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Abstract: Drainage pipes are a critical component of urban infrastructure, and their safety and proper
functioning are vital. However, haze problems caused by humid environments and temperature
differences seriously affect the quality and detection accuracy of drainage pipe images. Traditional
repair methods are difficult to meet the requirements when dealing with complex underground
environments. To solve this problem, we researched and proposed a dehazing method for drainage
pipe images based on multi-attention multi-scale adaptive feature networks. By designing multiple
attention and adaptive modules, the network is able to capture global features with multi-scale
resolution in complex underground environments, thereby achieving end-to-end dehazing processing.
In addition, we also constructed a large drainage pipe dataset containing tens of thousands of
clear/hazy image pairs of drainage pipes for network training and testing. Experimental results
show that our network exhibits excellent dehazing performance in various complex underground
environments, especially in the real scene of urban underground drainage pipes. The contributions
of this paper are mainly reflected in the following aspects: first, a novel multi-scale adaptive feature
network based on multiple attention is proposed to effectively solve the problem of dehazing drainage
pipe images; second, a large-scale drainage pipe data is constructed. The collection provides valuable
resources for related research work; finally, the effectiveness and superiority of the proposed method
are verified through experiments, and it provides an efficient solution for dehazing work in scenes
such as urban underground drainage pipes.

Keywords: drainage pipe; image dehazing; neural networks; multiple attention; multi-scale adaptation

1. Introduction

Drainage pipes play a vital role in the safety and normal operation of urban infras-
tructure. Even minor failures can lead to significant consequences. Therefore, regular
inspection of drainage pipes is crucial to detect and repair potential problems in a timely
manner to avoid potential catastrophic outcomes [1]. However, the humid environment
and temperature differences inside the drainage pipe can lead to the generation of haze,
which significantly impacts image quality and detection accuracy.

Haze is produced when water vapor combines with particles in the air to form sus-
pended water droplets, reducing the contrast and clarity of images. In such scenarios,
the application of image dehazing algorithms becomes crucial. Dehazing algorithms
can effectively enhance image clarity, leading to more accurate and efficient detection of
drainage pipes.

At present, image dehazing methods are mainly divided into two categories: image
enhancement-based and image restoration-based. Methods based on image enhancement
directly employ algorithms like histogram equalization, homomorphic filtering, and the
Retinex algorithm [2–4]. However, these methods may sacrifice image details and introduce
noise. The method based on image restoration focuses on the imaging mechanism of haze
images and uses the atmospheric scattering model [5] to derive the original image.
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In recent years, image dehazing methods based on deep learning have attracted much
attention. These methods use deep convolutional neural networks [6] (Convolutional
Neural Network, CNN) to learn dehazing models from large amounts of image data
through supervised or un/semi-supervised learning methods. Compared to traditional
methods, these approaches can automatically learn haze features in images, eliminating
the need for manually designed prior knowledge.

Nevertheless, traditional convolution operations lack global awareness when process-
ing images, making it challenging to capture long-range dependencies. In order to solve
this problem, research in recent years has begun to introduce attention mechanisms [7] to
enhance the performance of image dehazing networks. This can assist the network in better
grasping the global information within the image and focusing more on crucial details and
structures during feature learning.

In the drainage pipe environment, traditional dehazing algorithms face some chal-
lenges due to their closed nature and special working conditions. The first challenge is
poor or low light conditions, making it difficult to accurately estimate atmospheric light
conditions. Secondly, the haze distribution inside the drainage pipe is often uneven, which
brings certain difficulties to the application of dehazing algorithms.

To overcome these challenges, we propose a dehazing method for drainage pipe
images based on a multi-attention, multi-scale adaptive feature network. This algorithm
combines low-level and high-level haze features, extracting abstract semantic features
while retaining detailed information. At the same time, the introduction of the attention
mechanism improves the performance of the model, the clarity of the image, and the
generalization ability of the model. Compared with traditional methods, our algorithm can
better restore the details and structure inside the drainage pipe, reduce the impact of haze,
and improve the visibility and recognition accuracy of the image.

In the detection of satellite data images and natural disaster assessment, due to
the influence of factors such as atmospheric conditions and weather, images often have
problems such as haze and blur, which affects the accuracy and interpretation ability of the
data, especially in the Indian Himalayas in areas where early natural disasters frequently
occur [8]. The algorithm proposed in this article can improve the clarity and quality of
satellite data images through image restoration technology and provide more reliable data
support for early disaster monitoring and assessment.

We used a self-designed pipeline robot to collect pipeline images and pipeline depth
images and constructed a data set named CDPD-55000 (CUMTB Drainage Pipe Defog-
ging 55000), which has different fog concentrations and is designed to evaluate drainage
pipelines’ performance of image-defogging technology. On the basis of the data set, we
proposed a drainage pipe image dehazing method based on a multi-attention, multi-scale
adaptive feature network. Aiming at the problems of thick fog and poor image quality in
the real underground drainage pipe environment by combining multiple attention force
mechanisms and multi-scale feature fusion to achieve efficient and accurate defogging.

In Section 2, we introduce traditional defogging methods and neural network-based
defogging algorithms. In Section 3, we first introduce the multi-scale adaptive feature
network framework based on multi-attention and then introduce it in detail. Three innova-
tive modules proposed for defogging work in complex environments are introduced. In
Section 4, we introduce the collection and construction method of the data set and analyze
and summarize the experimental results and model performance. In the real underground
drainage pipe environment, we conducted extensive experimental verification, and the
experimental results show that, compared with traditional methods, our method has sig-
nificantly improved the dehazing effect. The processed image is clearer and has richer
detailed information. It is achieved by optimizing the network structure and algorithm.
While ensuring the dehazing effect, it also maintains high computing efficiency, providing
a powerful basis for subsequent pipeline detection, maintenance and management.
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2. Related Prerequisite Work Description
2.1. Dehazing Related Work
2.1.1. Atmospheric Scattering Model

When the image is affected by haze, the imaging process mainly includes two core
links. First, light scatters when it passes through microscopic particles in the air. This
process causes the light intensity to gradually weaken. The reason is that the light is
hindered by particles during the propagation process, causing the propagation direc-
tion to change, thus affecting the light intensity. Secondly, scattered outdoor light will
hit the camera lens. These two links together constitute the imaging process of hazy
weather images.

