lower levels of abstraction later on in the design process.
In previous work, effective multi-objective Design Space Exploration (DSE) at the ESL,
which can identify valuable solutions with desired properties from various design options,
has been implemented as a binary ILP [1] problem first and then in ASP [2,3]. In system
synthesis, ASP has been observed to be able to beat ILP in terms of runtime performance [4].
Compared to an implementation as a Boolean Satisfiability Problem (SAT), densely con-
nected network structures with multi-hop communication can be encoded more efficiently
in ASP [2,3].

However, most traditional approaches are limited because they only consider a fixed
architecture template with a fixed set of available hardware components [3,5–11]. Alter-
ations in the architecture between design points are only achieved by not allocating idle
hardware components. This inflexible setup potentially excludes optimal solutions for
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a given application, e.g., due to size constraints or an unsuitable component selection.
For this reason, we are targeting a free-world approach, enabling the implementation of
arbitrary architectures. To overcome the current limitations, in our proposed approach, we
replace the architecture with a resource library, containing a set of resource types, available
to generate the computation and communication infrastructure. Techniques like these are
referred to as a Generative Design Approach (GDA) in the literature and can be understood
as a methodology where the individual design points in the solution space (i.e., actual
configurations of a product) are generated by a computer. The role of the designer can then
be, for example, to pick from a set of generated configurations [12,13].

Nowadays, the GDA has been successfully applied in various engineering application
fields, such as mechanical engineering [14–16]. But to the best of our knowledge, an auto-
mated application-specific platform generation at the ESL has rarely been studied before.
An example illustrating the potential of application-specific designs can be found in a study
of the CryptoManiac processor, designed exclusively for efficient cryptographic cipher
execution [17]. Exploiting domain-specific characteristics and applying the respective
optimizations to the architecture, the application-specific processor design can significantly
outperform a high-end general-purpose design for the given application [17]. Therefore, we
aim to exploit the advantages of the GDA in the design process of embedded multiprocessor
systems.

However, the assessment of all architectural design options comes at the expense of
the complexity of the DSE. To deal with the explosion of complexity, as a first step, we
approach the ideal free-world design process by the use of a topology template, where only
the communication infrastructure is fixed in the specification. Given an application, we
select computation types from the resource library and position their instances without
restrictions inside this topology template to answer the following questions, among others:

• How many processing units are required for an optimal execution of the given application?
• Which processing types are required for an optimal execution of the given application?
• What is an efficient distribution of tasks from an application onto processing units?
• How do we organize the communication structure to enable an efficient synchroniza-

tion of the given processes?

Our contribution is a novel system synthesis problem definition based on ASP that
does not require a fixed architecture template as input but instead considers a resource
library containing resource types and a topology template for the communication infras-
tructure. We provide a modular and extensible encoding that enables a higher degree of
freedom in the design of a multiprocessor system and allows a multi-objective optimization
considering solutions to the architecture design as well as system synthesis decisions. The
same generality might also be achieved using traditional approaches, but it would require
a considerable effort to specify a template that did not restrict the design space. With this
approach, we aim to answer the following questions:

• How can we efficiently encode a GDA at the ESL using ASP?
• How well is this problem solvable for various problem sizes?
• What might be challenges on the way to an unrestricted generative design at the ESL?

2. Related Work

An overview of DSE and its concepts can be found in [18]. State-of-the-art DSE ap-
proaches can be divided into exact and non-exact (meta-heuristic) design space searching
methods [19]. Non-exact methods often do not explore the design space systematically,
potentially leading to a duplicate evaluation of individual design points and degraded
runtime performance [20]. An example of non-exact DSE at the ESL can be found in [21],
where the authors used genetic algorithms to map tasks on a fixed architecture template
of eight homogeneous processors connected via a single shared bus. Similarly, Richtham-
mer et al. [6,22] proposed strategies for improving the efficiency of meta-heuristic DSE
approaches, again mapping tasks to resources in fixed architecture templates.
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In the paper at hand, we focus on ASP, which is an exact method. ASP has some
advantages over other exact methods, like ILP and the SAT. Ishebabi et al. [4] concluded in
their comparative study that ASP has a greater potential for solving synthesis problems
than ILP. They report that an ASP encoding of the synthesis problem was solved up to three
orders of magnitude faster while still achieving results of the same quality compared to
ILP. ASP, as opposed to the SAT, relies on a closed-world assumption that allows the direct
expression of reachability [2,20]. Consequently, denser network structures with multi-hop
communication benefit from considerably reduced solving times due to smaller problem
descriptions [2,20]. A more general survey of ASP and its usage can be found in [23]. The
authors provide an overview of what kinds of problems lend themselves well to being
solved with ASP. They also provide a thorough overview of successful applications by
listing concrete examples and case studies covering many domains.

Many previous state-of-the-art DSE publications [3,5–11] are based on or are similar in
nature to the system model originally presented by Blickle et al. in [24], which uses fixed
architecture graphs. They all have in common that they map tasks directly to processing
elements in a fixed architecture graph. Though processing units can be omitted in the final
platform, the architecture graph is fixed and specified before the DSE is performed.

The problem of generating an application-specific hardware platform at the ESL from
a specification of a task graph, to the best of our knowledge, has not been approached with
the same generality that we are proposing. There are, however, several works that have
covered subsets of our problem statement. These subsets usually assume some parts of the
system as given, e.g., the number and kind of processing and/or communication elements.
In [25], Todorov et al. propose a solution to a constrained version of the synthesis problem
in which the processing elements are given by a floor plan and the goal is to generate the
communication infrastructure between them. Communication scenarios are specified by a
set of graphs, which the authors call use cases. Their approach is based on a combination
of clustering and pathfinding algorithms that are applied successively. Likewise, in [26],
Li et al. consider a similar problem but focus specifically on fault tolerance of the communi-
cation infrastructure. They use ILP for acquiring valid solutions. In [27], an ILP formulation
and a heuristic approach are used to synthesize an optimal crossbar configuration for a
Multiprocessor System-On-Chip (MPSoC). Starting with the communication information
obtained from a simulation using a full crossbar structure, the architecture is optimized for
power efficiency without sacrificing timing requirements.

