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Abstract: Strong nonlinearity between Doppler measurement and target motion in Doppler radar
target tracking leads to the inadequate utilization of measurement information and limited tracking
accuracy. We solved this problem by combining converted state Kalman filtering and the Interacting
Multiple Model. This maneuvering target tracking method is suitable for Doppler measurement.
First, we converted the target motion in the Cartesian coordinate to the polar coordinate. Then, we
expanded the measurement equation to include Doppler measurement, making target motion linearly
related to the Doppler radar observation vectors and allowing efficient utilization of measurement
information. Next, we used unscented transformation to calculate the statistical characteristics of
the process noise in the polar coordinate. This process helps to reduce the noise error caused by the
coordinate system transformation in the original converted state Kalman filter. Finally, the system
effectively tracks targets that may perform maneuvers with unknown motion during actual tracking.
Using the converted state Kalman filter with Doppler measurement as a sub-filter, an Interacting
Multiple Model tracking method can be constructed to adjust the model probabilities without going
through nonlinear transformation. Simulation results show that the technique can achieve effective
target tracking in Doppler measurement application scenarios and has higher tracking accuracy in
non-maneuvering and maneuvering scenarios.

Keywords: target tracking; converted state; unscented transformation; Doppler measurement; interacting
multiple model

1. Introduction

The Doppler radar is known for its strong anti-interference and clutter suppression
capabilities due to its ability to remove noise in the frequency domain [1]. Owing to its
significant benefits, the Doppler radar is widely used in areas like target tracking [2], battle-
field surveillance, and traffic control. When tracking a target, a Doppler radar can obtain
the range and bearing of the target, the target’s Doppler measurement, or the target’s radial
velocity. As a result, Doppler measurement is the only measurement value that contains
target speed information among all Doppler radar measurements. Studies have shown
that Doppler measurement can effectively improve target tracking accuracy [3]. However,
physical quantities expressed in the Cartesian coordinate are usually used to describe the
target motion when tracking moving targets using radar measurements. The range, bearing,
and Doppler measurement provided by Doppler radar are all polar coordinate systems,
making it difficult to eliminate the nonlinearity between the target motion and the radar
measurement. As a result, using Doppler radar measurements can be challenging due to
the nonlinearity introduced by the coordinate system transformation between the polar
and Cartesian systems. Since the Doppler measurement is a composite function of multiple
Cartesian state variables, it has strong nonlinearity, making it challenging to utilize the
Doppler measurement [4] efficiently. Therefore, the central research theme of Doppler radar
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target tracking is to seek reasonable methods to resolve the nonlinearity between target
motion and measurement.