2.1.2. Dark Channel

The dark channel is an image prior used to analyze and estimate the transmittance of
hazy image scenes. In most outdoor natural images, at least in some local areas, there is a
channel with very low pixel values, that is, the dark channel [9].

Due to the propagation and scattering effects of haze, the pixel intensity of object
surfaces in hazed images will be reduced, resulting in smaller dark channel values. This is
because the smaller dark channel value is primarily a result of the contribution of scattered
light rather than light directly reflected by the object. After calculating the dark channel
value for each pixel, a dark channel map is generated, where each pixel value represents the
minimum original intensity value within its neighborhood. This plot provides information
about scattering and occlusion in the image.

By utilizing the dark channel map, the transmittance of the image can be estimated,
thus eliminating the haze effect and restoring the original scene. Transmittance estimation
can be achieved by approximating the relationship between the original image and the dark
channel value. Following the transmittance estimation, the haze effect can be removed,
enhancing the clarity and quality of the image.

2.1.3. Max Contrast

In the dehazing algorithm, estimating the scattering and transmission components of
the image helps to restore the original scene and make the image details clearer. Among
them, the maximum contrast measures the degree of difference between pixel values in the
image after dehazing. In image processing, increasing contrast can highlight details, make
the image clearer, and facilitate subsequent analysis and processing.

2.1.4. Color Attenuation

In the dehazing algorithm, the color attenuation prior is based on the color information
of the image, with the purpose of assisting the dehazing algorithm in restoring the clarity
of the image. The core concept is that haze will lead to the reduction of image color
information, and in a haze-free environment, the color distribution of the image should be
richer and clearer. Therefore, this prior helps the dehazing algorithm to more accurately
estimate the scattering and transmission components, thereby achieving more accurate
dehazing effects.

As a constraint, it ensures the authenticity and vividness of colors during dehazing. By
providing a more accurate estimate of the transmission component, the dehazing effect can
be significantly improved. In practical applications, the color attenuation prior is combined
with other prior knowledge (such as atmospheric light prior, dark channel prior, etc.) to
further improve the performance of the dehazing algorithm.

2.1.5. Chromaticity Difference

Chromaticity difference refers to the difference in color between a pixel and its neigh-
boring pixels. In color vision, it helps us distinguish object boundaries and details. In
the training of deep learning models, chromaticity information is extracted as one of the
important features to improve the quality of restoration, especially in terms of maintain-
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ing color consistency and details. Chromaticity differences also play a key role in image
dehazing. Haze changes the chromaticity of the image, so the chromaticity difference
appears significantly different between hazy and haze-free images. Using chromaticity
differences as features, we can better understand the impact of haze on images and design
more effective dehazing algorithms. Chromaticity differences can not only be used alone
but can also be combined with other features (such as dark channels, color attenuation,
etc.) to extract more haze-related information. These features work together to help esti-
mate the haze level more accurately and provide a basis for the design of more accurate
dehazing algorithms.

2.2. Dehazing Related Work

Early image dehazing methods were mainly based on manually designed prior knowl-
edge, such as dark channel prior (dark channel prior, DCP), color attenuation prior [10]
(color attenuation prior, CAP) and haze line prior., [11] (Haze Line, HL), etc., use the haze
imaging model to achieve dehazing by estimating the transmission map and atmospheric
light value. The DCP (dark channel prior) method is based on the principle of dark channel
prior, where the input hazy image is first processed to compute its dark channel image.
The brightest pixels are selected from the dark channel image to estimate the value of
atmospheric light. Then, the initial transmission rate map is calculated based on the dark
channel image and the atmospheric light value. In order to improve the dehazing effect
of the algorithm, refinement processing is usually applied to the initial transmission rate
to eliminate block artifacts and retain more edge information. Finally, utilizing the atmo-
spheric scattering model and combining the estimated atmospheric light with the refined
transmission rate, the original hazy image is dehazed to obtain a clear haze-free image.
He et al. [12] proposed an improved dark channel method incorporating color restoration
using the atmospheric scattering model and a multi-scale Retinex strategy. While this
method can restore clear images in specific scenes and has significantly contributed to the
advancement of image dehazing technology, obtaining sufficient statistical information
with manually designed prior knowledge remains challenging for handling real and com-
plex haze scenes. Among them, the classic dark channel prior algorithm is simple and
effective, but it is sensitive to specific scenes or atmospheric conditions, produces artifacts
in some special cases, and is sensitive to the estimation of the initial atmospheric scattering
rate, so it is not suitable for drainage pipe scenes.

Multi-sensor image dehazing algorithms, which incorporate data collected from mul-
tiple sensors such as optical cameras, infrared cameras, depth cameras, etc., estimate the
degree of haze in images based on atmospheric scattering models and fuse the dehazing
results from different sensors, fully leveraging the advantages of each sensor. However,
practical usage faces challenges such as data asynchrony between sensors, difficulty in
data fusion and calibration among different sensors, etc., thus imposing limitations on the
practical application of multi-sensor dehazing methods.