All previous examples have in common that they focus on generating only a subset of
the final hardware platform, i.e., the communication infrastructure. Additionally, studies
have investigated the generation of hardware without an architecture template tailored
to addressing domain-specific challenges. In [28], the authors presented an evolutionary
algorithm for generating feasible architectures for the specific case of network processors.
Similarly, in [29], Lieverse et al. used DSE methodologies based on simulation for signal
processing systems.

Probably the closest study was performed by Ishebabi and Bobda [30], who inves-
tigated automated architecture synthesis for multiprocessor systems on an FPGA. By
formulating the problem as an ILP problem, they assigned tasks to specific processors,
without excluding mappings, and communication tasks to communication topologies.
Compared to our approach, they only minimized the overall computation time, whereas
we run a multi-objective optimization to be able to compare the trade-offs for our objectives:
latency, cost, and power consumption. With their framework, they generated an abstract
architecture description, which could be used for hardware synthesis later on, whereas
we also produce a feasible schedule with a minimum latency. This enables the designer to
compare the latency for different architectures and check if certain latency restrictions can
be met.

In general, our approach is similar to the problem of High-Level Synthesis (HLS),
which uses a behavioral description of the application to generate a Register-Transfer-Level
(RTL) description of the architecture [31]. One major advantage of using automated HLS
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compared to traditional hardware modeling is the increased flexibility and productivity
in the exploration of multiple designs and design alternatives [31]. Under certain circum-
stances, the hardware generated by a HLS tool is able to achieve comparable results in some
metrics, while outperforming optimized hardware in other metrics [32]. Compared to our
approach, HLS is usually applied to problems that are smaller and more specific in nature,
e.g., a signal processing algorithm in a programming language like C. This means that
in practice, although the goals are similar, the methods employed can differ significantly.
Furthermore, HLS focuses on designing all elements directly in hardware, whereas we
aim to investigate the trade-offs in hardware–software co-design. Ultimately, the level of
complexity for the communication architecture is usually significantly higher in our case,
e.g., in packet-based, multi-hop on-chip networks, which our encoding supports.

3. System Model

In our approach, we model a hardware/software system at a high level of abstrac-
tion, specifically, the ESL. The system specification S=(A, L, M) consists of an application
graph A, a resource library L, and a set of mapping options M. The application A=(VA, EA)
contains a graph-based high-level description of the system’s behavior in which the ele-
ments of the vertex set VA are distinguished between computational tasks T and commu-
nication messages C. The set of communication edges EA ⊆ (T × C)∪(C × T) defines the
dependencies among the elements. For further details, an interested reader can refer to [33].

The definition of the resource library L is closely related to our previous work in
this field [3,10], where we specified a fixed architecture template containing processors,
routers, and links at certain positions, which can be allocated. In contrast, we define
the resource library as a set of resource types that are partitioned into processing, com-
munication and interconnection types Types = TypesProc∪TypesComm∪TypesLink, with
TypesProc∩TypesComm∩TypesLink =∅ . Each resource type Type∈ Types is parameterized
by the functions Pstat : Type→N and area : Type→N representing the static characteristics,
power consumption, and area costs. The final architecture is composed of a selection of
instances of the given types. Processing units, as instances of processing types TypesProc,
are potential targets for the execution of the tasks t∈T from the application graph A.

In the future, further properties could be attached to these processing types, which in
turn influence the metrics of the execution of tasks on these processing types. It would be
possible to assign each processing type a distinct Instruction Set Architecture (ISA). This
would lead to varying average Cycles per Instruction (CPI) or Energy per Instruction (EPI)
values between the processing types. In combination with the properties of each task T,
distinct values for dynamic characteristics such as execution time or power consumption
could be derived for the execution of the respective task on each processing type. Further-
more, we could prohibit the execution of certain tasks by not offering specialized features
or instructions like floating point arithmetic. But the flexibility of our model extends even
further. One processing type could also be an application-specific hardware block, which is
optimized for the execution of exactly one task in the task graph. This versatility allows
us to explore the complex relationships involved in the co-design of hardware–software
systems.

Communication units as instances of communication types TypesComm are used to form
a communication infrastructure to enable the transfer of messages between two processing
nodes. For each processing and each communication type, we additionally specify how
many connection points it possesses, i.e., to how many units of any type an instance
of that specific resource type can be connected to. Finally, instances of interconnection
types are used as interconnections between elements of processing and communication
types. Each interconnection type TypeLink ∈ TypesLink has additional characteristics like
the transmission energy consumption Etransmission : TypeLink →N or the transmission delay
δtransmission : TypeLink → N . Referring back to the design of a multiprocessor system,
our concept can model well-known communication structures in System-on-Chip (SoC)
design like bus-based communication and Network-on-Chips (NoCs) [34]. On the one
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hand, for a bus-based communication, we can assign a respective communication type
with properties that specify the maximum number of connected devices and the blocking
connection arising for the bus-based structure, whereas the respective interconnection
types can model the access times and transmission cost for messages. On the other hand,
we can model the routers inside a NoC by communication types with a lower maximum
number of connections, whilst the transmission delay and cost are again modeled by the
interconnection type.

Due to its modular design, we can easily extend the resource library with new types
and the existing types with new features. Overall, the definition of the resource library
is at a conceptional level of abstraction. Further research would be required to bring
this theoretical model closer to real-world applications. Nevertheless, this higher level
of abstraction is also beneficial because the proposed framework and concepts might be
applicable to problems of other granularity or in other domains, like for the synthesis of an
efficient data-center layout for given applications.