One study [5] proposes the Sequential Extended Kalman Filter (SEKF) for the target
tracking problem using Doppler measurement, where the measurement conversion Kalman
filter was first used to filter the position measurement linearly. Then, the Extended Kalman
Filter (EKF) [6–8] was used to process the Doppler measurement. However, discarding
high-order terms above second order during the EKF linearization process can lead to
more significant errors when dealing with strong nonlinearity. Some studies, such as [9,10],
extend the Debiased Converted Measurement (DCM) [11–13] and the Unbiased Converted
Measurement (UCM) methods [14–16]. These models are only considered for position
measurement to solve the nonlinear target tracking problem using Doppler measurement.
These authors have deduced a nonlinear relationship between Doppler measurements and
target states by constructing Doppler pseudo-measurements from range and Doppler mea-
surements. Another study [17] proposed the Sequential Unscented Kalman Filter (SUKF),
which uses UKF [18–21] first to perform decorrelation processing on the range and Doppler
measurements with measurement error correlation and process the position measurement
and pseudo-Doppler measurement sequentially. Another study [22] also proposed the
Statically Fused Converted Measurement Kalman Filters. In this model, the DCM Kalman
filter is first used to process the position measurement and estimate the target position state.
Then, the standard Kalman filter is used to calculate the pseudo-Doppler state. Finally, the
minimum variance estimates the static fusion position and pseudo-Doppler state. Another
researcher [23] improved the model presented by [22], using UCM and DCM to process
position measurement and Doppler pseudo-measurement, respectively. Their model aims
to make the estimation results free of bias. One researcher [24] also proposed the Con-
verted Measurement Kalman Filtering algorithm with Range Rate (CMKFRR) using this
method to convert range, bearing, and Doppler measurement to position and velocity in
the Cartesian coordinate system. While this conversion is unbiased and consistent, the
measurement conversion requires prior knowledge of the distribution of lateral velocities.
Another study [25] proposed a Decorrelated Unbiased Converted Measurement Kalman
Filter with Range rate (DUCMKF-R). This method aims to produce unbiased and consistent
filtering results by calculating the covariance of the converted measurement error based
on the predicted value. However, the above methods still require pseudo-measurements
to reduce the nonlinearity or decorrelation of measurement errors. These methods show
that unbiased filtering cannot use accurate Doppler measurements for filtering updates. Al-
though these methods have improved the target tracking performance of the Doppler radar,
improving tracking accuracy is still necessary. One study [26] proposed the Converted
State Kalman Filter (CSKF) algorithm to address the nonlinear problems in the motion and
measurement equations in target tracking. This algorithm converts the equations of motion
to the polar coordinate using the Cartesian coordinate, making the state and observation
linearly related. As a result, nonlinear filtering can be transformed into a standard problem
that can be processed using linear Kalman filtering. However, challenges remain, such as
finding an effective method suitable for Doppler measurement and dealing with complex
maneuvering scenarios with unknown target motion.

This study proposes a novel target-tracking algorithm called IMM-CSKF-D. This algo-
rithm combines the Converted State Kalman Filter with Doppler measurement (CSKF-D)
and the Interacting Multiple Model (IMM) [27–29] to address some of the existing problems
in the target tracking algorithm. The proposed algorithm utilizes Doppler measurement
and derives the measurement equation. Then, the unscented transform (UT) is derived
when the process noise is converted from the Cartesian coordinate to the polar coordinate
to calculate the converted noise’s statistical characteristics. The process also ensures that the
calculation results are highly accurate and that the CSKF-D algorithm is obtained. Then, we
combined the CSKF-D and IMM to address the situation where the target has maneuvering
motion during the actual tracking process. Afterward, we used the CSKF-D as a sub-filter
of the IMM to propose the IMM-CSKF-D target tracking algorithm. Simulation results show
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that the proposed algorithm outperforms other tracking algorithms that utilize Doppler
measurement based on its higher estimation accuracy.

2. Description of Problem
2.1. Decomposition of Motion

When fusing multi-source information, different fusion spaces lead to different fusion
performances. In the traditional CSKF algorithm, the state equation in Cartesian coordinates
is converted to polar coordinates to ensure consistency with the measurement filtering. As
a result, the state equation is derived from polar coordinates. Then, the transformation of
process noise is analyzed.

In establishing the target motion equation in the polar coordinate, the motion equation
in the Cartesian coordinate is converted to polar coordinates. This mechanism is achieved
by orthogonally decomposing the Cartesian coordinate system velocity V into the radial
velocity

.
r and the tangential velocity vθ . This process is depicted in Figure 1.
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2.2. Target Motion Equations in the Polar Coordinate System
2.2.1. CV Motion

If a target moves in a straight line at a constant speed, its motion process is described
as constant velocity (CV) motion. In the polar coordinate, the state equation of CV motion
is as follows:

Xcv(k + 1) = Φcv(k)Xcv(k) + Γcv(k)Wcv(k) (1)

where Xcv(k) = [θ(k)
.
θ(k) r(k)

.
r(k)]

T
represents the target state at time k during CV

motion; θ(k) and r(k) are the bearing and the range, respectively;
.
θ(k) and

.
r(k) are the

angular velocity and radial velocity, respectively; and Wcv(k) is process noise.