Image decomposition techniques play a significant role in haze correction by effec-
tively removing the influence of haze on images and improving their clarity and quality
by decomposing the different components of the image. Hazy weather often causes edge
blurring and information loss. Agrawal et al. [13] proposed an edge suppression method
using cross-projection tensors for gradient field transformation, exhibiting strong edge
protection capability in image processing. It preserves edge information while removing
haze, thereby avoiding detail loss caused by excessive smoothing. This method is suitable
for scenarios requiring high image quality, such as traffic monitoring and remote sensing
image processing. Wu et al. [14] introduced a method using flight time imaging to decom-
pose global light transmission, effectively removing the influence of haze on images by
modeling and decomposing global light transmission. By incorporating depth information
of the scene and light transmission decomposition, haze effects on images can be more
accurately estimated and corrected, suitable for scenes requiring depth information, such
as autonomous driving and robotic navigation. Muhuri et al. [15] proposed a scatter power
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decomposition method based on geodesic distance, mainly applied to compact polarimetric
SAR data processing. Through scatter power decomposition, a better understanding of
the characteristics of different components in the image can be achieved. Although this
method has not been directly applied to haze correction, it holds significant importance in
distinguishing between haze components and real scene components in haze correction.

With the performance breakthrough of deep learning in the field of computer vision,
many image dehazing methods based on deep convolutional neural networks (CNN) have
been proposed [16–19]. DehazeNet [20] and multi-scale convolutional neural network [21]
estimate the transmittance by learning the mapping relationship between hazy images and
their projections and restoring haze-free according to the atmospheric scattering model
image. The dense pyramid dehazing network [22] uses subnetworks to estimate transmit-
tance and atmospheric light values and generates haze-free images through generative
adversarial network training. Li [23] combined transmittance and atmospheric light into
one variable and proposed a new network structure (all-in-one dehazing, AOD-Net) to
estimate this variable, eliminating the error of training atmospheric light and transmittance
separately. A better restoration effect was achieved, but the restoration result was over-
all darker. Liu [24] proposed a residual network structure to estimate the transmittance
based on hazy images and their assumptions or prior information and then obtain the
restoration results. Qian [25] proposed a new dehazing convolutional neural network
(CNN)—CIASM-Net. The network model includes a color feature extraction sub-network
and a deep dehazing sub-network and uses multi-scale convolution to estimate the trans-
mission rate, and then obtain the recovery result. Chen [26] proposed a method of image
enhancement using generative adversarial networks (GANs). This method learns from
input images to enhance images in a natural and effective way by training a generator and
discriminator network. This method is able to extract more details from ordinary photos
and improve the brightness and contrast of the image. However, this method may have the
disadvantages of a certain model training complexity and the need for a large amount of
training data. Cycle-Dehaze [27] is a direct end-to-end network that generates haze-free
images directly from hazy input images. These methods mainly adopt general network
architectures (e.g., DenseNet [28], Dilated Network [29], Grid Network). However, due to
the lack of light or low light in the urban underground pipeline environment, which is dark
and humid and has severe water mist, the details of the collected video images are blurred.
These methods are not optimized for the lack of detailed information in pipeline scenes,
resulting in poor dehazing effects in drainage pipes. The advantages and disadvantages
of each algorithm can be seen in Table 1, where \ denotes that the method is not used for
pipeline scene and has no detailed results.

In order to solve this problem, this paper proposes a multi-scale drainage pipe dehaz-
ing network based on an attention mechanism. The network utilizes the “channel + spatial”
attention mechanism to improve the dehazing ability and restore the detailed information
of the image. This novel network architecture allows us to capture more detailed image
feature representations by integrating both channel and spatial attention mechanisms. The
attention mechanism is more adaptive and flexible compared to traditional convolution. It
dynamically focuses on detailed information at specific locations or channels. This capabil-
ity empowers the attention mechanism to deliver enhanced performance and effectiveness
for complex image processing and machine learning tasks.

In summary, within the multi-scale drainage pipe dehazing network employing the
attention mechanism for the drainage pipe image dehazing task, this attention mechanism
aids the model in focusing more effectively on crucial detail areas and extracting clear
features, consequently improving haze removal and restoring image quality.
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Table 1. Literature comparison table.

Ref. Methods/Techniques Main Contributions/Features Application Effect in Drainage Pipes PSNR/SSIM

[11] Combining dark channel prior with
multi-scale Retinex strategy

Improved dark channel prior dehazing effect and
enhanced color recovery

Performs well in some scenarios but is sensitive to
certain atmospheric conditions 27.74/0.88

[12] Cross-projected tensor gradient field
transformation

Powerful edge protection capabilities to avoid loss of
details

Suitable for scenarios that require high edge
information \

[13] Global light transport decomposition for
time-of-flight imaging

Improve the dehazing effect by obtaining depth
information Suitable for scenes that require depth information \

[14] Scattering power decomposition based on
geodesic distance

Understand the characteristics of image components
and distinguish haze from real scenes

Currently not directly applied to haze correction, but
has potential value \

[17] Dense pyramid defogging network Estimating transmittance and atmospheric light values
using subnetworks

Produces haze-free images with higher quality, but
may be more computationally complex \

[18] AOD-Net Combine transmittance and atmospheric light into a
single variable to simplify the training process

The restoration result is overall darker and needs
further adjustment 24.14/0.92

[20] DehazeNet Learn the mapping relationship between foggy images
and projection images

Improved defogging effect, but may be limited by
training data 23.16/0.82

[21] Multi-scale convolutional neural network Improve dehazing performance through multi-scale
features

Suitable for a variety of scenarios, but may require
further optimization 21.32/0.85

[22] Image enhancement using generative
adversarial networks

Ability to extract more details from input images and
improve brightness and contrast

Suitable for a variety of image enhancement tasks, but
may require specific optimization in dehazing tasks 21.56/0.86

[23] Direct end-to-end network Generate haze-free images directly from hazy images Simplified dehazing process, but may need to be
optimized for pipeline scenarios 30.16/0.93

[25] CIASM-Net Including color feature extraction and deep dehazing
sub-network

Improving transmittance estimation accuracy through
multi-scale convolution 21.26/0.85

Our
research

team

Multi-scale adaptive feature network based
on multiple attention

Utilize multiple attention mechanisms and multi-scale
feature fusion to improve the dehazing effect

Achieve superior dehazing and preserve detail in
sewer environments 39.87/0.98
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3. Main Network Framework
3.1. Overall Structure

Existing research has shown that using multi-scale information in image restoration
can significantly improve the performance of the model. In view of this, we propose a
method that combines U-Net [30–34] architecture, multiple attention mechanisms and
multi-scale networks to fully utilize the multi-scale information of images and features to
achieve image dehazing so as to facilitate the subsequent use of YOLO, etc. network for
advanced visual detection tasks [35].