A set of mapping options M⊆T × TypesProc assigns each task t∈T with at least one
processing type typeProc ∈TypesProc, representing that the task t can be potentially executed
on an instance of the processing type typeProc. In contrast to that, in previous work, the
authors assigned each task to a specific processor instance [3,10,30]. For each mapping
option m∈M=(t, typeProc) the function w : M→N defines the worst-case execution time
of the task t on an instance of the processing type typeProc. Likewise, Edyn : M→N models
the dynamic energy requirement of each mapping option. As stated earlier, these mapping
options might be derived from specific properties of the tasks and the processing types. So
far, communication messages are not explicitly assigned with mapping options. However,
we can imagine this extension, such as M ⊆ C × TypeComm. This enables a specification of
varying values for Etransmission and δtransmission for differently sized messages.

The state-of-the-art work [3,5–11] allows the exploration of the architecture up to
a certain degree. Given a fixed architecture template, these approaches derive different
architectures by allocating only those resources from the specification that are actually used
for the task execution and message transmission in the final implementation. In our new
approach, we simplify the process of specifying the system’s requirements for a user and
offer an elegant formulation. Further, our encoding allows us to leave the exact number of
instances of each resource type unspecified.

For illustration, we show an example in Figure 1a. Given a task t1 and two processing
types type1 and type2, there are two options for the execution of task t1. Simultaneously, a
given bus-based architecture template offers two slots for the positioning of at most two
instances of the given processing types. In Figure 1b, we illustrate the specification of
the emerging problem. In the state-of-the-art approach (top), the task requires a mapping
option to each instance of each type in each position to avoid eliminating any solution from
the feasible solution space. In general, the number of instances from each processing type is
set to the maximal required number, i.e., to the number of available positions. In contrast to
that, in our proposed approach, we map the task to processing types instead of processing
types’ instances and explore to which position these will be assigned to.

In order to achieve the same flexibility for the state-of-the-art approaches, a vast
specification overhead is expected. Figure 1c compares exemplarily the required number of
mapping options for an increasing size of the potentially generated architecture of the two
approaches. In this case, we consider a two-dimensional grid-based architecture template
as well as a small test instance containing five tasks and four processing types. Regarding
the positions on the grid, our proposed approach has a constant specification overhead with
a maximum number of |T | · |TypesProc | mapping options, whereas previous approaches
would require at most | T | · | TypesProc | · | GridPositions | mapping options. This simple
example can clearly show that the specification overhead for a user is massively reduced.
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Figure 1. Comparison of the maximal number of specified mapping options for different architectures.
(a) Given are a task t1 which shall be executed, two processing types, whose instances can be target
for the execution of task t1, and a bus-based communication infrastructure with two available slots
for the potential positioning of at most two instances of the given processing types. (b) Problem
formulation for the state-of-the-art (top) and our new (bottom) approach on a bus-based architecture
template. (c) Comparison of the maximal number of specified mapping options for the state-of-the-art
(blue) and our new (red) approach on a grid-based architecture template.

In Figure 2, we summarize the system model of our approach. The specification and
its elements act as input to the DSE. Simultaneously, we consider user-defined rules and
constraints on the architecture, which allows a user to direct the search towards desired
architecture topologies, e.g., by determining the allowed communication types or by setting
a limit on the architecture size or the costs. That way, our approach can address individual
customer requirements. Finally, during the DSE, we explore the solutions for the system
implementation, including an application-specific architecture.

1

c1

t1

c2

t3

Design Space Exploration

User-defined 
rules and constraints 
on the architecture

Implementation with  
application-specific architecture

t2

Application graph

Mapping options 

Resource library

TypesLink

TypesProc

TypesComm

Figure 2. An overview of the approach.

4. Exploration Model

In this section, we present the key aspects of the DSE. This includes the decisions on
the system synthesis, the concept of Pareto optimality, and the exploration of an application-
specific architecture. In the end, we explain the realization of our approach in ASP.
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4.1. System Synthesis

Given a system specification, the DSE searches for a feasible system implementation,
i.e., the behavioral description and the properties of the system are translated into a
structural description. In order to get a valid solution for the synthesis problem, a valid
allocation, binding, routing, and schedule have to be determined. The allocation α is a set
of instances of all resource types that are used to realize the desired system functionality.
The binding β provides information on the assignment of the functionality to the allocated
hardware resources. We distinguish between type binding βType ⊆M that selects exactly
one mapping option, i.e., one processing type per task, and instance binding β Instance,
specifying on which processing-type instance each task is actually executed. Obviously,
the selected instance binding has to match the chosen type of binding. The routing γ
chooses for each message a cyclic-free path in the communication structure, depending
on the instance binding of the sending and receiving tasks, resulting in a subset of the
allocated interconnection types. Thereby, each subset can contain instances of different
interconnection types. Finally, the schedule τ assigns to each task and each communication
message a starting time for its execution on the selected resource.

The underlying encoding of the system synthesis problem is based on [3]. But we
have replaced the fixed hardware architecture with a resource library containing resource
types. Thus, we additionally explore the topology and size of the architecture besides
the system synthesis decisions (for a detailed description of our objective functions, an
interested reader can refer to [10] and for our optimization framework to [3]).

Depending on the design decisions that are made, the resulting system-level imple-
mentations show different qualities. Typically, to measure the quality of an implementa-
tion x, we assess more than a single property. In this approach, we focus on the overall
latency lat(x) of the system, its area costs area(x), and its overall energy consumption E(x).
Regarding these, we formulate the DSE, without loss of generality, as a multi-objective
minimization problem [24]:

minimize f (x) = (lat(x), area(x), E(x)),

subject to:

x is a feasible system implementation.