Φcv(k) =


1 T 0 0

0 1 − T
.
r(k)
r(k) 0 0

0 0 0 T
0 0 0 1

 (2)

where Φcv(k) is the state transition matrix and T is the sampling period.

Γcv(k) =

[
0 − T

r(k) 0 0
0 0 1

2 T2 T

]T

(3)

where Γcv(k) is the process noise-driven matrix.
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2.2.2. CA Motion

If the target moves in a straight line with constant acceleration, its motion is described
as constant acceleration (CA). In the polar coordinate, the state equation of CA motion is as
follows:

Xca(k + 1) = Φca(k)Xca(k) + Γca(k)Wca(k) (4)

where Xca(k) = [θ(k)
.
θ(k)

..
θ(k) r(k)

.
r(k)

..
r(k)]

T
represents the target state at time

k during CA motion; θ(k) and r(k) are the bearing and the range, respectively;
.
θ(k) and

.
r(k) are the angular velocity and radial velocity, respectively;

..
θ(k) and

..
r(k) are the angular

acceleration and radial acceleration, respectively; and Wca(k) is process noise.

Φca(k) =



1 T 0 0 0 0
0 1 T 0 0 0

0 − 1
T

..
r(k)
r(k) 1 − 2T

.
r(k)
r(k) 0 0 0

0 0 0 1 T 1
2 T2

0 0 0 0 1 T
0 0 0 0 0 1


(5)

where Φca(k) is the state transition matrix.

Γca(k) =

[
0 T

r(k) 0 0 0 0
0 0 0 1

6 T3 1
2 T2 T

]T

(6)

where Γca(k) is the process noise-driven matrix.

3. Converted State Kalman Filtering with Doppler Measurement
3.1. Measurement Equations with Doppler Measurement

We used a model developed in one study [26] to introduce Doppler measurement and
expand the observation equation. Assuming that the radar position is at the coordinate
origin in the polar coordinate, the radar measurement equation with Doppler measurement
is expressed as follows:

Z(k) = [ θm(k) rm(k)
.
rm(k)]T

θm(k) = arctan y(k)
x(k) + θ̃(k)

rm(k) =
√

x2(k) + y2(k) + r̃(k)
.
rm(k) =

x(k)
.
x(k)+y(k)

.
y(k)√

x2(k)+y2(k)
+

.̃
r(k)

(7)

where x(k), y(k),
.
x(k), and

.
y(k) are the accurate positions and velocities of the target in

the X and Y directions in the Cartesian coordinate; θm(k), rm(k) and
.
rm(k) are the bearing

measurement, range measurement, and Doppler measurement, respectively. Moreover,
θ̃(k), r̃(k), and

.̃
r(k) are the corresponding measurement noises. Assuming that these noises

are zero-mean Gaussian white noise with variances of σ2
θ , σ2

r , and σ2.
r , respectively, σ2

r and
σ2.

r are uncorrelated; σ2
θ and σ2.

r are uncorrelated; and σ2
θ and σ2.

r are correlated with the
correlation coefficient ρ, developed using the following equation:

cov[r̃(k),
.̃
r(k)] = ρσrσ.

r. (8)

Then, the measurement noise covariance at time k is expressed as follows:

R(k) =

σ2
θ 0 0

0 σ2
r ρσrσ.

r
0 ρσrσ.

r σ2.
r

. (9)
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According to the state Equations (1) and (4) and the radar measurement Equation (7),
the converted target state has a linear relationship with the measurement vector. The
measurement equations of CV motion and CA motion are as follows:

Z(k) = HcvXcv(k) + V(k)
Z(k) = HcaXca(k) + V(k)

(10)

where Hcv =

1 0 0 0
0 0 1 0
0 0 0 1

, Hca =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

, and V(k) is the measurement error.