As depicted in Figure 1, the method comprises three main components: the encoder
module, enhanced decoder module, and feature recovery module. The encoder module
focuses on extracting valuable feature information from the input image, progressively
reducing the image size through multiple convolutional layers to capture its high-level
features. The enhanced decoder module uses skip connections in the U-Net structure to
combine the output feature map of the encoder with the input feature map of the decoder.
In the decoder, we apply the multi-scale feature fusion module to enhance the details and
contrast of the image. The role of the feature recovery module is to transfer the output
feature map of the encoder to the decoder through skip connections, restoring the lost
high-level feature information. This allows the decoder to more effectively leverage the
context information provided by the encoder to generate dehazed images.
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To better manage the details and contextual information of images, we introduce
multi-scale attention modules in both the encoder and decoder. These modules include
a channel attention mechanism and a multi-scale spatial attention mechanism, replacing
traditional convolution operations. The channel attention mechanism can automatically
learn the importance weights between channels, while the multi-scale spatial attention
mechanism can adaptively capture image features at various scales.

To better handle the details and contextual information of images, we introduce
multiple attention modules in the encoder and decoder. As shown in Figure 2, these
modules consist of a channel attention mechanism and a multi-scale spatial attention
mechanism, replacing traditional convolution operations. The channel attention mechanism
can automatically learn the importance weights between channels, while the multi-scale
spatial attention mechanism can adaptively capture image features at different scales.

3.2. Multiple Attention Module

In a convolutional neural network, the input data usually consists of multiple channels,
each channel representing a different feature of the image. The channel attention mechanism
aims to dynamically learn the weight of each channel so that the network can adaptively
focus on the feature information of different channels.

When multi-scale feature information needs to be fused, we also need a mechanism
to share information within a feature tensor. As shown in Figure 3, this paper uses an
improved channel attention mechanism to replace traditional convolution. The input
feature map Fin ∈ RC×H×W , where C is the number of channels, H and W are the height
and width of the feature map respectively. Convolution-deconvolution operations are first
performed for preliminary feature extraction and spatial recovery to obtain the feature map
F1, which helps the network learn the image. The semantic features increase the resolution
of the feature map to more precisely locate and restore the boundary information and
detailed information of the object. Then, through global average pooling, the feature map
of each channel is compressed into a single value, which represents the global characteristics
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of this channel. Using the learned global features, a small neural network is introduced
to learn the weight of each channel. These weights represent the relative importance of
each channel. They will be used to weight the input feature map to produce a channel
attention-weighted feature map F2.
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We also combine channel attention with the residual structure to improve the per-
formance and learning ability of the network and use the skip connection of the residual
structure to alleviate the vanishing gradient problem. The channel attention dynamically
focuses on the feature information of different channels, enhancing the feature expression
ability. In this way, the network can better adapt to features of different categories and
complexity, improving the model’s performance capabilities. Between F1 and F2 we used
a residual structure; after the residual connection, the module learns the weight of each
channel and applies these weights to each channel of the feature map. In the output of the
original feature map Fin and F2′, a residual structure was also used, which resulted in Fout.

To heighten the awareness of the importance of various spatial locations in the input
data and concentrate on image areas crucial to the dehazing task, we introduce an enhanced
“channel + space” dual attention mechanism. The spatial attention (SA) branch is crafted
to leverage the spatial correlation of convolutional features. Its primary objective is to
produce a spatial attention map and utilize it to reweight the input features M. Through
the incorporation of a spatial attention mechanism, the model can bolster its capability to
discern the significance of diverse spatial locations in the image.
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In the SA branch, first, the input feature M is subjected to two operations along the
channel dimension, namely global average pooling and max pooling. In this way, the
average and maximum values of the features in the channel dimension can be extracted
separately and connected together to form a feature map f ∈ RH×W×2. Next, after a
convolution operation and a sigmoid activation function, the feature map f is converted

into a spatial attention map
Λ
f ∈ RH×W×2.

Λ
f emphasizes task-critical image regions by

learning a set of weights to weighted combinations of different spatial locations in the
feature M. This weighting operation can increase the model’s attention to important
locations in the image and help the model better understand and process the input data.
Finally, by performing an element-wise multiplication operation on the spatial attention

map
Λ
f and the input feature M, each position of the feature M will be adjusted by the

corresponding spatial attention weight. This process of re-adjusting feature weights can
be viewed as a rescaling of the input features M in order to better utilize these weighted
features in subsequent model levels.

3.3. Multiple Attention Module

To address the issues of spatial information loss during the downsampling process and
the absence of connections between non-adjacent level features in the U-Net architecture’s
encoder, we introduce a multi-scale feature fusion module as shown in Figure 4. This
module effectively fuses features from different levels to compensate for the missing spatial
information in upper layers and fully harnesses the features of non-adjacent layers.
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The multi-scale feature fusion module (MSFFM) employs an error feedback mechanism
to further enhance the features of the current level and is applied to both the encoder and
decoder. This module preserves the spatial information of high-resolution features and
utilizes non-adjacent features for effective image dehazing. Specifically, two MSFFM
modules are introduced at each level—one before the residual group of the encoder and the
other after the multi-scale enhancement decoder of the decoder. In the encoder/decoder,
the enhanced FMFA output is linked to all subsequent MSFFMs for feature fusion. In this
manner, within the U-Net architecture, we can effectively address the issues of missing
spatial information and inadequate feature connections in non-adjacent layers during
downsampling, thereby enhancing the performance of image dehazing.