(1)

Due to the conflicting objectives, the system synthesis commonly has a set of Pareto-
optimal solutions XP. These are determined by the dominance relation ≻. Considering
the n-dimensional quality vectors of two distinct solutions, a solution x dominates another
solution y (x≻y), if x is at least as good in every objective as y, and if it outperforms y in at
least one objective. We call a solution x Pareto-optimal, if there is no dominant solution
y over x. Hence, by definition, Pareto-optimal solutions in the Pareto set XP for a given
problem are mutually non-dominated by each other: ∄x, y∈XP : x≻y∨y≻ x.

4.2. Architecture Exploration

Unlike previous work, this approach also considers design decisions on the target
architecture in the DSE. To take advantage of application specificity, we adapt the size,
structure, and elements of the architecture to the respective application. In detail, the
design decisions include the selection of adequate resource types from the resource library,
the selection of a sufficient number of instances of these resource types, as well as their
positioning in the final architecture. Simultaneously, the decisions on the system synthesis
are made, according to Section 4.1. In the end, the generated platform is appropriate for
an efficient, energy-saving execution of the application and the corresponding process
synchronization over the communication structure.

Usually, real-world examples require an enormous number of design decisions to be
made. With the increasing size of the given application, the number of potential design
options grows exponentially, and thus, the search space cannot be explored exhaustively
in a feasible time. As an example, the work of [10] addresses this issue in the product
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development of embedded systems. Instead of an exhaustive search, the authors propose a
heuristic DSE in order to access good solutions early in the search process.

The introduced architecture exploration expands the complexity of the DSE by another
dimension. As illustrated in Figure 3, there is a trade-off between the freedom in the
design and the introduced complexity to the DSE. Starting with a specific architecture
(corresponding to the state of the art), we aim for an approach where, given a blank sheet
of paper, a tool automatically selects components of any type from a resource library and
generates a valid and optimal architecture along with the determination of a valid and
optimal system implementation. We call this approach “free world” in order to differentiate
it from others, because it is unique in not limiting the number of feasible solutions. But due
to the vast number of design options, we are confronted with an explosion of the solution
space. Therefore, we approach our goal step-by-step and investigate the question of how
much freedom is actually required to generate a platform that perfectly fits the application’s
needs.

Simplicity
Freedom

Specific
architecture

Fixed-sized
topology template

Extendable
topology template

Free world
approach

Figure 3. Trade-off between simplicity of the Design Space Exploration (DSE) and freedom of the
design decisions.

As a first step in the investigation of the idea of an automatic application-specific
architecture generation, we study in this paper the DSE based on structural topology
templates. Therefore, we start from a fixed-size topology template in a grid-based layout,
similar to distributed switched networks popular in larger MPSoC designs [34]. As shown
in Figure 4a, we consider an (m × n) grid consisting of m·n instances of a communication
type router. For simplicity, in this paper we only consider two dimensions, although our
encoding allows a three-dimensional grid structure. Further, m·n slots are available for
the placing of processing-type instances. All components are bidirectionally connected at
maximum via 2·((m−1)·n+m·(n−1)) instances of an interconnection type link. During
the DSE, besides the decisions on the system synthesis, we explore the type and number
of required processing-type instances and their positions on the grid. Instances, includ-
ing the predefined communication- and interconnection-type instances in Figure 4a, are
only allocated in the final architecture if they are actually used in the respective system
implementation. Thus, at this point, we handle the exploration of the communication in-
frastructure similarly as in related work [3,10,11]. Nevertheless, the size of the architecture
is still subject to exploration. Only the communication topology and the maximum size of
the platform is determined by the given template.

?
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Figure 4. Template of (2 × 2)-grid-based topology. (a) Exploration of selection and positioning of
processing-type instances. (b) Exploration of instance type and task at each position.
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We introduce the topology template in our framework by using “user-defined rules
and constraints on the architecture”, illustrated in Figure 2. Any other architectural topology
template as well as a more or less strict set of constraints can easily be included via this
category. Therefore, our framework is already prepared to be utilized for the next steps
according to Figure 3. Nevertheless, our approach already introduces more flexibility in
the development process of a hardware/software system, and we receive valuable insights
on its effect on the efficiency of the DSE and the quality of the feasible design options.

4.3. Encoding in ASP

We propose an implementation of the given design problem in ASP, a declarative
programming paradigm tailored towards computationally difficult problems, especially
NP-hard combinatorial search problems, and is based on the state-of-the-art API of the ASP
tool clingo [35]. In the following, we give a brief overview of the core concepts that are
imperative to the exploration of an application-specific architecture.

An ASP encoding is typically separated into a general problem description and a
specific problem instance. The initial knowledge of an instance is represented as a set of
facts. Listing 1 shows a collection of exemplary elements from a system specification.

Listing 1: Exemplary facts representing aspects of the system’s specification.

1 % Dimension of an exemplary architecture template
2 dimension(2,2).
3 % Exemplary entry from the resource library
4 processingType(ptype1).
5 resourceCost(ptype1 ,23).
6 staticPower(ptype1 ,26).
7 % Exemplary entry the from task graph
8 task(t1).
9 % An exemplary mapping option

10 map(t1,ptype1).
11 dynamicEnergy((t1,ptype1),620).
12 executionTime((t1,ptype1),38).

Besides the (x,y)-dimension of a (2× 2) grid, Listing 1 defines a processing type ptype1,
a task t1, and a possible mapping option from t1 onto ptype1. Processing type ptype1 is
further specified by its static characteristics. On lines five and six, exemplary values are
defined as the resource cost and the static power consumption of processing type ptype1,
and, respectively, for every instance allocated from this type. Similarly, on lines eleven
and twelve, the potential execution of task t1 on processing type ptype1 is assigned with
exemplary values for its dynamic characteristics.