3.2. Analysis of Process Noise

Process noise is crucial in introducing randomness to the target’s motion and is a vital
component of the state equation. Therefore, we must use a process noise transformation
method to transform process noise from Cartesian to polar coordinate systems. The UT is
quite beneficial in accurately estimating nonlinear systems without the need for Jacobian
derivation. It can also help transform a series of sample points to approximate the posterior
probability density of the state. As a result, this study uses UT transformation to calculate
the mean and covariance of process noise in the polar coordinate.

In the Cartesian coordinate, the process noise is modeled using zero-mean Gaussian
white noise, transformed into the radial and tangential directions in the polar coordinate
system using a rotation matrix. The process noise conversion equations of CV motion and
CA motion are as follows:

Wcv(k) =
[ .

vθ(k)..
r(k)

]
=

[
− sin θ(k) cos θ(k)
cos θ(k) sin θ(k)

][ .
vx(k).
vy(k)

]
Wca(k) =

[ ..
vθ(k)...
r (k)

]
=

[
− sin θ(k) cos θ(k)
cos θ(k) sin θ(k)

][ ..
vx(k)..
vy(k)

] (11)

where
.
vθ(k),

..
vθ(k),

..
r(k), and

...
r (k) are the tangential process noise and radial process noise

of CV motion and CA motion, respectively. Additionally,
.
vx(k),

.
vy(k),

..
vx(k), and

..
vy(k) are

the process noise of CV motion and CA motion in the X direction and Y direction of the
Cartesian coordinate, respectively. However, these noises are not correlated.

We calculate the statistical characteristics of the process noise converted to the polar
coordinate using the UT transformation as follows:

(1) The 2n + 1 sigma sample points (n is the state dimension) are generated based on

the mean and variance of the three-dimensional random vector [θ(k)
.
vx(k)

.
vy(k)]

T

(CV motion) or [θ(k)
..
vx(k)

..
vy(k)]

T (CA motion).
(2) The sigma sample points are then substituted into Equation (13) to calculate the

sample points generated via nonlinear mapping.

f(
[

θ(k)
.
vx(k)

.
vy(k)

]T
) =

[
− sin θ(k) cos θ(k)
cos θ(k) sin θ(k)

][ .
vx(k).
vy(k)

]
f(
[

θ(k)
..
vx(k)

..
vy(k)

]T
) =

[
− sin θ(k) cos θ(k)
cos θ(k) sin θ(k)

][ ..
vx(k)..
vy(k)

] (12)

(3) Through the weighted sum, we obtained the mean and variance of the process

noise
[ .
vθ(k)

..
r(k)

]T (CV motion) or
[ ..
vθ(k)

...
r (k)

]T (CA motion) in the polar co-
ordinate system.

3.3. CSKF Algorithm with Doppler Measurement

We used the above process to construct the time-varying target state equation contain-
ing Doppler measurements in the polar coordinate, deriving the statistical characteristics of
the related process noise. As a result, the proposed CSKF-D algorithm can achieve real-time
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fusion using a specific time-varying state equation each time. The specific steps of the
algorithm are as follows:

Filter input: X(k, k), P(k, k), Z(k + 1)
Filter output: X(k + 1, k + 1), P(k + 1, k + 1)

(1) We predict the system state and covariance.

X(k + 1, k) = Φ(k)X(k, k)
P(k + 1, k) = Φ(k)P(k, k)Φ(k)T + Γ(k)Q(k)Γ(k)T (13)

(2) Then, Kalman gain is calculated.

K(k + 1) = P(k + 1, k)HT [R(k) + HP(k + 1, k)HT ]
−1

(14)

(3) Finally, we update the system state and covariance.

X(k + 1, k + 1) = X(k + 1, k) + K(k + 1)[Z(k + 1)− HX(k + 1, k)]
P(k + 1, k + 1) = P(k + 1, k)− K(k + 1)[R(k) + HP(k + 1, k)HT ]K(k + 1)T (15)

where Q(k) is the process noise covariance matrix.