Each level of the decoder has an MSFFM module, which is defined by Equation (1). In

Equation (1), jn represents the enhanced features of the current level of the decoder,
∼
jn rep-

resents the fusion features obtained through feature fusion, and L represents the num-
ber of levels of the network, which represents the fusion features output by all previ-

ous
{∼

jL, j
∼
L−1, . . . , j

∼
n+1

}
level MSFFM modules in the decoder.

∼
jn = Dn

de(jn, {
∼
jL, j

∼
L−1, . . . , j

∼
n+1}) (1)
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The update process of the MSFFM module is as follows:

1. Calculate the difference en
t between jn

t (jn
0 = jn) and j

∼
L−t at the t-th iteration using

Equation (2). Among them, pn
t represents the projection operator, which downsamples

the enhanced feature jnt to the same dimension as the fused feature j
∼
L−t;

en
t = pn

t (jnt )− j
∼
L−t (2)

2. Use the back-projection difference jnt to update and calculate according to Equation (3).
Among them, qn

t represents the back-projection operator, which upsamples the differ-
ence en

t of the previous iteration to the same dimension as the fused feature jn
t ;

jnt+1 = qn
t (e

n
t ) + jn

t (3)

3. All previous fusion features
{∼

jL, j
∼
L−1, . . . , j

∼
n+1

}
are iteratively processed to obtain

the final fusion features
∼
jn.

However, during this process, the network is unknown to pn
t and qn

t . Inspired by
super-resolution deep back-projection networks, we use convolutional/deconvolutional
layers to learn corresponding downsampling or upsampling operations. To reduce the
number of parameters, we use (L − n − t) stacks of convolution and deconvolution layers
with a stride of 2 to implement downsampling or upsampling operations. The structure of
the MSFFM module is shown in Figure 5, which depicts the last multi-scale feature fusion
module in the enhanced decoder module.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 5. Multiple Attention Module. 

4. Similarly, the MSFFM module at the encoder level can be defined using Equation (4): 
~ ~

1 2 1( ,{ , , , })n n n n
eni D i i i i −= …  (4) 

In Equation (4), ni   represents the latent features of the n-level encoder, and 
~

1 2 1{ , , , }ni i i −…  represents the fused features output by all previous (n−1)-level MSFFM 
modules in the encoder. The architecture n

enD  of the MSFFM module at the encoder level 
is the same as the L n

enD −  at the (L − n)-level of the decoder, except that the positions of the 

downsampling operation n
tp   and the upsampling operation n

tq   need to be inter-
changed. 

3.4. Multi-Scale Feature Enhancement Module 
In order to gradually improve the features in the feature recovery module in the de-

coder, we introduce a multi-scale feature enhancement module in the decoder of the net-
work. It helps recover high-level visual features from low-level pixel-level information, 
thereby improving image quality and clarity. The structure of the multi-scale enhance-
ment module is shown in Figure 6. 

 
Figure 6. Multi-scale Feature Enhancement Module. 

Figure 5. Multiple Attention Module.

4. Similarly, the MSFFM module at the encoder level can be defined using Equation (4):

∼
in = Dn

en(i
n,
{

i1, i2, . . . , i
∼
n−1

}
) (4)

In Equation (4), in represents the latent features of the n-level encoder, and{
i1, i2, . . . , i

∼
n−1

}
represents the fused features output by all previous (n−1)-level MSFFM

modules in the encoder. The architecture Dn
en of the MSFFM module at the encoder level

is the same as the DL−n
en at the (L − n)-level of the decoder, except that the positions of the

downsampling operation pn
t and the upsampling operation qn

t need to be interchanged.
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3.4. Multi-Scale Feature Enhancement Module

In order to gradually improve the features in the feature recovery module in the
decoder, we introduce a multi-scale feature enhancement module in the decoder of the
network. It helps recover high-level visual features from low-level pixel-level information,
thereby improving image quality and clarity. The structure of the multi-scale enhancement
module is shown in Figure 6.
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In the n-th level multi-scale enhancement module, the feature map obtained from the
previous level is first upsampled. Then, the upsampled feature map is added to the feature
map obtained by the corresponding encoder at the same level for enhancement. Next, the
enhanced feature map is sent to the repair unit for processing, and the upsampled feature
map is subtracted from the repair result. The output obtained in this way is the enhanced
feature of the nth-level multi-scale enhancement module, as shown in Equation (5):

jn = Gn
θn
(in + U2(jn+1))− U2(jn+1) (5)

In Equation (5), we upsample the feature map using an upsampling operation U2 with
a scale factor of 2. Then, use a symbol to represent the enhanced feature in +U2(jn+1). Gn

θn
rep-

resents the trainable repair unit with parameters θn in the nth layer, which uses the residual
group in the encoder to implement each repair unit.

The structure of the residual group is shown in Figure 7. The residual group consists
of three residual blocks, which contain two convolutional layers with a convolution kernel
size of 3 × 3 and a stride of 1. First, a convolution operation is performed on the features of
the input residual block, then the PReLU activation function is applied, and then another
convolution operation is performed. At the same time, the residual group processes the
residual structure on itself. Finally, the convolution results are added to the skip-connected
input features.

At the final layer of the decoder, we employ a convolutional layer to reconstruct the
estimated haze-free image from the last feature map. This convolutional layer outputs the
haze-free image of the drainage pipe.