The problem description is given as a set of rules, each consisting of a head and a
body, separated by a colon. The head of a rule is inferred if the respective body holds, i.e.,
is fulfilled. A fact represents a rule that has an empty body and thus holds uncondition-
ally. In contrast, an empty-headed rule, called an integrity constraint, cannot be inferred.
Accordingly, integrity constraints are used to exclude specific assignments from a stable
model. In Listing 2, we show an example for a normal rule (on line two) and an integrity
constraint (on line three). In this example, we first derive from the given dimension (NX,NY)
of a grid-based architecture template the maximal available number of slots N for placing
processing-type instances. On the third line, in the curly brackets, we aggregate a group
of items that remains after evaluating the condition inside. In this case, we collect each
allocated resource type that is a processing type. Communication or interconnection types
do not fulfill this condition. Finally, we compare the number of elements to the so-called
“guards”, which can optionally be set around the curly brackets, indicating a minimum
and maximum limit. The exemplary integrity constraint ensures that considering all given
processing types, not more instances than available slots M in the template are allocated.
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Listing 2: Exemplary rule and integrity constraint.

1 % It is not allowed to allocate more processing type instances
than the amount of available slots

2 numberProcessorSlots(N) :- dimension(NX,NY), N=NX*NY.
3 :- M+1 { allocated((TYPE,NR)) : processingType(TYPE) },

numberProcessorSlots(M).

Note that the capital letters in Listing 2 represent variables. Before the solving, the ASP
encoding is grounded into a variable-free representation, i.e., each variable is replaced by
its instances, and all possible combinations are generated. Then, during the solving, a truth
assignment satisfying the given set of propositional formulas is inferred. The resulting
answer set is a valid implementation of the specified system.

In our approach, we introduce a numbering of the positions in the grid-based archi-
tecture template based on the respective coordinates (X,Y) according to Listing 3, which
simultaneously will be the implicit number NR of each potentially placed instance. The
resulting numbers are illustrated in Figure 4b.

Listing 3: Introduction of position numbering to identify positions in the grid.

1 % Allowed positions in the grid
2 implicitPosition(NR,(X,Y)) :- dimension(NX,NY),

X=1..NX, Y=1..NY, NR=X+NX*(Y-1).

That way, each position has a unique number, regardless of the optional placing of
an instance. This eliminates a vast amount of redundancy that would be introduced if
we placed equal-typed but differently named instances instead. Hence, the unambiguous
implicit instance numbering decreases the size of the problem grounding and of the solution
space. Subsequently, in Listing 4, the ASP solving has to make guesses on the following
two issues:

• For each task T of the application graph, exactly one binding to a place in the hardware
grid based on the implicit position numbering NR is selected (line two).

• For each implicit position number NR in the architecture template, a maximum of one
processing type TYPE from the resource library is selected (line three).

We illustrate these questions in Figure 4b as well. As shown in Listing 4 on line six,
a common type and task binding to one position NR leads to an instance binding of the
respective task T to the respective instance NR of the processing type TYPE. Finally, on lines
four and seven, we explicitly place in the implementation the utilized processing-type
instance (TYPE,NR) at its respective location and allocate it.

Listing 4: Problem description of the processing type instance selection and positioning as
well as of the task binding.

1 % Guessing of position binding per task and of processing type
per position

2 1 { placeBind(T,NR) : implicitPosition(NR,_) } 1 :- task(T).
3 { placeType(TYPE,NR) : processingType(TYPE) } 1 :-

implicitPosition(NR,_).
4 location((TYPE,NR),(X,Y)) :- placeBind(T,NR),

placeType(TYPE,NR), implicitPosition(NR,(X,Y)).
5 % Both together result in instance binding of each task
6 bind(T,TYPE,NR) :- placeBind(T,NR), placeType(TYPE,NR).
7 allocated((TYPE,NR)) :- bind(T,TYPE,NR).

To guarantee valid solutions, we add the constraints in Listing 5 to the encoding.
These ensure, on the one hand, that the task and type binding to a common position have
to match the specified mapping option of the task. On the other hand, they guarantee
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that no task binding without a respective type at the common location and no type at a
location without a respective task binding exists. This eliminates not only invalid but also
redundant solutions.

Listing 5: Additional constraints required to ensure valid solutions.

1 % Task is bound, and the processing type must fit the
respective position

2 :- placeBind(T,NR), placeType(TYPE,NR), not map(T,TYPE).
3 % No binding without a respective type at the location and no

type at a location without a respective binding
4 :- placeBind(_,NR), not placeType(_,NR).
5 :- placeType(_,NR), not placeBind(_,NR).

The presented encoding represents the problem description of the selection, position-
ing, and allocation of the processing-type instances, as well as the type and instance binding
of each task. Simultaneously, the solver decides on the message routing, the allocation of
communication- and interconnection-type instances, and the scheduling.

Note that a detailed description of the ASP solving process and of the ASP grounding
and solving tool clingo is out of scope of this paper. An interested reader can find additional
information at [35,36]. Further, a detailed explanation of the ASP encoding of the system
synthesis steps, including allocation, binding, routing, and scheduling, can be found at [10].

5. Simulation Study

In this section, we present the setup and the outcome of our simulation study. Despite
enhancements in the solving process, deciding on a valid implementation of a system
remains an NP-complete problem. In the worst case, the runtime of the DSE grows
exponentially with the number of decision points in the problem formulation. Since we
introduced another order of magnitude of complexity to the system synthesis problem,
we wanted to evaluate the feasibility of our approach by testing it with different-sized
system specifications. In detail, we varied the size of three parameters to investigate the
scalability trend of our approach, namely, the application graph, the resource library, and
the topology template. We looked into the structure as well as the quality of the generated
application-specific architectures.