4. Target Tracking with Combined CSKF-D and IMM Method

In target tracking, the target movement is complex, changeable, and unknown when
the target makes maneuvering motions. As a single-model filter, the Kalman filter often
faces challenges in achieving optimal tracking results when the target makes maneuvering
motions. However, due to its multi-model nature, IMM can overcome the problem of
significant estimation error in single-model filtering. Typically, IMM uses two or more
models to describe the possible motion states of the target during the tracking process and
fuses the filtering results under different motion models through probability weighting to
obtain a more accurate target motion estimate.

As a result, we propose the IMM-CSKF-D algorithm, which combines CSKF-D and
IMM, using CSKF-D as a sub-filter of IMM. The IMM-CSKF-D algorithm is conducted
recursively, and each recursion step includes four steps: input interaction, state filtering,
model probability update, and state fusion output. Figure 2 depicts the IMM-CSKF-D
algorithm flow.
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The recursion steps of the IMM-CSKF-D algorithm containing N models from time k
to time k + 1 are presented as follows:
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(1) Input interaction:

X̃j(k, k) =
N
∑

i=1
X̂i(k, k)µij(k + 1, k)

P̃j(k, k) =
N
∑

i=1
µij(k + 1, k)

{
Pi(k, k) + [X̂i(k, k)− X̃j(k, k)][X̂i(k, k) + X̃j(k, k)]

} (16)

where µij(k + 1, k) = pijµi(k)
cj

is the mixed transition probability; cj =
N
∑

i=1
pijµi(k), where µi(k)

represents the model probability of model i of the target at time k; and pij represents the
transition probability from model i to model j. X̂i(k, k) and Pi(k, k), respectively, represent
the state estimate of the target model i at time k and its covariance matrix. X̃j(k, k) and
P̃j(k, k), respectively, represent the state interaction value of the target model j at time k and its
covariance matrix.

(2) State filtering: X̃j(k, k) and P̃j(k, k) are used as filter inputs to obtain the state estimate
X̂j(k + 1, k + 1) and covariance matrix Pj(k + 1, k + 1) at the next moment. Section 3.3 of
this manuscript describes the single model filtering algorithm process.

(3) Model probability update:

µj(k + 1) =
Λ j(k + 1)cj

c
(17)

where c =
N
∑

i=1
Λ j(k + 1)cj is the normalization constant.

Λ j(k + 1) = 1√
|2πSj(k+1)|

exp[− 1
2 vT

j (k + 1)S−1
j (k + 1)vj(k + 1)]

vj(k + 1) = Z(k + 1)− H(k)X̂i(k + 1, k)
Sj(k + 1) = H(k)Pi(k + 1, k)H(k)T + R(k)

(18)

where X̂i(k + 1, k) and Pi(k + 1, k) are the predicated state and covariance of the target at time
k + 1; vj(k + 1) and Sj(k + 1) are the measurement residuals and their covariances. Therefore,
our model is directly derived from the difference between observations and linear predictions
in the residual calculation. As a result, our model is free of nonlinear approximation errors,
which makes it capable of yielding more accurate model probabilities.

(4) State fusion output: Based on the posterior probability of each model, a probability-weighted
summation of the state estimates of each filter obtains the final estimated state and covari-
ance estimate.

X̂(k + 1, k + 1) =
N
∑

j=1
X̂j(k + 1, k + 1)µj(k + 1)

P(k + 1, k + 1) =
N
∑

j=1
µj(k + 1){Pj(k + 1, k + 1) + [X̂j(k + 1, k + 1)

−X̂(k + 1, k + 1)][X̂j(k + 1, k + 1) + X̂(k + 1, k + 1)]
} (19)

5. Simulation Results and Analysis

We simulated the proposed method using MATLAB to verify its performance. We
compared the CSKF-D algorithm proposed with SEKF [5], SUKF [17], CMKFRR [24], and
DUCMKF-R [25]. All algorithms included Doppler measurements, and 300 Monte Carlo
simulations were conducted under the same conditions. The performance evaluation index
uses the target position’s root mean square errors (Position RMSE) and velocity’s root mean
square errors (Velocity RMSE). The results showed that the CSKF-D algorithm performed
excellently when the target has multiple motion states.