This section primarily elaborates on the three modules: multi-attention, multi-scale
feature fusion, and multi-scale feature enhancement. The model embraces a hierarchical
design concept, incorporating multiple attentions in each layer and executing feature fusion
across different levels. Each level can gradually expand the receptive field and achieve up-
and downsampling, thereby obtaining feature maps of four different scales.

By utilizing multiple attention modules, the network can adaptively learn crucial
information within the data, thereby enhancing the model’s performance. Furthermore, the
multi-scale feature fusion module aids in effectively fusing feature information of diverse
scales, enhancing the model’s expressive capability. The multi-scale feature enhancement
module employs the fused multi-scale features to progressively restore higher-level features
through other modules in the decoder. Simultaneously, each level incorporates the concept
of a residual group. The residual group increases the model’s depth, enabling it to better
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capture the essential characteristics of the data during the training process. This mitigates
the issue of gradient disappearance, thereby enhancing the model’s generalization ability.
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The hierarchical design model proposed in this section, with the aid of the multi-
attention module, multi-scale feature fusion module, and multi-scale feature enhancement
module, gradually expands the receptive field. It achieves the fusion and enhancement of
up and downsampling features, obtaining feature maps at four different scales. This design
provides the model with significant performance advantages and enhances its robustness.

4. Discussion and Analysis of Experimental Results
4.1. Drainage Pipe Data Set

This article employs a pipe robot equipped with a binocular stereo depth camera (Intel
RealSense Depth Camera D435i) for collecting image data of drainage pipes. As shown in
Figure 8, the pipeline robot, independently designed and developed by our research team,
operates smoothly in various complex environments and is controlled by a traction rope.
The camera primarily captures color images and corresponding depth images inside the
pipeline. The used D435i camera is equipped with four cameras, comprising a left infrared
camera, an infrared dot projector, a right infrared camera, and a 20-megapixel RGB camera.
This camera employs binocular vision technology. Utilizing image data generated by the
left and right infrared cameras, combined with the built-in depth processor, the depth
value of each pixel can be calculated to generate a depth image. Unlike RGBD cameras,
the D435i’s infrared camera can provide reliable depth measurements under low-light
conditions, a crucial factor for data collection in drainage pipe scenes.

Throughout the data collection process, we selected five distinct areas in Beijing
for field collection. These real urban underground drainage pipe data aim to validate
the effectiveness of our proposed dehazing algorithm, ensuring its capability to produce
satisfactory dehazing effects in future real-world scenarios. Besides their academic re-
search value, these data can serve as a reference for the management and maintenance of
drainage pipelines.

Acquiring both hazy and clear images of the same scene poses a significant challenge
in most cases. This is because the acquisition of hazy images and clear images needs to
consider many factors, such as weather conditions, light intensity, and camera parameters.
To solve this problem, we use an atmospheric scattering model to generate hazy sky images
with different concentrations. The primary innovation of this method involves utilizing a
pipeline robot to capture clear images and simulate haze effects of different concentrations
through an atmospheric scattering model.
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Pipe robots are autonomous devices capable of maneuvering in confined spaces and
equipped with high-definition cameras to capture clear images. Initially, these images are
utilized to train deep learning models, extracting key features in the scene. Subsequently,
the trained model is employed to generate hazy images.

The process of generating hazy images can be divided into the following steps:

1. Collect clear images: Use the high-definition camera mounted on the pipeline robot
to capture clear images in various scenarios.

2. Train the deep learning model: Use the collected clear images to train the deep learning
model and extract scene features.

3. Generate hazy images: Based on the trained model and atmospheric scattering model,
simulate the haze effects of different concentrations to generate hazy images, as shown
in Figure 9.

4. Analysis and evaluation: Perform quality assessment and analysis on the generated
hazy images and explore the impact of different haze concentrations on image quality.

By following the above steps, we are able to generate hazy images with various
concentrations in diverse scenarios, thereby providing essential data support for subsequent
research. This approach introduces a fresh perspective to hazy image generation and
contributes to enhancing drivers’ safety during hazy weather conditions. Simultaneously,
the outcomes of this research are anticipated to find applications in other fields, including
computer graphics, virtual reality, and more.
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To facilitate adaptive dehazing training for drainage pipe images, we curated a data
set comprising hazed pipe images with varying haze concentrations. We fixed the global
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atmospheric light at a value of 1 and randomly selected the scattering coefficient within the
range of 0.6 to 1.5, resulting in the synthesis of 10 hazy images for each clear image. This
methodology resulted in a data set comprising clear pipeline images and their correspond-
ing hazy counterparts, with each clear image having 10 variations generated with different
scattering coefficients. Using this approach, we utilized 5750 clear images collected by
the pipeline robot to generate corresponding hazy images, adjusting them to a size of
448 × 448 pixels. Out of these, 55,000 pairs of hazy and clear images are allocated for
training purposes, while 2500 pairs are designated for testing. Finally, we constructed the
drainage pipe dehazing data set, as shown in Figure 10.
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4.2. Implementation Process

The model embraces a hierarchical design concept, meticulously crafting four levels.
Each level incorporates a multi-attention module, a multi-scale feature fusion module,
and a multi-scale feature enhancement module. The hierarchical design not only enlarges
the model’s receptive field but also ensures the accuracy and efficiency of information
transmission through meticulous layer-by-layer processing. At each level, multiple modules
work together to extract and fuse multi-scale feature information layer by layer, further
improving the model’s adaptability to complex scenes.

To enhance the model’s convergence speed and stability, we employ a 3 × 3 filter
size in all convolutional and deconvolutional layers. This setting can capture more local
information while ensuring spatial resolution. Moreover, we substitute the traditional Relu
activation function with the PRelu activation function. The PRelu activation function better
simulates the actual distribution of data during the training process, expediting the model’s
convergence and enhancing its stability.