5.1. Simulation Setup

For the automatic generation of our benchmark set, we adapted the ASP-based bench-
mark generator from Neubauer et al. [33] to our new system model. Instead of a complete
hardware architecture in [33], we generated only our grid-based topology template, con-
sisting of instances of the communication type router and the interconnection type link,
analogously to our explanations in Section 4.2. The resource library was a completely new
element in our benchmark set. It contained resource types and their respective characteris-
tics (as defined in Section 3). Similar to the implementation in [33], each processing type
offered a set of instruction types. Simultaneously, each task required specific instruction
types for its execution. The assignment was set randomly in each case. Tasks had mapping
options to all compatible processing types, i.e., to those supporting their required instruc-
tion types. At the same time, we added ASP constraints to the benchmark generator to
ensure that each task had at least one mapping option.

All in all, the mapping options and additionally, the respective dynamic characteristics,
were automatically generated from a given application and resource library. This way, a user
only needs to define the workload but does not necessarily need to care for the elements in
the resource library. This supports our overall goal of easing the specification process for
the user. For comparison, in [33], a set of mapping options to specific processor instances
was randomly generated, and its number per task ranged between a user-defined minimum
and maximum value. The construction of application graphs, generated as “series parallel



Electronics 2024, 13, 1404 12 of 20

graphs”, was taken unchanged from [33]. In total, we took ten application graphs, seven
topology templates, and three resource libraries. We present the details in Table 1.

Table 1. Overview of the generated benchmark components.

Component Instances

Application Containing 6, 15, 31, 39, 44, 56, 62, 73, 86, or 92 tasks
Topology Containing a (2 × 1), (2 × 2), (2 × 3), (3 × 3), (4 × 4), (5 × 5), or (6 × 6) grid
Library Containing 4, 6, or 8 processing types

Based on this setup, we performed two simulation experiments. For all applications,
we first set the library to contain four processing types and examined the influence of the
seven topology template sizes. Secondly, we fixed the topology template to the (2× 2) grid
and tested our approach with three resource libraries, each containing a different number
of processing types. Additionally, we examined the impact of the ten differing application
graph sizes in both simulations. In total, we conducted (10·7·1)+(10·1·3)=100 DSEs, each
limited to one hour of time and 100 GByte of RAM usage. To ensure both limitations, we
utilized the tool runlim, version 2.0.0rc12 (runlim tool, available online: https://github.com/
arminbiere/runlim (accessed on 24 January 2024)). We tested the introduced scenarios for
the tool clingo, version 5.7.0, its extension clingo-dl, version 1.4.1, and Python version 3.10.10,
executing on the Ubuntu 22.04.3 operating system. The platform itself contained an Intel Xeon
Gold 6242R CPU with 20 cores/40 threads and 768 GByte RAM. For each DSE, we executed
the run five times in parallel on this machine.

We implemented the proposed approach as a combination of ASP and Python code. For
the analysis and the evaluation of the experimental results, we used Python, C++, and Bash
scripts. To evaluate the quality of the resulting system implementations, we utilized the
ϵ-dominance metric [37]. Therefore, for each application, we constructed a reference front,
consisting of the best solutions found up to the timeout from all cases (over all architecture
templates or resource libraries, respectively). This reference front was considered as the
optimal solution front for that specific instance. That way, we could evaluate the quality
of all cases (all architecture templates for simulation one and all resource libraries for
simulation two) with respect to the respective reference front.

5.2. Results

In our first simulation, we focused on examining the impact of varying topology
template sizes and of differing application graph sizes.

In Figure 5a, we classified all DSE runs according to their outcome, i.e., whether
the system synthesis problem was satisfiable (green), unsatisfiable (red), or whether the
outcome was unknown (orange) due to a timeout during the grounding step (orange).
Further, we distinguished whether it was possible to exhaustively explore the solution
space in the given time (dark green) or whether the solving step was interrupted by a
timeout (light green). Note that each DSE outcome classified as green contained at least
one solution. In Figure 5b, we contrast the size of the given architecture template with
the respective grounding size of the system synthesis problem, and that for all application
graph sizes. Note that the black boxes indicate the exploration problems that were not
groundable within one hour.

Both figures show a clear trend. As the size increases, regardless of whether referring
to the topology or the application size, the grounding size, grounding time, and solving
time are escalating, causing an hour to be insufficient to at least ground the given problem
in some cases.

https://github.com/arminbiere/runlim
https://github.com/arminbiere/runlim
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Figure 5. Results for simulation one, regarding an increasing topology template size. (a) Distribu-
tion of the DSE states after timeout (dark green—satisfiable, no timeout; light green—satisfiable,
timeout; orange—unknown, timeout during grounding; red—unsatisfiable). (b) Development of the
grounding size for differing topology template and application graph sizes.

Notably, the highest grounding size observed during the simulation reached 5611 MByte.
This grounding bottleneck is a well-known issue of traditional ASP systems, following the
ground-and-solve paradigm, when dealing with large-scale problems as they are typical
for industrial design and planning problems [23].

To provide a further analysis, we selected one instance from the benchmark set to
evaluate the grounding and solving times as well as the solution quality by means of
the ϵ-dominance [37]. We decided on the smallest instance (with six tasks), because the
solver successfully tackled all topology template sizes in combination with this instance.
The results are shown in Table 2. The values present the average values out of five identical
DSE runs (highlighted in gray) and the corresponding deviations.

Table 2. Comparison of the grounding and searching time and the quality of the discovered solutions
for the smallest instance in simulation one. For the solving time, we distinguish the time up to the first
solution found and the time required to exhaustively explore the solution space (in case of timeout, it
is set to 3600 s, i.e, to one hour).