5.1. CV Model

We analyzed the target performing CV motion in the two-dimensional space. The
target’s initial position was (10 km, 10 km), and the initial velocity was (8 m/s, 10 m/s).
The Doppler radar located at the origin of the coordinates provides the range, bearing, and
Doppler measurements of the target at a sampling period of 1 s. The standard deviations
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of the measurement noise are σr, σθ , and σ.
r, respectively. The correlation coefficient was

ρ = 0.5. We also set up two simulation scenarios with different noise variances to analyze
the tracking performance of the CSKF-D algorithm at different measurement noises. Table 1
presents the parameters, and Figures 3 and 4 depict the corresponding simulation results.

Table 1. Measurement noise parameters in two scenarios.

Scenario σr (m) σθ (deg) σ .
r (m/s)

1 50 0.5 0.05
2 100 1 0.1
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Figures 3 and 4 show these algorithms’ estimation errors of CV motion under different
measurement noises. Table 2 shows the mean values of Position RMSE and Velocity RMSE
for all methods. From the results, our proposed CSKF-D algorithm outperformed other
algorithms due to its higher estimation accuracy and faster convergence rate. The Position
RMSEs for the SEKF, SUKF, and CMKFRR algorithms rise after declining initially, while the
CSKF-D algorithm and DUCMKF-R algorithm only rise slightly and continue declining.
As for the Velocity RMSE, the CSKF-D algorithm only maintains a small gap with the other
algorithms in the initial stage and quickly widens the gap, showing excellent performance.
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Table 2. Performance comparison in CV scenarios.

Measurement Noise
Parameters Method RMSE of Position

(m)
RMSE of Velocity

(m/s)

SEKF 99.14 2.87
σr = 50 m SUKF 93.96 2.69

σθ = 0.5 deg CMKFRR 89.35 2.53
σ.

r = 0.05 m/s DUCMKF-R 72.74 2.37
CSKF-D 61.86 1.83

SEKF 111.24 3.44
σr = 100 m SUKF 102.96 3.26
σθ = 1 deg CMKFRR 97.62 3.17

σ.
r = 0.1 m/s DUCMKF-R 75.54 2.97

CSKF-D 62.33 2.34

The SEKF algorithm can produce more significant errors when dealing with solid non-
linearities like those found in Doppler measurement because of its limitation in discarding
high-order terms above second order during the linearization process. As a result, SUKF
uses a series of deterministic samples to approximate the posterior probability density
of the state, reaching at least the second-order approximation, resulting in more accurate
filtering than SEKF. The proposed CSKF-D algorithm can process state and measurement
vectors using a linear Kalman filter, ensuring dynamic estimation convergence. When
conducting fuse in polar coordinates, this method has a smaller variance than Cartesian
coordinates, making the CSKF-D algorithm better in estimation accuracy and greater in
convergence rate than CMKFRR and its improved algorithm DUCMKF-R.

5.2. CA Model

In the CA case, the target’s initial position was (10 km, 10 km), the initial velocity was
(8 m/s, 10 m/s), and the initial acceleration was (2 m/s2, 2 m/s2). The other parameters are
the same as those in Section 5.1. Figures 5 and 6 show the corresponding simulation results.
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Figures 5 and 6 demonstrate the estimation errors of CA motion based on various
algorithms at different measurement noises. Table 3 shows the mean values of Position
RMSE and Velocity RMSE for all methods. The CSKF-D algorithm outperforms the other
filtering algorithms regarding estimation accuracy and rate of convergence in the CA model.
The success of the CSKF-D algorithm could be attributed to using a more appropriate
coordinate system to construct the state, which helps avoid severe non-Gaussian distortion
in information fusion.