In order to measure the actual effect of the model, we use the mean square error
(MSE) as the loss function. As a classic loss function, the mean square error can accurately
measure the difference between the network output and the real image. By minimizing
the mean square error, we can ensure that the gap between the dehazed image output by
the model and the real clear image gradually narrows, thereby achieving a more accurate
dehazing effect. The selection of this loss function ensures the reliability and accuracy of
model training.

During the entire training process, we set 200 epochs for model training. Within each
epoch, the model traverses the entire data set once and updates the network parameters. We
set the batch size to 16. Additionally, the initial learning rate was set to 10−4 and adjusted



Electronics 2024, 13, 1406 15 of 21

with a decay rate of 0.75 after every 10 epochs. This strategy of dynamically adjusting the
learning rate aids the model in converging quickly and stably at various training stages.

All experimental operations are conducted on the NVIDIA GeForce RTX 3060 GPU,
ensuring the computational speed and stability of the model. Since every time an image
is read from the disk, I/O operations are required, which may affect training efficiency.
Therefore, in order to increase data reading speed and avoid I/O bottlenecks, we save the
raw image data into HDF5 files. The HDF5 file format is highly flexible and scalable and
can meet our needs for quickly traversing and accessing data during the training process.
This optimization of data storage not only enhances the training efficiency of the model but
also facilitates subsequent data analysis and processing.

4.3. Performance Analysis

In order to verify the effectiveness of the algorithm proposed in this article, we use a
self-built drainage pipe data set to train and test the dehazing network model instead of
using public image data sets, such as RESIDE and NYU-depth2 data sets. For assessing the
performance of the dehazing algorithm, we employed the following evaluation metrics:
Peak Signal-to-Noise Ratio (PSNR) [36,37] and Structural Similarity (SSIM) [38,39].

Peak signal-to-noise ratio is a commonly used metric for image quality, measured in
dB. The higher the value, the better the image quality. Namely, the closer the dehazed
image aligns with the original clear image in detail, the lower the image distortion. In
general, a PSNR higher than 40 dB implies that the image quality closely approximates
the original image; a range of 30–40 dB suggests that the distortion loss of image quality
is within an acceptable range; a range of 20–30 dB indicates relatively poor image quality;
and below 20 dB signifies severe image distortion. Specifically, in our experiments, we
used the PSNR indicator to compare the DCP algorithm, DehazeNet algorithm, AOD-Net
algorithm, MSBDN algorithm and the algorithm proposed in this paper on the test data set.
Performance of dehazing the hazy images of the pipeline.

Structural similarity is an index that measures the similarity of structural information
before and after image processing. It considers the three dimensions of brightness, contrast
and structure. The value range of this index is [0, 1]. The closer the value is to 1, the more
similar the images are, indicating better image quality after dehazing. In our experiments,
we employed the SSIM indicator to compare the performance of the DCP algorithm,
DehazeNet algorithm, AOD-Net algorithm, MSBDN algorithm, and the algorithm proposed
in this paper for dehazing hazy images of drainage pipes on the test data set.

As shown in Table 2, the dehazing algorithm presented in this paper outperforms
others in terms of peak signal-to-noise ratio, surpassing the MSBDN algorithm by 6.37 dB.
Compared to other methods, there is an improvement in structural similarity. In comparison
to the MSBDN, the structural similarity (SSIM) value of our proposed method has increased
by 0.062.

Table 2. Analysis of the dehazing quality of five methods from the perspective of PSNR and SSIM.

Method DCP DehazeNet AOD-Net MSBDN Ours

PSNR 25.74 27.86 28.98 33.50 39.87
SSIM 0.759 0.797 0.859 0.926 0.988

This paper proposes a novel network structure that integrates channel and spatial
attention. Building upon the original MSBDN, this structure combines multiple attention
mechanisms with multi-scale feature fusion and enhancement modules, resulting in a more
intricate and hierarchical network. Experimental results demonstrate that the incorporation
of this multiple attention mechanism has led to a 5~20% improvement in both PSNR and
SSIM indicators.

The ablation experiment part is designed with reference to MBTFCN. Conducting ab-
lation research can help us understand the impact of each module on network performance,
thereby verifying the effectiveness of the network design. MSBDN has achieved good
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results in image reconstruction tasks, but it ignores the importance of spatial information
and channel information. To overcome this limitation, we introduce the multiple attention
module (DAU). By focusing on the correlation between different channels, DAU enables
the model to better capture the channel characteristics of the image, thereby improving
the reconstruction quality. Secondly, in order to better preserve image details, we also
integrated the MSFFM structure into the model.

According to Table 3, after adding the DAU attention mechanism, the network per-
formance has been enhanced to a certain extent. Especially when processing images with
complex backgrounds and thick fog, the attention mechanism can automatically focus
on key areas in the image and reduce background interference, thus improving classifi-
cation accuracy. When processing images with complex textures and color changes, the
introduction of DAU enables the model to better retain the detailed information of the
original image. After adding the MSFFM module, the model also improved in PSNR and
SSIM indicators. This proves that the MSFFM structure can effectively fuse features of
different scales and enhance the representation ability of the model. MSFFM performs
well in processing image structures at different scales, especially in processing large-size
images or images containing elements of multiple scales. When DAU and MSFFM are
introduced at the same time, MSBDN + CAB + MSFFM achieves the best performance in
all indicators. This shows that there is a complementary effect between DAU and MSFFM,
which jointly improves the reconstruction ability of the model. It is demonstrated that the
model performs well in handling various complex scenes and image types, providing an
efficient and reliable solution for image reconstruction tasks.

Table 3. Ablation Experiment.