Case Grounding First
Solution

Overall
Search

ϵ < 1 ϵ > 1

(2 × 1) 0.23 s
± 3.02 %

0.00 s
± 0.00 %

0.25 s
± 2.78 %

1.00
± 0.00 %

1.14
± 0.00 %

(2 × 2) 1.01 s
± 1.70 %

0.00 s
± 0.00 %

3.96 s
± 1.01 %

1.00
± 0.00 %

1.00
± 0.00 %

(2 × 3) 2.39 s
± 5.79 %

0.00 s
± 0.00 %

767.55 s
± 3.68 %

1.00
± 0.00 %

1.00
± 0.00 %

(3 × 3) 5.59 s
± 6.36 %

0.07 s
± 0.00 %

3600.00 s
± 0.00 %

1.00
± 0.00 %

1.00
± 0.00 %

(4 × 4) 17.97 s
± 2.80 %

5.62 s
± 2.49 %

3600.00 s
± 0.00 %

0.82
± 0.00 %

2.47
± 0.00 %

(5 × 5) 44.26 s
± 3.43 %

10.34 s
± 4.72 %

3600.00 s
± 0.00 %

0.86
± 0.00 %

2.01
± 0.00 %

(6 × 6) 93.89 s
± 2.51 %

19.76 s
± 13.8 %

3600.00 s
± 0.00 %

0.73
± 0.00 %

2.34
± 0.00 %

We consistently observe the same trend as in Figure 5: as the topology template
size increases, both grounding and searching times scale up as well. However, despite
long grounding times, a first solution can be found quickly. Although some entries in
Table 2 show a high deviation, most follow the general trend outlined before. Further, there
is no deviation in the category of the ϵ-dominance, i.e., no varying Pareto-optimal design



Electronics 2024, 13, 1404 14 of 20

points were discovered. This should be the case, since the DSE is deterministic, meaning
that differences in the number and quality of solutions can only be caused by a variation in
the search times.

A high-quality solution front, as a result of a DSE, approximates an ϵ-dominance
value that equals one, which indicates that at least one Pareto-optimal design point from
the reference front is covered [37]. It can be seen in Table 2 that this is the case for the
architecture template sizes (2 × 1), (2 × 2), (2 × 3), and (3 × 3). Interestingly, in the fourth
case, the design space was not exhaustively explored. However, there were two kinds of
ϵ-dominance, approaching one from different sides. Only if both values equal one has the
complete Pareto optimal front been found during the DSE [37], which was not the case,
e.g., for the smallest architecture template (2 × 1). Since the search space was completely
searched during this DSE, it means that this architecture was too small to allow all optimal
application-specific system implementations. Regarding Figure 5a, this architecture size
was also too small for the execution of any other application. Therefore, the design problem
for all other applications was unsatisfiable.

At the same time, the architecture template size (2 × 2) always turned out to be
sufficient in our tests. It is likely that the limited diversity of the chosen resource library,
which contained four processing types, played a significant role, because one instance of
each processing type could potentially get a grid placement. Further, in our simulations, we
used applications with at most three completely independent sub-applications. Regarding
real-world examples, as applications grow in complexity, and especially as specifications
contain more independent sub-processes per application, the availability of additional
redundant processing-type instances becomes crucial for parallelized workload execution.
Therefore, we assume that for this workload type, larger topologies will lead to Pareto
optimal solutions too, but we could not discover this in our simulation.

Analogously to Figure 5, we present in Figure 6 the results of the second simulation, re-
garding an increasing number of processing types in the resource library. For the grounding
size in Figure 6b, we can identify the same trend as indicated before but weaker.
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Figure 6. Results for simulation two, regarding an increasing number of processing types in the
resource library. (a) Distribution of the DSE states after timeout (dark green—satisfiable, no timeout;
light green—satisfiable, timeout; orange—timeout during grounding; red—unsatisfiable). (b) Devel-
opment of the grounding size for various resource libraries and application graph sizes.

However, this trend cannot analogously be attributed to the difficulty of the synthesis
problem. In Figure 6a, we can see that an increasing number of processing types in the
resource library does not indicate that the problem is harder to solve. Instead, the difficulty
is random, due to the randomly generated mapping options from tasks in the application
to the processing types in each resource library.

In the end, we wanted to take a closer look at the generated application-specific
architectures for one selected instance. As in Table 2, we chose the smallest application.
We give the respective application graph, containing six tasks and six communication
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messages (in black), in Figure 7a. Additionally, we present the mapping options of each
task (in red).

Figure 7b compares the static and dynamic characteristics of the processing types from
the respective, randomly generated four-type resource library. For each metric, we give
the normalized values of all four processing types to the lowest, i.e., best value. Finally, in
Figure 8, we visualize the results for the (2× 1)-, (2× 2)- and (2× 3)-grid topology template,
because these DSEs were finished before the timeout, meaning that the presented solutions
were contained in the Pareto-optimal front for that instance. The generated architectures
contained processing-, communication-, and interconnection-type instances, each labeled
with a tuple consisting of the respective resource type and the ID. The ID of each instance
was based on its implicit position numbering, as we explained in Section 4.3. Both Figures 7a
and 8 were generated by utilizing the ASP-based visualization tool clingraph [38].
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Figure 7. Presentation of aspects of the smallest benchmark instance. (a) The application graph,
consisting of tasks and communications messages (black), and the mapping options (here, for each
task, all processing types are summarized, each in one red node). (b) The characteristics of all available
processing types normalized to the lowest value for the respective characteristic. The metrics include
metric 1 = static resource cost, metric 2 = static energy consumption, metric 3 = average execution
time for all tasks of the application, metric 4 = average dynamic energy consumption for all tasks of
the application.