Table 3. Performance comparison in CA scenarios.

Measurement Noise
Parameters Method RMSE of Position

(m)
RMSE of Velocity

(m/s)

SEKF 100.54 2.94
σr = 50 m SUKF 92.41 2.73

σθ = 0.5 deg CMKFRR 89.23 2.61
σ.

r = 0.05 m/s DUCMKF-R 71.85 2.42
CSKF-D 61.17 1.97

SEKF 112.53 3.50
σr = 100 m SUKF 103.69 3.24
σθ = 1 deg CMKFRR 98.50 3.21

σ.
r = 0.1 m/s DUCMKF-R 79.54 2.89

CSKF-D 62.87 2.57

We conducted simulations to compare the conversion of nonlinear coordinates between
Cartesian coordinate and polar coordinate systems. The goal was to elucidate the reason
for the performance advantage of the proposed method. We consider the CV motion as
an example: a four-dimensional vector in Cartesian coordinates and a three-dimensional
vector in polar coordinates. The conversion equations are as follows:

(1) From polar coordinates to Cartesian coordinates, we deduce the following:

Ψ =
[
x y

.
x

.
y
]T

=
[
r cos θ r sin θ

.
r cos θ − vθ sin θ

.
r sin θ + vθ cos θ

]T
+ wc. (20)

(2) The following equation is deduced from Cartesian coordinates to polar coordinates:

Φ =
[
r θ

.
r
]T

=

[√
x2 + y2 arctan( y

x )
x

.
x+y

.
y√

x2+y2

]T
+ wp (21)
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where x, y,
.
x, and

.
y are the valid positions and velocities, respectively, in the Cartesian

coordinate system. Moreover, r,
.
r, θ, and vθ are the true range, radial velocity, bearing,

and tangential velocity, respectively, in the polar coordinate system. wc and wp are
the zero-mean Gaussian noises with covariances Qc and Qp, respectively.

Then, two-dimensional vectors are selected from the two coordinate systems for
conversion and for comparing the simulation results. A low-dimensional vector is used to
map a high-dimensional vector. Table 4 shows the selection of scenarios. Figure 7 depicts
the simulation results.

Table 4. Parameters of three scenarios.

Scenario 1 Scenario 2 Scenario 3

Cartesian coordinates x,
.
x x, y y,

.
y

Polar coordinates r,
.
r r, θ θ,

.
r
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As shown in Figure 7, (a), (b), and (c) convert the Gaussian distribution in the Cartesian
coordinates of three scenarios to polar coordinates. After conversion, (a), (b), and (c) showed
significant bending distortion, while (d), (e), and (f) showed reverse conversion. Despite
conversion, they exhibit Gaussian distribution, indicating that the transformed distribution
is likely. We found that using the stronger Gaussian likelihood resulted in a smaller
information loss caused when using fusion based on this approximation. The results also
showed that fusion in polar coordinates causes smaller errors. Therefore, we proposed a
method that can operate solely in polar coordinates, which helps avoid the fundamental
shortcomings of measurement conversion methods.

5.3. IMM Model

The CSKF-D algorithm is suitable for tracking targets in scenarios involving no maneu-
vering motion. However, maneuvering scenarios with unknown motion patterns are more
common in real-world target tracking. Combining the CSKF-D algorithm with IMM to ad-
dress this challenge can result in more accurate model probability estimation. Additionally,
the CSKF-D algorithm used in the sub-filter offers higher estimation accuracy, allowing
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for high-precision maneuvering target tracking. We considered a specific scenario where
the target was initially located at (10 km, 10 km), travelled at an initial velocity of (8 m/s,
10 m/s), and had an initial acceleration of (1 m/s2, 1 m/s2). The target’s range, bearing,
and Doppler measurements were measured at a sampling period of 1 s using a Doppler
radar located at the coordinate origin. The standard deviations of the measurement noises
for these parameters are σr, σθ , and σ.

r, respectively. In addition, the correlation coefficient
was ρ = 0.5. We simulated two measurement noises with different statistical characteristics.
Table 5 shows the measurement noise variances.