Method MSBDN MSBDN + DAU MSBDN + MSFFM Ours

PSNR 33.50 34.28 38.86 39.87
SSIM 0.926 0.954 0.985 0.988

Through ablation experiments, we verify the effectiveness of the multiple attention
module (DAU) and the multi-scale feature fusion module (MSFFM) in image reconstruction
tasks. The introduction of these two modules not only improves the performance of the
model but also enhances the model’s ability to handle complex scenes and image types.

We also analyze the computation time of the proposed network and compare it with
previous methods. As shown in Table 4, We recorded the time required to process the same
set of drainage pipe images using different dehazing algorithms. In order to ensure the
fairness of the experiment, the same hardware configuration and software environment
were used, and the size and resolution of the images were consistent. Our network per-
forms well in terms of computation time compared to previous methods. Although the
network adopts multi-scale adaptive modules and multiple attention mechanisms, these
designs do not significantly increase the computational burden. On the contrary, due to the
optimization of the network structure and the efficient implementation of the algorithm,
the time consumption of our method when processing each image is comparable to some
traditional methods and even faster in some cases.

Table 4. Average run-time (in seconds) on test images.

Method DarkChannel DehazeNet AOD-Net MSCNN MSBDN Ours

Average Time 26.90 7.02 3.23 1.34 1.10 1.05

The analysis of these objective evaluation indicators shows that the defogging algo-
rithm we proposed performs well in dehazing drainage pipe images, has a high peak
signal-to-noise ratio and structural similarity, and has certain advantages in computational
efficiency, proving the effectiveness and feasibility of the algorithm.
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4.4. Subjective Analysis

On the drainage pipe data set, we conducted comparative experiments on multiple
dehazing algorithms to evaluate the performance of each algorithm in practical applications.
Figures 11–13 depict the effects of thin haze, thick haze, and uneven haze, respectively.
Through comparative analysis, we found that various dehazing methods have achieved
certain results in removing haze, but they also have certain problems.
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While the DCP dehazing algorithm successfully eliminates haze, it tends to reduce the
overall brightness and color saturation of the image, resulting in a darker appearance. In
addition, the DCP algorithm is prone to color distortion when processing complex scenes.
After applying the DehazeNet, AOD-Net, and DCPDN algorithms to remove haze, some
residual haze remains in the image. Particularly when handling thick haze scenes, the
dehazing effect is less than ideal. At the same time, the overall brightness of the image after
haze removal by these three algorithms has improved, but excessive enhancement will lead
to the loss of image details.

By comparison, the multi-scale adaptive dehazing algorithm based on multiple atten-
tion mechanisms proposed in this paper exhibits superior performance in handling thin
haze, thick haze, and uneven haze scenes. The algorithm can produce more realistic and
natural haze-free images while preserving details and texture information in the image. In
addition, this algorithm avoids image artifacts and color distortion problems in the process
of eliminating haze.

Comprehensive analysis reveals that the multi-scale adaptive dehazing algorithm
based on multiple attention mechanisms outperforms other comparative algorithms on the
drainage pipe data set.

5. Conclusions

Drainage pipe systems play a crucial role, and the environmental conditions of
drainage pipelines are harsh, including darkness, moisture, heavy haze, etc. These factors
have caused great troubles in the image collection of imaging equipment. The decline
in image quality and loss of detailed information has brought many difficulties to the
detection, maintenance and management of drainage pipelines. To solve this problem, we
deeply study the dehazing technology of drainage pipe images and propose a multi-scale
adaptive dehazing network based on multiple attention.

We have carefully designed a multi-scale adaptive module. The core idea of this
module is to use multiple attention mechanisms to accurately capture global features at
multi-scale resolutions. The design of multiple attention enables the network to achieve
end-to-end defogging of drainage pipe images in the presence of uneven fog concentration
and complex environments. The advantage of this method is not only its powerful dehazing
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ability but also its ability to retain the detailed information in the image to the greatest
extent while dehazing, making the processed image clearer, more natural, and closer to
real-world vision.

In order to fully verify the performance of the dehazing network proposed in this
article, we carefully constructed a huge data set, which contains tens of thousands of
clear/foggy image pairs of drainage pipes. The large scale and rich diversity of the data
set provide strong support for network training. By training and testing on the data
set, the network can fully learn the image features in different scenes and different fog
concentrations and has strong generalization capabilities.

During the experiment, we compared the proposed multi-scale adaptive dehazing
network based on multiple attention with various mainstream dehazing algorithms. Ex-
perimental results show that our network has significant advantages in dehazing effect,
showing excellent performance in terms of thoroughness of dehazing, retention of details,
and processing speed.

More importantly, our dehazing network shows great potential in practical appli-
cations. In the specific scene of urban underground drainage pipes, image acquisition
becomes extremely difficult because the internal environment of the pipes is dark, humid,
and often accompanied by fog. By applying the defogging network proposed in this article,
the fog can be effectively removed, and the clarity of the image restored, which provides
great convenience for pipeline detection, maintenance and management. The network can
also be expanded to other similar scenarios, such as image restoration in dark and humid
environments such as tunnels and warehouses, which has broad market prospects and
application value.

In summary, the multi-scale adaptive defogging network based on multiple attention
designed and proposed in this article not only has powerful defogging capabilities, but
also can provide clear and natural visual effects while maintaining image details. We will
continue to optimize and improve the multi-scale adaptive dehazing network based on
multi-attention. The research scope will be expanded and the dehazing technology will
be applied to more similar scenes. In addition to dark and humid environments such
as urban underground drainage pipes, tunnels and warehouses, we can also explore the
application of defogging technology in areas such as underwater image restoration and
traffic monitoring in haze weather. In addition, we will also work on how to realize the
real-time operation of the dehazing network, improve the processing speed, and quickly
process large amounts of image data to meet the needs of practical applications.
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