In Figure 7a, there are tasks like t5xa1 or t7xa1 with a mapping option to exactly one
processing type, namely, ptype4, indicating that at least one instance of that processing type
needs to be allocated in the final system implementation. But at least one other instance of
a second processing type is required because the tasks t1xa1 and t2xa1 have no mapping
option to processing type ptype4. As we can see in Figure 8, only the processing types
ptype1 and ptype4 are selected in all solutions. The reason for this can be found in their
properties in Figure 7b. Processing type ptype3 and especially type ptype2 turn out to be
highly unattractive. Regarding the static characteristics, ptype1 is the favorable option,
whereas for the dynamic characteristics, it is ptype4.

Since conflicting objectives, like cost and latency, were optimized, the resulting hard-
ware platforms varied in size. Nonetheless, due to the symmetrical architecture template,
we discovered a lot of redundant solutions. Interestingly, even this small example provided
a wide range of symmetry types. In Figure 8a, we can see mirrored and exchanged positions
of the instances. This applies to the selected positions for the processing-type instances, as
well as to the allocated communication-type instances. In Figure 8b, we could generate one
solution by folding/unfolding the respective allocated architecture of the other solution.

The problem complexity scales with the size of the problem instances, i.e., with the
number of tasks, the size of the topology template and of the resource library. Our previous
evaluations showed that even some medium-sized instances were not solvable within one
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hour. But real-world examples can especially be extremely complex, and thus, the vast
design space cannot be exhaustively explored in a reasonable time. In this case, when we
stop the search after a certain timeout, we cannot know if the found solution is optimal
or how much of the design space remains unexplored. Eliminating redundant solutions,
and thus reducing the size of the feasible solution space is therefore essential for the DSE
of real-world use cases. In that context, Goens et al. [39] identify redundant solutions
for the task mapping problem on a grid-based architecture. They provide a framework
for automatically identifying local and global symmetries using the concept of inverse
semigroups. Due to the considered similar system model, we expect beneficial results when
applying their methods to our approach. However, we have not yet conducted a further
investigation in that direction.

(a)

Figure 8. Cont.
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(b)

Figure 8. Generated architectures contained in the Pareto-optimal solutions. (a) Utilizing two
processing-type instances. (b) Utilizing three processing-type instances.

6. Discussion and Conclusion

In the paper at hand, we presented a framework for designing multiprocessor systems
at the ESL using ASP. In the beginning of the paper, we proposed the following research
questions:

1. How can we efficiently encode a GDA at the ESL using ASP?
2. How well is this problem solvable for various problem sizes?
3. What might be challenges on the way to an unrestricted generative design at the ESL?

An answer to the first question was proposed in this paper. Compared to the state
of the art, we do not require the hardware platform to be fully specified, thus reducing
the specification overhead for a user while simultaneously increasing the flexibility for the
DSE. Instead of a fixed architecture template, we introduce a resource library that describes
all available processing, communication, and linking types. A designer merely supplies
a model of an application to be executed on a final hardware architecture. Based on the
GDA, our approach allows a fully autonomous DSE of a wide range of design alternatives
for the final platform, thus tailoring the system to the needs of the application. This paper
represents a first step on the way to a framework that will enable the fully unrestricted
generation of a hardware platform. By providing only a template for the communication
topology of the hardware platform, we manage to increase the flexibility of the design
process while avoiding a severe explosion of the search space.

Moreover, it has to be noted that the individual implementation steps of allocation,
binding, routing, and scheduling are more interwoven as the allocation now makes further
topology decisions that influence binding, routing, and scheduling, accordingly. This
results in a heavily application-specific system implementation. Overall, the encoding is
modular and easily extensible, which provides a lot of flexibility to the end user while
enabling the comparison of multiple objectives, in our case, latency, energy consumption,
and area cost. Unfortunately, we were not able to compare the results to other work in
this area. One reason is the lack of adequate system-level benchmarks, which is probably
caused by the novelty of this approach. Furthermore, our specification differs in some cases
significantly from other works in this area, which would render a comparison useless.
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Regarding the second question, we were able to demonstrate through simulations
the capability of our framework to produce optimal results. In detail, we showed the
effectiveness and limits of our framework for a wide range of plausible parameters re-
garding the size of the target topology, the number of tasks, and the number of different
available processing types. We also showed that there were limitations in the scalability
of our approach. For some problem instances, the ASP-solver was not able to finish the
grounding within one hour and in turn did not find any valid solution. This applied even
to medium-sized instances, not covering real-world applications yet. Unfortunately, this is
a well-known limitation of ASP-based systems [23] and needs to be addressed in future
work.

Throughout the paper, we were also able to gain valuable insights regarding our third
question. As mentioned before, one of the largest challenges faced during a fully flexible
DSE is the scalability. At present, our approach is limited to a grid-based architecture plat-
form. In the future, we want to further explore the possibility of loosening the constraints
made during the DSE while still being able to solve the problem in a reasonable amount
of time. However, since our approach exhaustively investigates all possible configura-
tions of the system, the complexity is increasing with every additional degree of freedom.
By enabling the free placement of resources in our topology template, we showed that
symmetries could also pose a significant problem, which might be tackled by detecting
redundancies inside our system model, as well as in our problem encoding, and excluding
symmetric solutions from the feasible search space of the DSE.

Also, efficient clustering methods on the application side as well as the subdivision
of the architecture platform into tiles, potentially containing sub-architectures, could help
us cope with the enormous complexity. Furthermore, more emphasis has to be put into
developing a more sophisticated resource library, which better represents the versatility of
hardware components available for architecture generation. At the same time, we want to
better adapt our framework to the customers’ needs, e.g., by providing differently sized
resource types, so that the exploration of an application-specific architecture for a given
floor plan is conceivable. Using these ideas, we aim to enhance the flexibility in the design
process of hardware/software systems even further to enable the designer to autonomously
explore customized architectures based on the application requirements and thus to reduce
the demands on the designer.
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