Table 5. Measurement noise parameters in two scenarios.

Scenario σr (m) σθ (deg) σ .
r (m/s)

1 60 0.6 0.06
2 120 1.2 0.12

We compared our proposed IMM-CSKF-D algorithm with the IMM-SEKF, IMM-SUKF,
IMM-CMKFRR, and IMM-DUCMKF-R algorithms. The simulation results are shown in
Figures 8 and 9.
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From Figures 8 and 9 and Table 6, it can be seen that our method can maintain good
tracking performance when the target makes maneuvering movements. Moreover, IMM-
SEKF yields a significant estimation error for the target in the CA motion because it discards
high-order terms above the second order during the linearization process. The IMM-CSKF-
D algorithm avoids the impact of strong nonlinearity in Doppler measurements through
state transition, thereby improving the tracking accuracy and convergence rate.

Table 6. Performance comparison in IMM scenarios.

Measurement Noise
Parameters Method RMSE of Position

(m)
RMSE of Velocity

(m/s)

IMM-SEKF 94.67 3.97
σr = 60 m IMM-SUKF 81.70 3.08

σθ = 0.6 deg IMM-CMKFRR 78.87 2.94
σ.

r = 0.06 m/s IMM-DUCMKF-R 76.34 2.79
IMM-CSKF-D 66.75 2.41

IMM-SEKF 95.74 4.37
σr = 120 m IMM-SUKF 82.94 3.74

σθ = 1.2 deg IMM-CMKFRR 79.33 3.65
σ.

r = 0.12 m/s IMM-DUCMKF-R 78.05 3.48
IMM-CSKF-D 69.36 2.57

In the IMM filtering process, change in the model probability is a crucial factor in
determining performance. Therefore, the model probabilities of the five algorithms were
simulated to investigate the factor, as shown in Figure 10.
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As shown in Figure 10, the IMM-CSKF-D algorithm facilitates the model switching
speed and enhances the accuracy of the model probability estimation. Figure 10 depicts the
probability switching curves of the model; it is evident that the probabilistic evaluation of
the IMM-CSKF-D algorithm at each stage of the motion model is better than that of other
methods. In terms of selecting a real target model, this algorithm makes the motion of CV
and CA more vivid by using more weight, which, in turn, allows for more appropriate
model matching for the target’s maneuvering changes. As a result, this algorithm can
directly estimate the corresponding residual error through linear filtering when calculating
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the probabilities of IMM, avoiding errors caused by nonlinearity. In addition, the combina-
tion of CSKF-D and IMM can achieve efficient maneuvering target tracking because the
CSKF-D algorithm used in the sub-filter possesses higher estimation accuracy.

6. Conclusions

This study proposes the IMM-CSKF-D algorithm for Doppler radar target tracking,
transforming the nonlinear filtering problem into a linear filtering problem. We developed
the CSKF-D algorithm by adding Doppler measurement to the CSKF algorithm measure-
ment equation to solve the problem of strong nonlinearity between the target motion and
Doppler measurement. In addition, the UT transformation was used to calculate the statis-
tical characteristics of the process noise converted to the polar coordinate, which improves
the calculation accuracy of the noise’s statistical characteristics. The model also improves
the real-time filtering performance. We combined the CSKF-D algorithm with the IMM to
obtain the IMM-CSKF-D algorithm. We aimed to address the target maneuvering motion
issues and used this algorithm to solve the Doppler radar maneuvering target tracking
problem. Finally, we evaluated the performance and superiority of this model through
simulation and comparison with existing methods.
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